
The Neuberg-Mineur circle / Darij Grinberg

1. Introduction and geometrical prerequisites

The impetus for this note was given to me by aMathesis article [6] by Thébault and
Mineur from 1931 - more precisely, as I could not locate the article itself, by its review
(JFM 57.0773.03) in the Jahrbuch für Mathematik [8], which only mentioned the result
of the article without proof. The result - a theorem about quadrilaterals, which, in spite
of its simplicity and elegance, has been apparently forgotten ever since - immediately
attracted my attention. After some time I had found a proof and an extension of the
result, which will make the subject of the following note. However, before we come
to the formulation of these theorems, we have to discuss some prerequisites. Readers
with sound experience in geometry can skip these and only pick up the notations (the
ones de�ned in 1. and the de�nition of P -zero circle in 5.).

1. Matters of notation. I will use the abbreviation "circle P1P2P3 " for the circle
through three given points P1; P2; P3: Similarly, I will write "circle P1P2:::Pn " for
the circle through n given points P1; P2; :::; Pn; if such a circle exists. The distance
between two points P and Q will be denoted by PQ:

2. Directed lengths. In the following, we will make use of directed lengths (also
called signed lengths or directed segments). This means the following:
A directed line is de�ned as a pair (g; �!vg ) of a line g and a vector �!vg which is

parallel to the line g and has the length 1: The line g will be called the base line of
the directed line (g; �!vg ) ; and the vector �!vg will be called the direction of this directed
line.
For each line g; there exist exactly two vectors �!v1 and �!v2 which are parallel to this

line g and have the length 1: Hence, for the line g; there exist exactly two directed lines
which have g as their base line - namely (g; �!v1) and (g; �!v2) : We say that we direct
the line g when we choose one of these two directed lines.
Let (g; �!vg ) be a directed line. For any two points A and B on its base line g; we

denote by AB the real number � which satis�es
�!
AB = � ��!vg : This number � is uniquely

determined. We refer to AB = � as the directed length of the segment AB: Hereby, of
course, "directed length of the segment AB" is not the same as "directed length of the
segment BA".
Obviously, this directed length depends on the direction of the directed line (g; �!vg ) :

Thus, speaking of the directed length of the segment AB makes sense only if A and
B are two points on a line which is directed (and not just two random points on the
plane).
Directed lengths satisfy the following rules (that can be easily veri�ed): Let (g; �!vg )

be a directed line.

� For each point A on g; we have AA = 0:

� For any two points A and B on g; we have AB+BA = 0; and thus BA = �AB:

� For any three points A; B; C on g; we have AB+BC+CA = 0 and AB+BC =
AC:
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� For any two points A and B on g; we have AB = AB or AB = �AB: (In fact, by
the de�nition of AB; we have

�!
AB = AB � �!vg ; so that AB =

����!AB��� = ��AB � �!vg �� =��AB�� � j�!vg j = ��AB�� (since j�!vg j = 1), and thus AB = AB or AB = �AB:)
� For any two points A and B on g; we have AB2 = AB2:

� For any three points A; B; C on g such that B 6= C; we have:
AB

BC
=
AB

BC
if the point B lies inside the segment AC;

AB

BC
= �AB

BC
if the point B lies outside the segment AC;

AB

BC
= 0 if B = A:

If B = C and A 6= C; then one commonly writes AB
BC

=1: (Hereby, no di¤erence
between +1 and �1 is made.)

� For any three points A; B; C on g; we have:
AB � AC = �AB � AC if the point A lies inside the segment BC;
AB � AC = AB � AC if the point A lies outside the segment BC;
AB � AC = 0 if A = B or A = C:

The latter three rules have the following consequence: The values of AB
2
;
AB

BC
; and

AB � AC depend on the points A; B; C only and not on the direction of the directed
line (g; �!vg ) : Hence, if A; B; C are three points on a line, then we can direct this line
in two di¤erent ways, but both lead to the same value of AB

2
; to the same value of

AB

BC
; and to the same value of AB �AC: Hence, we can speak of the terms AB2; AB

BC
;

and AB � AC for any three points A; B; C which lie on one line, without �rst having
to direct this line (but of course, AB

2
is just a complicated notation for AB2).

A helpful property of directed lengths is the uniqueness of the division ratio: Let B1

and B2 be two points on a line AC: Then, B1 = B2 holds if and only if
AB1

B1C
=
AB2

B2C
:

What we will also use is the intersecting chords theorem for directed lengths: Let
u and v be two lines which intersect at a point P: Let U and U 0 be two points on the
line u; and let V and V 0 be two points on the line v: Then, PU �PU 0 = PV �PV 0 holds
if and only if there exists a circle which meets the line u at the points U and U 0 and
meets the line v at the points V and V 0: 1 This is an easy and basic fact (see [7],

1Hereby, we use the following convention:
If a circle k touches a line g at a point T; then we say that the circle k meets the line g at the points

T and T:
Thus, the assertion "there exists a circle which meets the line u at the points U and U 0 and meets

the line v at the points V and V 0 " is stronger than the assertion "the points U; U 0; V; V 0 lie on one
circle". In fact, in the case when the points U and U 0 coincide, the latter assertion surely holds, while
the former assertion is not necessary to hold (in fact, in this case it is equivalent to the existence of a
circle which touches the line u at the point U and meets the line v at the points V and V 0).
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Theorem 18, the equivalence of Assertions D1 and D3 for a proof2).

3. Projective geometry and degenerate cases. In order to understand what happens
to geometrical assertions in some degenerate cases, it is helpful to have a concept of the
projective plane. What I am going to explain now are some basics of this notion. Note
that the projective plane is a fully abstract and strict concept of projective geometry
- however, the following explanations aim at an intuitive understanding only, since we
are going to use the projective plane as a means of insight and not as an exact theory
in this paper.
The projective plane is the Euclidean plane, supplemented with the so-called in�nite

points and the so-called line at in�nity. These have the following properites: Let g be
a line (not the line at in�nity). All lines parallel to the line g have a common "point",
the so-called in�nite point of the line g; which is, therefore, also the in�nite point of
each line parallel to g: All in�nite points lie on one "line", the so-called line at in�nity.
Of course, in�nite points are no points of the Euclidean plane, and the line at in�nity is
not a line of the Euclidean plane (thus, for instance, it does not make sense to speak of
the parallel from a point to the line at in�nity, or of the distance between two in�nite
points), but it is helpful for the intuition to imagine them as points and lines.
A useful convention: If B is the in�nite point of a line AC; then we de�ne the

directed ratio
AB

BC
as follows:

AB

BC
= �1: Of course, neither AB nor BC is de�ned,

since B is not a point of the Euclidean plane.
Another helpful conception is that a circle can degenerate to the union of a line

with the line at in�nity. That is to say: For any line g; we can consider the union of
the line g with the line at in�nity3 as a (degenerate) "circle". The center of this circle
is an in�nite point - namely, the common in�nite point of all lines perpendicular to g:
The radius of this circle is not de�ned.4

4. Directed angles modulo 180�. Throughout this paper, we will use directed angles
modulo 180�; also called crosses. A good introduction into this kind of angles can be
found in [1] (with [2] as a sequel) or in [3] (§1.7, where directed angles modulo 180�

are simply referred to as directed angles). See also [4] and [5]. Here we will sketch a
de�nition and basic properties of directed angles without proof:
An Euclidean pair of lines will mean a pair (g; h) ; where g and h are two lines,

none of which coincides with the line at in�nity. Directed angles are equivalence classes
of Euclidean pairs of lines, where two Euclidean pairs of lines (g; h) and (g0; h0) are
said to be equivalent if and only if there exists a direct (i. e., orientation-preserving)
congruence transformation that maps the line g to the line g0 and maps the line h to
the line h0: The equivalence class of an Euclidean pair of lines (g; h) is denoted by

2 [7], Theorem 18 additionally requires the condition that the points U; U 0; V and V 0 are distinct
from P: However, the case when some of these points coincide with P is easy to handle.

3"Union" as in "union of sets", i. e. the set of all points lying on the line g or on the line at in�nity.
4We note in passing that this conception of a circle degenerating to the union of a line with the

line at in�nity makes more sense than the usual conception that a circle can degenerate to a line.
In fact, a circle intersects "many" lines (namely, all of its secants) in two points each, and thus one
should also expect this from a degenerate circle. But a line intersects any other line in one point only.
In constrast, the union of a line with the line at in�nity intersects "most" lines (namely, all lines not
passing through the point of intersection of the line with the line at in�nity) in two points.
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] (g; h) and called directed angle between the lines g and h: 5

We de�ne a directed angle 0� such that ] (g; g) = 0� holds for each line g:We de�ne
addition and subtraction of directed angles such that directed angles form an Abelian
group under addition (with 0� as the neutral element), such that ] (g; h) = �] (h; g)
holds for any two lines g and h; and such that

] (g1; g2) + ] (g2; g3) + :::+ ] (gn�1; gn) = ] (g1; gn) and

] (g1; g2) + ] (g2; g3) + :::+ ] (gn�1; gn) + ] (gn; g1) = 0�

holds for any n lines g1; g2; :::; gn: It is easily seen that for two lines g and h; we have
] (g; h) = 0� if and only if g k h:
A directed angle 90� is de�ned in a way that two lines g and h satisfy ] (g; h) = 90�

if and only if g ? h: We note that this angle 90� satis�es 90� + 90� = 0�; that is,
90� = �90�:
For each directed angle ' and each positive integer n; we de�ne the angle n' as

'+ '+ :::+ '| {z }
n terms

; the angle 0' as 0�; and the angle (�n)' as � (n') :

For any three points A; B; C in the plane which satisfy A 6= B and B 6= C; we
de�ne ]ABC as an abbreviation for ] (AB; BC) : This angle ]ABC is well-de�ned
even if some of the points A; B; C are in�nite points, as long as none of the two lines
AB and BC coincides with the line at in�nity! Some important properties of directed
angles are:

� Let u and v be two lines through a point P: Let U and U 0 be two points on the
line u di¤erent from P; and let V and V 0 be two points on the line v di¤erent
from P: Then,

]UPV = ]U 0PV 0 = �]V PU = �]V 0PU 0 = ] (u; v) = �] (v; u) :

� Let A; B; C be three points such that A 6= B and B 6= C; and such that B is not
an in�nite point. The points A; B; C lie on one line if and only if ]ABC = 0�:

� Let A; B; C1; C2 be four points such that A 6= B; B 6= C1 and B 6= C2; and such
that B is not an in�nite point. The points B; C1; C2 lie on one line if and only
if ]ABC1 = ]ABC2:

� Di¤erence exchange formula. For any four lines a; b; c; d; we have ] (a; b) �
] (c; d) = ] (a; c)� ] (b; d) :

� Let g; h; g0; h0 be four lines with g k g0: Then, ] (g; h) = ] (g0; h0) holds if and
only if h k h0:

� Chordal angle theorem. Let A; B; C; D be four points such that the directed
angles ]ACB and ]ADB are well-de�ned. Then, ]ACB = ]ADB holds if and
only if the four points A; B; C; D lie on one circle.

5Of course, the order of the lines is important here - the directed angle between the lines g and h
is not the same as the directed angle between the lines h and g:
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� Tangent-chordal angle theorem. Let A; B; C be three points on a circle, and t the
tangent to this circle at the point A: Then, ] (t; AB) = ]ACB and ] (AB; t) =
]BCA:

� Central angle theorem. Let A; B; C be three points on a circle, and let O be the
center of this circle. Then, ]OBA = ]BAO = 90� � ]ACB:

� Similitude of triangles. Let ABC and A0B0C 0 be two non-degenerate triangles,
none of whose vertices are in�nite points.6

The triangles ABC and A0B0C 0 are directly similar (i. e. one can be obtained
from the other one through an orientation-preserving similitude) if and only if
]ABC = ]A0B0C 0 and ]ACB = ]A0C 0B0:
The triangles ABC and A0B0C 0 are oppositely similar (i. e. one can be obtained
from the other one through an orientation-reversing similitude) if and only if
]ABC = �]A0B0C 0 and ]ACB = �]A0C 0B0:

The main advantage of directed angles is - as with directed lengths - their help
in simplifying proofs: Using directed angles, one can avoid much casework due to the
arrangement of the points.

5. Zero circles. In the second proof of Theorem 4, we are going to work with
so-called "zero circles". A zero circle is simply a circle with radius 0; and all that
is required from the reader is not to fear dealing with such circles just as with usual
circles. Concretely, zero circles have the following properties:
For each point P (which is not an in�nite point), there exists exactly one circle

with center P and radius 0: This circle will be called the P -zero circle. This circle
passes through one point only, namely through the point P: Tangents to this circle are
all lines through the point P: The power of a point Q with respect to the P -zero circle
is QP 2:

2. The main results

We start with two facts belonging to common knowledge among triangle geometers.
The �rst one will be used as a lemma in our later arguments (Fig. 1):

Theorem 1. Let ABC be a triangle. The tangent to the circle ABC at
the point B intersects the line CA at a point Y: Then,

CY

Y A
= �BC

2

AB2
:

In words: The tangent to the circumcircle of a triangle at a vertex of this
triangle divides the opposite side externally in the ratio of the squares of
the adjacent sides.

6A triangle is called degenerate if there exists a line passing through all its three vertices. We have
to exclude degenerate triangles here, since there are no similitude criteria for degenerate triangles
which rely on angles only.
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A

B

C
Y

Fig. 1
Proof. Since the line BY is the tangent to the circle ABC at B; the tangent-

chordal angle theorem yields ] (AB; BY ) = ]ACB: Since ] (AB; BY ) = ]ABY
and ]ACB = �]BCY; this becomes ]ABY = �]BCY: Further, obviously ]AY B =
�]BY C: Hence, the triangles ABY and BCY are oppositely similar, and thus

Y C

Y B
=
BC

AB
and

Y B

Y A
=
BC

AB
:

Multiplication of these two equations yields

Y C

Y B
� Y B
Y A

=

�
BC

AB

�2
; hence

Y C

Y A
=

�
BC

AB

�2
; and thus

CY

Y A
=
Y C

Y A
=

�
BC

AB

�2
=
BC2

AB2
:

Now, since the point Y lies outside the segment CA (else, Y would lie inside the
circle ABC; but this is impossible since the line BY is tangent to this circle), we have
CY

Y A
= �CY

Y A
; so that

CY

Y A
= �BC

2

AB2
: This proves Theorem 1.

Now, considering not just the tangent to the circle ABC at B; but also the similar
tangents at C and A; we come to the following result (Fig. 2):

6



A

B

C

Y

X

Z

Fig. 2

Theorem 2. Let ABC be a triangle. The tangents to the circle ABC at
the points A; B; C intersect the lines BC; CA; AB at the points X; Y; Z;
respectively.

a) We have

BX

XC
= �AB

2

CA2
;

CY

Y A
= �BC

2

AB2
;

AZ

ZB
= �CA

2

BC2
:

b) The points X; Y; Z lie on one line.

This line is called the Lemoine axis of triangle ABC:

Proof of Theorem 2. Theorem 1 yields
CY

Y A
= �BC

2

AB2
; and similarly we have
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BX

XC
= �AB

2

CA2
and

AZ

ZB
= �CA

2

BC2
: This proves Theorem 2 a). From

BX

XC
� CY
Y A

� AZ
ZB

=

�
�AB

2

CA2

�
�
�
�BC

2

AB2

�
�
�
�CA

2

BC2

�
= �1;

it follows using the Menelaos theorem (applied to the triangle ABC and the points
X; Y; Z on its sidelines BC; CA; AB) that the points X; Y; Z lie on one line. Thus,
Theorem 2 b) is proven as well, and hence our proof of Theorem 2 is complete.
The above proof of Theorem 2 b) is not the only one imaginable; literature abounds

in proofs using polars, the Pascal theorem and other methods.
We can interpret Theorem 2 as a characterization of the points on the sidelines of a

triangle ABC which divide the respective sides externally in the ratios of the squares
of the adjacent sides - these points are the points X; Y; Z and lie on one line. What
can be said about points that divide the sides of a quadrilateral externally in the ratios
of the squares of the adjacent sides? Here is where the result of [6] emerges (Fig. 3):

A

B C

D

X

Z

Y

W

Fig. 3
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Theorem 3, the Neuberg-Mineur theorem. Let ABCD be a quadri-
lateral, and let X; Y; Z; W be the points on the lines AB; BC; CD; DA
which divide the sides AB; BC; CD; DA externally in the ratios of the
squares of the adjacent sides, i. e. which satisfy

AX

XB
= �DA

2

BC2
;

BY

Y C
= �AB

2

CD2
;

CZ

ZD
= �BC

2

DA2
;

DW

WA
= �CD

2

AB2
:

Then, the points X; Y; Z; W lie on one circle.

We will refer to this circle as the Neuberg-Mineur circle of the quadri-
lateral ABCD:

What was not mentioned in the review of [6], but reveals itself upon experimentation
(Fig. 4):

Theorem 4. In the con�guration of Theorem 3, we have: If ABCD is a
cyclic quadrilateral, then the points X; Y; Z; W lie on one line.

That is, the Neuberg-Mineur circle of a cyclic quadrilateral degenerates to
the union of a line with the line at in�nity.

A

B C

D

X

Z

Y

W
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Fig. 4

3. A lemma on directly similar triangles

O

U

V

V'

U'
Fig. 5
Before we come to proving Theorems 3 and 4, we establish a very simple lemma

(Fig. 5):

Theorem 5. Let O; U; V; U 0; V 0 be �ve points such that the triangles
OUV and OU 0V 0 are directly similar. Then, the triangles OUU 0 and OV V 0

are directly similar.

Proof of Theorem 5. Theorem 5 can be easily proven with the aid of non-directed
angles or directed angles modulo 360�: However, so as to stay consequent, we are going
to use directed angles modulo 180�: With this kind of angles, Theorem 5 is slightly
harder to prove. Here is one such proof:
(See Fig. 6.) We assume that the triangles OUV; OU 0V 0; OUU 0; OV V 0 are all

non-degenerate.7 Let P be the point of intersection of the lines UV and U 0V 0: Since
the triangles OUV and OU 0V 0 are directly similar, we have ]OUV = ]OU 0V 0: In
other words, ]OUP = ]OU 0P: Thus, the points O; P; U; U 0 lie on one circle. Thus,
]OUU 0 = ]OPU 0: Similarly, ]OV V 0 = ]OPV 0: Now, ]OPU 0 = ]OPV 0: Hence,
]OUU 0 = ]OV V 0: Similarly, ]OU 0U = ]OV 0V: Thus, the triangles OUU 0 and OV V 0
are directly similar, and Theorem 5 is proven.

7The case of degenerate triangles is left to the reader. Note that the similitude of degenerate
triangles cannot be proven using angles alone - here you need to consider ratios of lengths (and
directed lengths can be of good use).
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O

U

V

V'

U'

P

Fig. 6

4. Proof of Theorem 3

Now we can start with the proof of Theorem 3. In the con�guration of Theorem 3,
we consider the points of intersection of opposite sidelines of the quadrilateral ABCD:
Let E be the point of intersection of the lines AB and CD; and let F be the point of
intersection of the lines BC and DA:
(See Fig. 7.) The circles EBC and EDA intersect at the point E and at a second

point; we denote this second point by P: 8. Then, ]PBC = ]PEC (chordal angle
theorem in the circleEBCP ) and]PED = ]PAD (chordal angle theorem in the circle
EDAP ). Hence, ]PBC = ]PEC = ]PED = ]PAD; so that ]PBF = ]PBC =
]PAD = ]PAF: Consequently, the point P lies on the circle FAB: Similarly, the
point P lies on the circle FCD: Altogether, the point P thus lies on the circles EBC;
EDA; FAB; FCD: Thus we have shown:

8If the circles EBC and EDA touch each other at the point E; then we set P = E:
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A

B

C

D

E

F

P

Fig. 7

Theorem 6, the Steiner-Miquel theorem. Let ABCD be a quadrilat-
eral. Let E be the point of intersection of the lines AB and CD; and let
F be the point of intersection of the lines BC and DA: Then, the circles
EBC; EDA; FAB; FCD have a common point P:

This point P is called the Miquel point of the quadrilateral ABCD (or,
equivalently, the Miquel point of the four lines AB; BC; CD; DA). (See
Fig. 8.)

In other words: Four arbitrary lines in the plane form four triangles (which
are obtained if one considers each group of three out of the four lines). The
circumcircles of these triangles have a common point (the so-called Miquel
point of the four lines).
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A

B

C

D

E

F

P

Fig. 8
(See Fig. 9.) During the proof of Theorem 6, we have showed that ]PBC =

]PAD: Similarly, ]PCB = ]PDA: Thus, the triangles PBC and PAD are directly
similar. Similarly, the triangles PCD and PBA are directly similar (sorry for the pun).
We formulate this as a theorem for further use:

Theorem 7. In the con�guration of Theorem 6, we have: The triangles
PBC and PAD are directly similar; the triangles PCD and PBA are
directly similar.
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A

B
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D

E

F

P

Fig. 9
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A

B
C

D

E

P

W'

Fig. 10
(See Fig. 10.) Since the triangles PCD and PBA are directly similar, we have

PD

PA
=
CD

BA
; so that

PD

AP
=
CD

AB
: Let the tangent to the circle EDAP at the point

P intersect the line DA at a point W 0: Then, W 0 is the point of intersection of the
tangent to the circle PDA at the point P with the line DA; hence, Theorem 1 yields

DW 0

W 0A
= �PD

2

AP 2
= �

�
PD

AP

�2
= �

�
CD

AB

�2
= �CD

2

AB2
=
DW

WA
:

Hence, the pointsW 0 andW coincide. SinceW 0 was de�ned as the point of intersection
of the tangent to the circle EDAP at the point P with the line DA; we can thus
conclude that the point W is the point of intersection of the tangent to the circle
EDAP at the point P with the line DA: Similar results can be inferred about the
points X; Y; Z: We combine:

Theorem 8. In the con�guration of Theorems 3 and 69, we have: The
points X; Y; Z; W are the points of intersection of the tangents to the

9This is the con�guration consisting of the quadrilateral ABCD; the points X; Y; Z; W de�ned in
Theorem 3, and the points E; F; P de�ned in Theorem 6.
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circles FABP; EBCP; FCDP; EDAP at the point P with the lines AB;
BC; CD; DA; respectively. (See Fig. 11.)

A

B

C

D

E

F

P

X

Z

Y

W

Fig. 11
(See Fig. 12.) The triangles PCD and PBA are directly similar (after Theorem 7).

But, according to Theorem 8, the point Z is the point of intersection of the tangent
to the circle PCD at P with the line CD; and the point X is the point of intersection
of the tangent to the circle PBA at P with the line BA: Hence, the points Z and
X are corresponding points in the triangles PCD and PBA: Corresponding points in
similar triangles form similar triangles themselves; since the triangles PCD and PBA
are directly similar, this yields that the triangles PCZ and PBX are directly similar.
Hence, ]CZP = ]BXP:
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A

B
C

D

E

F

P

X

Z

Fig. 12
The equation ]CZP = ]BXP rewrites as ]EZP = ]EXP ; hence, the point P

lies on the circle EZX: Similarly, the point P lies on the circle FYW: We combine:

Theorem 9. In the con�guration of Theorems 3 and 6, we have: The point
P lies on the circles EZX and FYW: (See Fig. 13.)

Actually, more can be said:
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Fig. 13

Theorem 10. In the con�guration of Theorems 3 and 6, we have: The
circles EZX and FYW touch each other at the point P:

Proof. Let t1 and t2 be the tangents to the circles EZX and FYW at the point P:
We want to show that these two tangents t1 and t2 coincide.

18



A

B
C

D

E

F

P

X

Z
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R

Fig. 14
Since t1 is the tangent to the circle EZX at P; the tangent-chordal angle theorem

yields ] (t1; EP ) = ]PXE: Since t2 is the tangent to the circle FYW at P; the
tangent-chordal angle theorem yields ] (FP ; t2) = ]FY P: Hence,

] (t1; t2) = ] (t1; EP ) + ] (EP ; FP ) + ] (FP ; t2)
= ]PXE + ]EPF + ]FY P
= ]PXE + ]EPF � ]PY F: (1)

But
]PXE = ] (PX; AB) = ] (PX; BP ) + ] (BP ; AB) : (2)

Since - according to Theorem 8 - the line PX is the tangent to the circle FABP at
the point P; the tangent-chordal angle theorem entails ] (PX; BP ) = ]PFB; and
obviously ] (BP ; AB) = ]PBA: Hence, (2) becomes ]PXE = ]PFB + ]PBA:
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Similarly, ]PY F = ]PEB + ]PBC; and thus

]PXE + ]EPF � ]PY F
= (]PFB + ]PBA) + ]EPF � (]PEB + ]PBC)
= ]PFB + ]PBA+ ]EPF + (�]PEB) + (�]PBC)
= ]PFB + ]PBA+ ]EPF + ]BEP + ]CBP
= ]PFB + ]CBP + ]PBA+ ]BEP + ]EPF
= ] (PF ; BC) + ] (BC; BP ) + ] (BP ; AB) + ] (AB; PE) + ] (PE; PF )
= 0�: (3)

Combining this with (1), we obtain ] (t1; t2) = 0�: Thus, the lines t1 and t2 are parallel.
Since these lines t1 and t2 both pass through the point P; they must therefore coincide.
Since these lines t1 and t2 were de�ned as the tangents to the circles EZX and FYW
at the point P; this yields: The circles EZX and FYW have a common tangent at
their point of intersection P: Hence, these two circles must touch each other at the
point P: This proves Theorem 10.
(See Fig. 14.) Let the common tangent of the circles EZX and FYW at their

point of tangency P intersect the line XZ at a point R: Then, the point R is the point
of intersection of the tangent to the circle PZX at P with the line XZ:
Since the triangles PCZ and PBX are directly similar, Theorem 5 yields that the

triangles PCB and PZX are directly similar. The point Y is the point of intersection
of the tangent to the circle PCB at P with the line BC (after Theorem 8); the point
R is the point of intersection of the tangent to the circle PZX at P with the line XZ:
Hence, the points Y and R are corresponding points in the triangles PCB and PZX:
Corresponding points in similar triangles form similar triangles themselves. Since the
triangles PCB and PZX are directly similar, this yields that the triangles PBY and
PXR are directly similar. After Theorem 5, this entails that the triangles PBX and
PY R are directly similar. Hence, ]PY R = ]PBX:
We have shown above that the triangles PCB and PZX are directly similar. Sim-

ilarly, the triangles PAB and PWY are directly similar, and this yields ]WY P =
]ABP: Hence, ]WYR = ]WY P +]PY R = ]ABP +]PBX = ]ABX = 0� (since
the points A; B and X lie on one line). Therefore, the points W; Y and R lie on one
line, i. e. the point R lies on the line YW: But we have de�ned the point R as the
point of intersection of the common tangent of the circles EZX and FYW at their
point of tangency P with the line XZ: Thus, we obtain:

Theorem 11. In the con�guration of Theorems 3 and 6, we have: The
common tangent of the circles EZX and FYW at their point of tangency
P and the lines XZ and YW intersect each other at one point R: (See Fig.
15.)
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Fig. 15
The circle EZX meets the line XZ at the points X and Z; and meets the line RP

at the points P and P (since it touches the line RP at the point P ). The two lines
XZ and RP intersect at R: Thus, the intersecting chords theorem for directed lengths
yields RX �RZ = RP �RP: Similarly, RY �RW = RP �RP: Hence, RX �RZ = RY �RW:
Since the two linesXZ and YW intersect at R; this yields, according to the intersecting
chords theorem for directed lengths, that there exists a circle which meets the line XZ
at the points X and Z and meets the line YW at the points Y andW: Thus, the points
X; Y; Z; W lie on one circle. Theorem 3 is thus proven.

5. Two proofs of Theorem 4

(See Fig. 16.) Now it remains to prove Theorem 4, and we will do this in two
di¤erent ways.
First proof of Theorem 4. The following proof of Theorem 4 continues our proof

of Theorem 3: We will use some of our above auxiliary results that we have obtained
on our way to the proof of Theorem 3, but we will also use the additional condition of
Theorem 4 that the quadrilateral ABCD is cyclic. Consequently, in the following, we
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are considering the con�guration of Theorems 3 and 6 in the particular case when the
quadrilateral ABCD is cyclic. This means that we are considering a cyclic quadrilateral
ABCD; the points X; Y; Z; W; the point of intersection E of the lines AB and CD;
the point of intersection F of the lines BC and DA; and the Miquel point P of the
quadrilateral ABCD:
Since ABCD is a cyclic quadrilateral, the points A; B; C; D lie on one circle. Thus,

after the chordal angle theorem, ]DCB = ]DAB: But the chordal angle theorem for
the circle EBCP yields ]EPB = ]ECB; and the chordal angle theorem for the circle
FABP yields ]BPF = ]BAF: Therefore,

]EPF = ]EPB + ]BPF = ]ECB + ]BAF = ]DCB + ]BAD
= ]DAB + ]BAD = ]DAD = 0�:

This signi�es that the point P lies on the line EF: We have thus shown:

A

B
C

D

E

F

P

Fig. 16

Theorem 12. In the con�guration of Theorem 6, we have: If ABCD is a
cyclic quadrilateral, then the Miquel point P lies on the line EF:
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That is, the Miquel point of a cyclic quadrilateral lies on the line joining
the points of intersection of opposite sides of the quadrilateral. (See Fig.
16.)

(See Fig. 17.) From (3), we have ]PXE + ]EPF � ]PY F = 0�: In view of
]EPF = 0�; this simpli�es to ]PXE � ]PY F = 0�; and thus ]PXE = ]PY F: In
other words, ]PXB = ]PY B: Thus, the points P; B; X; Y lie on one circle, so that
the chordal angle theorem yields ]PXY = ]PBY: Similarly, the points P; A; W; X
lie on one circle, and therefore the chordal angle theorem yields ]PAW = ]PXW:
But we know for a longer time that ]PBC = ]PAD: Hence, ]PXY = ]PBY =
]PBC = ]PAD = ]PAW = ]PXW: This entails that the points W; X; Y lie on
one line. Similarly, the points X; Y; Z lie on one line. Thus, all four points X; Y; Z;
W lie on one line, and Theorem 4 is proven.
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E

F

P

X

Z

Y

W

Fig. 17
Second proof of Theorem 4. The following proof of Theorem 4 is independent of

our above proof of Theorem 3. Instead, this proof relies on the notion of the radical
axis of two circles. We work in the con�guration of Theorem 3 under the additional
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assumption that ABCD is a cyclic quadrilateral. We �rst show an auxiliary fact:

Theorem 13. In the con�guration of Theorem 3, we have: Let G be the
point of intersection of the lines AC and BD:

If ABCD is a cyclic quadrilateral, then the pointsX; Y; Z; W are the points
of intersection of the tangents to the circles GAB; GBC; GCD; GDA at
the point G with the lines AB; BC; CD; DA; respectively.

A

B C

D

X

Z

Y

W
G

Fig. 18
Proof of Theorem 13. (See Fig. 19.) We work under the assumption that ABCD

is a cyclic quadrilateral.
This assumption yields that the points A; B; C; D lie on one circle. According

to the chordal angle theorem, we therefore have ]CAD = ]CBD: Since ]CAD =
]GAD and ]CBD = �]GBC; this becomes ]GAD = �]GBC: Similarly, ]GDA =
�]GCB: Thus, the triangles GAD and GBC are oppositely similar. Hence,

GA

GB
=

AD

BC
: In other words,

GA

BG
=
DA

BC
:
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Let the tangent to the circle GAB at the point G intersect the line AB at a point
X 0: Then, Theorem 1 yields

AX 0

X 0B
= �GA

2

BG2
= �

�
GA

BG

�2
= �

�
DA

BC

�2
= �DA

2

BC2
=
AX

XB
:

Hence, the points X and X 0 coincide. Since X 0 was de�ned as the point of intersection
of the tangent to the circle GAB at the point G with the line AB; this yields: The
point X is the point of intersection of the tangent to the circle GAB at the point G
with the line AB: Similarly we can prove analogous characterizations of the points Y;
Z; W: Thus, Theorem 13 is proven.

A

B C

D

X'

G

Fig. 19
According to Theorem 13, the point X is the point of intersection of the tangent to

the circle GAB at the point G with the line AB: Consequently, the circle GAB meets
the line AB at the points A and B; and meets the line GX at the points G and G
(since it touches the line GX at the point G). Therefore, after the intersecting chords
theorem for directed lengths, XA �XB = XG �XG (since X is the point of intersection
of the lines AB and GX). Now, XA �XB is the power of the point X with respect to
the circumcircle of the cyclic quadrilateral ABCD; whereas XG �XG = XG2 = XG2
is the power of the point X with respect to the G-zero circle. Hence, the point X has
equal powers with respect to the circumcircle of the cyclic quadrilateral ABCD and
the G-zero circle. Thus, the point X lies on the radical axis of the circumcircle of the
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cyclic quadrilateral ABCD and the G-zero circle. Similarly, the points Y; Z; W lie on
this radical axis as well. Hence, the four points X; Y; Z; W lie on one line - namely, on
the radical axis of the circumcircle of the cyclic quadrilateral ABCD and the G-zero
circle. This proves Theorem 4.

A

B C

D

X

Z

Y

W
G O

Fig. 20
This second proof of Theorem 4 actually entails an additional assertion: Let O be

the center of the circumcircle of the cyclic quadrilateral ABCD: Since the radical axis
of two circles is always perpendicular to the line joining their centers, it is clear that
the radical axis of the circumcircle of the cyclic quadrilateral ABCD and the G-zero
circle is perpendicular to the line joining the center of the circumcircle of the cyclic
quadrilateral ABCD (i. e., the point O) with the center of the G-zero circle (i. e., the
point G). That is, this radical axis is perpendicular to the line OG: Hence we have
shown:

Theorem 14. In the con�guration of Theorem 3, we have: Let G be the
point of intersection of the lines AC and BD:

We assume that ABCD is a cyclic quadrilateral. Then, the points X; Y;
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Z; W lie on one line - namely, on the radical axis of the circumcircle of
the cyclic quadrilateral ABCD and the G-zero circle. This radical axis is
perpendicular to the line OG; where O is the center of the circumcircle of
the cyclic quadrilateral ABCD: (See Fig. 20.)
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