
 GENETIC ALGORITHMS

AN OVERVIEW OF GENETIC ALGORITHMS

A genetic algorithm is a type of searching algorithm. It searches a solution space for
an optimal solution to a problem. The key characteristic of the genetic algorithm is how
the searching is done. The algorithm creates a “population” of possible solutions to the
problem and lets them “evolve” over multiple generations to find better and better
solutions. The generic form of the genetic algorithm is found in Figure 1. The items in
bold in the algorithm are defined here.

The population is the collection of candidate solutions that we are considering during
the course of the algorithm. Over the generations of the algorithm, new members are
“born” into the population, while others “die” out of the population. A single solution in
the population is referred to as an individual. The fitness of an

 1. Create a population of random candidate solutions named pop.
 2. Until the algorithm termination conditions are met, do the following (each

iteration is called a generation):
 (a) Create an empty population named new-pop.
 (b) While new-pop is not full, do the following:

 i. Select two individuals at random from popso that individuals which are
more fit are more likely to be selected.

 ii. Cross-over the two individuals to produce two new individuals.
 (c) Let each individual in new-pop have a random chance to mutate.
 (d) Replace pop with new-pop.

 3. Select the individual from pop with the highest fitness as the solution to the
problem.

Figure 1: The Genetic Algorithm

individual is a measure of how “good” the solution represented by the individual is. The
better the solution, the higher the fitness – obviously, this is dependent on the problem to
be solved.

The selection process is analogous to the survival of the fittest in the natural world.
Individuals are selected for “breeding” (or cross-over) based upon their fitness values –
the fitter the individual, the more likely that individual will be able to reproduce. The
cross-over occurs by mingling the two solutions together to produce two new individuals.
During each generation, there is a small chance for each individual to mutate, which will
change the individual in some small way.
To use a genetic algorithm, there are several questions that need to be answered:
 • How is an individual represented?
 • How is an individual’s fitness calculated?
 • How are individuals selected for breeding?
 • How are individuals crossed-over?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

 • How are individuals mutated?
 • How big should the population be?
 • What are the “termination conditions”?

Most of these questions have problem-specific answers. The last two, however, can be
discussed in a more general way.

The size of the population is highly variable. The larger the population, the more
possible solutions there are, which means that there is more variation in the population.
Variation means that it is more likely that good solutions will be created. Therefore, the
population should be as large as possible. The limiting factor is, of course, the running
time of the algorithm. The larger the population, the longer the algorithm takes to run.

The algorithm in Figure 1 has a very vague end point – the meaning of “until the
termination conditions are met” is not immediately obvious. The reason for this is that
there is no one way to end the algorithm. The simplest approach is to run the search for a
set number of generations – the longer you can run it, the better. Another approach is to
end the algorithm after a certain number of generations pass with no improvement in the
fitness of the best individual in the population. There are other possibilities as well.

Since most of the other questions are dependent upon the search problem, we will
look at two example problems that can be solved using genetic algorithms: finding a
mathematical function’s maximum and the traveling salesman problem.

 FUNCTION MAXIMIZATION

One application for a genetic algorithm is to find values for a collection of variables
that will maximize a particular function of those variables. While this type of problem
could be solved in other ways, it is useful as an example of the operation of genetic
algorithms as the application of the algorithm to the problem is fairly straightforward. For
this example, let’s assume that we are trying to determine the variables that produce the
maximum value for this function:

f(w, x, y, z) = w
3
+ x

2
– y

2
– z

2
+ 2yz – 3wx + wz – xy + 2

This could probably be solved using multi-variable calculus (although this author’s skills
in that area are pretty rusty!), but it is a good simple example of the use of genetic
algorithms. To use the genetic algorithm, we need to answer the questions listed in the
previous section.

How is an individual represented?

What information is needed to have a “solution” to the maximization problem we are
working on? Hopefully it is clear that all we need is to have values for w, x, y, and z.
Assuming that we have values (any values) for these four variables, we have a candidate
solution for our problem.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

The question is how to represent these four values. A simple way to do this is to
simply have an array of four values (integers or floating point numbers, either way).
However, for genetic algorithms it is usually best to have a larger individual – this way,
variations can be done in a more subtle way. The research shows [Beasley, Bull, and
Martin 1993; Holland 1975] that using individuals represented by bit strings offers the
best performance. So, we can simply choose a size in bits for each variable, and then
concatenate the four values together into a single bit string.

For example, we will choose to represent each variable as a four-bit integer, making
our entire individual a 16-bit string. This is obviously very simplistic, and in reality we
would probably want to have the variables represented as floating point values with more
precision, but for an example it should work. Thus, an individual such as

1101 0110 0111 1100
represents a solution where w = 13, x = 6, y = 7, and z = 12.

How is an individual’s fitness calculated?

Next we consider how to determine the fitness of each individual. There is generally a
differentiation between the fitness and evaluation functions. The evaluation function is a
function that returns an absolute measure of the individual. The fitness function is a
function that measures the value of the individual relative to the rest of the population.

In our example, an obvious evaluation function would be to simply calculate the
value of f for the given variables. For example, assume we have a population of 4

individuals:
1010 1110 1000 0011

 0110 1001 1111 0110
 0111 0110 1110 1011
 0001 0110 1000 0000

The first individual represents w = 10, x = 14, y = 8, and z = 3, for an f value of 671. The
values for the entire population can be seen in the following table:

Individual w x y z f
1010111010000011 10 14 8 3 671

0110100111110110 6 9 15 6 -43

0111011011101011 7 6 14 11 239

0001011010000000 1 6 8 0 -91

The fitness function can be chosen from many options. For example, the individuals
could be listed in order from lowest to highest evaluation function values, and an ordinal
ranking applied. Or, the fitness function could be the individual’s evaluation value
divided by the average evaluation value. Looking at both of these approaches would give
us something like this:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Individual evaluation ordinal averaging

3

1010111010000011 671 4 2.62

0110100111110110 -43 2 0.19

0111011011101011 239 3 0.81

0001011010000000 -91 1 0.03

The key is that the fitness of an individual should represent the value of the individual
relative to the rest of the population, so that the best individual has the highest fitness.

How are individuals selected for breeding?

The key to the selection process is that it should be probabilistically weighted so that
higher fitness individuals have a higher probability of being selected. Other than these
specifications, the method of selection is open to interpretation.

One possibility is to use the ordinal method for the fitness function, then calculate a
probability of selection that is equal to the individual’s fitness value divided by the total
fitness of all the individuals. In the example above, that would give the first individual a
40% chance of being selected, the second a 20% chance, the third a 30% chance, and the
fourth a 10% chance. Clearly this is giving the better individuals more chances to be
selected.

A similar approach could be used with the average fitness calculations. This would
give the first individual a 72% chance, the second a 5% chance, the third a 22% chance,
and the fourth a 1% chance. This method makes the probability more dependent on the
relative evaluation functions of each individual.

How are individuals crossed-over?

Once we have selected a pair of individuals, they are “bred” – or in genetic algorithm
language, they are crossed-over. Typically two children are created from each set of
parents. One method for performing the cross-over is described here, but there are other
approaches. Two locations are randomly chosen within the individual. These define
corresponding substrings in each individual. The substrings are swapped between the two
parent individuals, creating two new children. For example, let’s look at our four
individuals again:

1010 1110 1000 0011
0110 1001 1111 0110
0111 0110 1110 1011
0001 0110 1000 0000
Let’s assume that the first and third individuals are chosen for cross-over (making

sense, as these are the two top individuals). Keep in mind that the selection process is
random, however. The fourth and fourteenth bits are randomly selected to define the
substring to be swapped, so the cross-over looks like this:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

1010111010000011 1010111010000011 1011011011101011
 → →

0111011011101011 0111011011101011 0110111010000011

Thus, two new individuals are created. We should keep creating new individuals until

we have created enough to replace the entire population – in our example, we need one
more cross-over. Assume that the first and fourth individuals are selected this time. Note
that an individual may be selected multiple times for breeding, while other individuals
might never be selected. Further assume that the eleventh and sixteenth bits are randomly
selected for the cross-over point. We would see a second cross-over like this:
1010111010000011 1010111010000011 1010111010000000

 → →
0001011010000000 0001011010000000 0001011010000011

So, our second generation population is:

1011 0110 1110 1011
0110 1110 1000 0011
1010 1110 1000 0000
0001 0110 1000 0011

How are individuals mutated?

Finally, we need to allow individuals to mutate. When using bit strings, the easiest
way to implement the mutation is to allow every single bit in every individual a chance to
mutate. This chance should be very small, since we don’t want to have individuals
changing dramatically due to mutation. Setting the percentage so that roughly one bit per
individual will change on average is probably a reasonably good number.

The mutation will consist of having the bit “flip” – a 1 changes to a 0 and a 0 changes
to a 1. In our example, assume that the bold and italicized bits have been chosen for
mutation:

1011011011101011 → 1011011011101011
0110111010000011 → 0110101010000011
1010111010000000 → 1010111010010000
0001011010000011 → 0101011010000001

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

 Wrapping Up

Finally, let’s look at the new population:

Individual w x y z f
1011011011101011 11 6 14 11 1,045

0110101010000011 6 10 8 3 51

1010111010010000 10 14 9 0 571

0101011010000001 5 6 8 1 -19

The average evaluation value here is 412, versus an average of 194 for the previous

generation. Clearly, this is a constructed example, but the exciting thing about genetic
algorithms is that this sort of improvement actually does occur in practice, although the
amount of improvement tends to level off as the generations continue.

THE TRAVELLING SALESMAN PROBLEM

Now let’s look at a less contrived example. Genetic algorithms can be used to solve
the traveling salesman problem (TSP). For those who are unfamiliar with this problem, it
can be stated in two ways. Informally, there is a traveling salesman who services some
number of cities, including his home city. He needs to travel on a trip such that he starts
in his home city, visits every other city exactly once, and returns home. He wants to set
up the trip so that it costs him the least amount of money possible. The more formal way
of stating the problem casts it as a graph problem. Given a weighted graph with N
vertices, find the lowest cost path from some city v that visits every other node exactly
once and returns to v. For a more thorough discussion of TSP, see [Garey and Johnson,
1979].

The problem with TSP is that it is an NP-complete problem. The only known way to
find the answer is to list every possible route and find the one with the lowest cost. Since
there are a total of (N – 1)! routes, this quickly becomes intractable for large N. There are
approximation algorithms that run in a reasonable time and produce reasonable results – a
genetic algorithm is one of them.

Individual Representation and Fitness

Our first step is to decide on a representation for an individual candidate solution, or

tour. The bit string model is not very useful, as the cross-overs and mutations can easily
produce a tour that is invalid – remember that every city must occur in the tour exactly
once except the home city.

The only real choice for representing the individual is a vector or array of cities, most
likely stored as integers. The costs of travel between cities should be provided – when
assigning this as a project to our students, we use a text file containing a cost matrix.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Using a vector of integers causes some problems with cross-over and mutation, as we’ll
see in the next section.
For example, the following file defines a TSP with four cities:

4
0 2 6 3
2 0 9 7
6 9 0 8
3 7 8 0

This file shows that the cost of travel from city 0 to city 2 is 6, while the cost from city 3
to city 1 is 7. Then we could represent an individual as a vector of five cities:

[0 2 1 3 0]
We also need to be careful when calculating fitness. The clear choice for the

evaluation function is the cost of the tour, but remember that a good tour is one whose
cost is low, so we need to calculate fitness so that a low cost tour is a high fitness
individual. One way to do this is to find the largest cost edge in the graph (say it has cost
K), then set the fitness equal to N * K – (path cost), where N is the number of cities. The
makes a tour with a low path cost have a high fitness value.

Cross-over and Mutation

When performing cross-over and mutation, we need to make sure that we produce
valid tours. This means modifying the cross-over and mutation process. We can still use
the same basic idea, however – choose a substring of the vector of cities at random for
cross-over, and choose a single point in the vector at random for mutation. The
mechanics are a bit different, though.

For cross-over, rather than simply swapping the substrings (which could easily result
in an invalid tour), we will instead keep the same cities, but change their order to match
the other parent of the cross-over. For example, assume we have the following two

individuals, with the third and sixth cities chosen for the cross-over substring
5

7 3 6 1 0 2 5 4
5 4 1 7 2 3 6 0

Note that the return to the home city is implicitly done after the last city in the vector.
Also note that there is no particular home city provided – in reality, the tour is just a cycle
through the cities, and any city could be considered as the home city without changing
the problem.

Rather than swapping the cities, which would result in duplications of cities within

each tour, we keep the cities in each tour the same, but we re-order the cities to match
their order in the other parent. In the above example, we would replace the “6 1 0 2”
section in the first parent with “1 2 6 0”, because that is the order in which those four
cities appear in the second parent. Similarly, the “1 7 2 3” section in the second parent is
replaced with “7 3 1 2”, and we get offspring

7 3 1 2 6 0 5 4
5 4 7 3 1 2 6 0

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

This allows the concept of cross-over to remain – that each parent contributes to the
construction of the new individuals – while guaranteeing that a valid tour is created.

There are a number of approaches for mutation. The simplest is that whenever a city
is chosen as the location of a mutation, it is simply swapped with the next city in the tour.
For example, if the 6 is chosen for mutation in this tour:

7 3 1 2 6 0 5 4
we would get this tour after the mutation occurs:

7 3 1 2 0 6 5 4
Other options for mutation include selecting two cities at random and swapping them, or
selecting an entire substring at random and reversing it, but the concept remains the same
– making a relatively small change to an individual.

SUMMARY

Genetic algorithms are very useful, particularly in cases where the problem cannot be
solved in more traditional ways. They are interesting to show in class, because it does not
seem obvious that they will work; but they do!

We particularly enjoy assigning the TSP as a genetic algorithm because the
assignment is so open. There are many ways to do things, and there are many variables to
choose. How large should the population be? How many generations should it run? How
do we do the cross-over? How do we do the mutations? Additionally, there are tweaks
that are not “pure” genetic algorithms, but can improve performance. For example, you
could write the algorithm so the fittest individual survives into the next generation, or so
mutation is only allowed if it is beneficial, or so the cross-over is performed differently,
and so on. It gives the students a chance to solve a problem without a lot of guidance,
allowing them to be creative.

We present genetic algorithms in our upper-level Artificial Intelligence course.
However, they would be appropriate in any class where the basic search methods have
already been demonstrated. Practically speaking, we wouldn’t want to cover them before
covering some graph theory and algorithms, which would mean that they would fit best at
the end of a second course or during a third course in computer science.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

