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ABSTRACT

A method for EEG compression is proposed, using lterative Function System (IFS) and Genetic Algorithms (GAs)
with elitist model, keeping the quality sufficiently good for clinical purposes. Compression using IFS is usually called
Jractal compression. The self transformability property of the EEG signals is assumed and is exploited in the fractal
compression lechnique. To ascertain the self transformability of the EEG signal, some isometric transformations have
been applied. The technique described here utilizes Genetic Algorithm that decreases the search space for finding the
self similarities in the given signal. This article presents theory and implementation of the proposed method. The
fidelity of the reconstructed signal obtained by the present compression algorithm has been assessed both qualitatively
and quantitatively. The compression ratios, for the EEG signals in various states, are found (o be comparable to the
other available techniques for EEG compression. In our method at least 85% data reduction has been achieved. ©

1997 IPEM. Published by Elsevier Science 1.td
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1. INTRODUCTION

EEG (Electroencephalography) reflects the elec-
trical activity of the brain during the various states
of sleep and wakefulness. The EEG signals are
complex in nature. During sleep, from EEG, two
distinct patterns, namely, REM (Rapid Eye
Movement) or paradoxical sleep and SWS (slow
wave sleep) or deep sleep, can be easily dis-
tinguished visually (Figure I). The SWS recordings
of EEG is quite distinct from those of the wakeful
state, as well as the REM state. However, the REM
sleep recordings resemble the wakeful state rec-
ordings very much, and are difficult to identify by
EEG alone’.

The sheer volume of EEG recordings for diag-
nostic purposes can be frightening. The amount
of space required for storage too is forbidding.
Fach second of digitized EEG data (two channels
sampled at 256 Hz) takes a kilobyte of space for
storage. Therefore, the need for compression of
the data is of the utmost importance. Moreover,
EEG compression can help (a) to augment the
storage capacity of collected EEG data for later
evaluation or comparison, (b) to facilitate trans-

Corresponding author.

This work has been carried out while Dr S. N. Sarbadhikari held a
Research Associateship in a Project (No. 22(235) /93/EMR-II) of the
Council for Scientific and Industrial Research, India.

mitting real-time EEG signals to distant places and
(c) to transmit rapidly and economically off-line
EEG data over telecommunication networks to
remote interpretation centers. Unfortunately, this
area has been very much neglected and only a few
articles?™® have come to the notice of the authors.

Recently, an approach for one-dimensional and
two-dimensional signal compression has begun to
emerge, based on the theory of Iterative function
system (IFS). Compression of signals using IFS is
a very promising technique. The theory of coding
using IFS and Collage theorem was first proposed
by Barnsley®. Since then, this technique has been
used successfully in image compression by several
researchers'®'®, The method proposed in Ref. !?
(for image compression) is suitably modified here
for signal (2-D) compression by choosing the poss-
ible set of transformations and resetting the
search parameters for finding the self trans-
formability.

The basic idea of this technique is to approxi-
mate the given signal from a set of affine (linear)
contractive transformations called IFS. The set of
affine contractive transformations, through an
iterative process produces a signal called the
attractor or the fixed point, which is very close to
the target signal. Thus, it is sufficient to store the
relevant parameters of the transformations in
order to code the signal. The main task is to find
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Figure 1 EEG recordings in the three states.

the appropriate set of transformations whose
attractor approximates the given signal. The
aforesaid transformations are obtained using the
self-similarities present in the given signal. Here
self-similarity implies that the waveform of a parti-
cular segment, called the range segment, of the
signal is a scaled and transtormed version of
another segment, called domain segment, of the
same signal. Out of the several possible transform-
ations of domain segments to range segments, in
the present article, we have used only a few affine
transformations. Thus, the whole problem can be
viewed as a search problem where the appropriate
domain segment as well as the appropriate trans-
formation are found for a range segment under
consideration.

The encoding technique described here also
utilizes Genetic Algorithms (GAs) as a search pro-
cess for finding the selfsimilarity present in the
signal'®. GAs'*!® are mathematically modeled
algorithms which emulate natural selection mech-
anism to solve the optimization problems. GAs
attempt to find near-optimal solutions without
going through an exhaustive search mechanism.
Thus, GAs have an advantage of minimizing the
search space and hence the search time.
Implementation of GAs as a search mechanism
provides fast encoding of EEG signals through
IFS.

The objective of the present article is to investi-
gate whether the fractal and GA-based technique
proposed by us can lead to efficient compression
of EEG signals which look very irregular. The
results obtained by the present technique are
compared with those of the existing techniques.
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The theoretical foundation for the present work
is described in the next section. In Section 3, the
methodology used for encoding is presented in
detail. This is followed by implementation details,
and results in Section 4.

2. THEORETICAL FOUNDATION

2.1. Iterative function systems

The central idea of IFS revolves around a set of
functions (called transformations) which trans-
form a given set of points to another set of points.
Under the restriction of contractivity, these trans-
formations can take any arbitrary set of points to
a fixed set after an infinite (practically finite but
large) number of iterations (applications of the
transformations). The detailed mathematical
description of the IFS theory, Collage theorem
and other relevant results are available in Ref. °.
Only the salient features of signal coding through
IFS are given below.

Let f be a contractive affine map defined on
R? such that f :R*—R?, where f has the general
linear form f(u, v) = (au + bv + ¢, cu + dv + f).
Here a, b, ¢ and d are called scaling parameters
and ¢ and f are called shift parameters. Also,
d(f(x1), fixe)) = 5 d(%,%);Vx,% € X, where 0 =
s < 1 is called the contractivity factor of the trans-
formation f Here d measures the distance
between two sets. Usually, the Hausdorff distance
is used for this purpose. However, we have used
another measure which will be discussed in sec-
tion 3.2. For any large positive number N,

limfN(x) = a,Vx € X, and also fla) = a “a” is
N0



called the fixed point (attractor) of £ Here f"(x)
is defined as

fN(x) = (N H(x), with 1 (x) = ilx),Vx e X

Now, let I be a given signal which is a subset of
R2. This is because the signal contains different
magnitude values at different time points and
both the magnitude and the time points are tak-
ing values from the positive part of the real line.
Our intention is to find a set & of affine contract-
ive transformations for which the given signal 7is
an approximate fixed point. ¥ is constructed in
such a way that the distance between the given
signal and the fixed point (attractor) of & is very
small. The attractor A of the set of transformations
% is defined as follows:

Im&FN( ) = AV] e R?,

Ne—oc

and %(A) = A, where

FND =F(FV (), with

FUP=F(),V]e R
Also the set of maps ¥ is defined as follows:

dF(J).F(f) =sd(h,f)V]L e R (1)
and 0 = s < 1.

FN(p is defined as

s is called the contractivity factor of %.
Let d(LF()) < € (2)

where € is a small positive quantity. Now, by Col-
lage theorem®, it can be shown that

d(LA) = Tej; (3)

where A is the attractor of .

From Equation (3) it is clear that, after a suf-
ficiently large number (N) of iterations, the set of
affine contractive transformations ¥ produces a
set (A) which is a subset of R? and is very close to
the given original signal I Here, (X,%) is called
the iterative function system and ¥ is called the
set of fractal codes for the given signal 1.

2.2. Genetic algorithms

Genetic algorithms (GAs) are highly adaptive
search and machine learning processes based on
natural selection mechanism of a biological gen-
etic system. GAs help to find the global near-opti-
mal solution without getting stuck at local optima
as they deal with multiple points (called,
chromosomes) simultaneously. To solve the opti-
mization problem, GAs start with the chromo-
somal (structural) representation of a parameter
set. The parameter set is coded as a string of finite
length called a chromosome or simply a string.
Usually, the chromosomes are strings of 0’s and
1’s. If the length of a string is /, then total number
of strings is 2"

Usually, a function “fit” is defined on the set of
strings which represents the function to be optim-
ized. This function “fit”, also known as the “fitness
function” denotes the fitness value of a string.
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Note that, more than one string may possess the
same fitness value. In GAs, a string which provides
optimal fitness value is found without an exhaus-
tive search. In this article we are dealing with a
minimization problem. To find a near-optimal sol-
ution, three basic genetic operators: (i) selection;
(ii) crossover; and (iii) mutation are exploited
in GAs.

Out of all possible 2' strings, initially a few
strings [say S number of strings] are selected ran-
domly and this set of strings is called the initial
population. In this article, we have taken S to be
an even number, though S can be an odd number
too. Starting with the initial population the three
genetic operators are used one by one to form a
new population. The process of creating a new
population is called an iteration and is executed
for a fixed number of times. Here also we have
used the elitist model of GAs. In the elitist model
of GAs the worst string in the present population
is replaced by the best string of the previous popu-
lation in each iteration to keep track with the best
string obtained in each iteration.

In the selection procedure, $ number of strings
are selected from the current population to form
a mating pool. The selection of each individual
string, as a string in the mating pool, is directly
or inversely proportional to its fitness function as
the problem is either a maximization or a minim-
ization problem, respectively. This type of selec-
tion scheme is known as proportional selection
strategy. The crossover operation is then applied
on the mating pool.

The most commonly used crossover operation
is a single point crossover'* operation on a pair
of strings which is described here. An integer pos-
ition k is selected randomly between 1 and / — 1
({> 1), [ being the string length. Two new strings
are then created by swapping all the characters
from position & + 1 to [ of the old strings. For
example, let a = a; &y @s... o &,y... &y and b= B,
Bs Bs... By Bis1--- B be two strings (called parents)
forming a pair for crossover operation. The
strings (called children or offspring) generated
after the crossover operation are a' = a; @y Qs...
& Birr--- Brand b = By By Bs... By thre

The occurrence of a crossover operation on a
pair of strings is guided by crossover probability,
say, P, A random number ( =< 1) is drawn for
each pair of strings. The drawn random number
less than P, indicates the occurrence of cross-
over for that pair and the non-occurrence if the
reverse is true. Usually a high value is assigned for
the crossover probability. The mutation operation
is then applied.

In a mutation operation every bit of every string
is replaced by the reverse character (i.e. 0 by 1
and 1 by 0) with some probability. One of the
commonly used conventions'* is to assign a very
small value to the mutation probability P,,, and
keep the P,,, fixed for all the iterations. But here
we have prefixed the number of iterations of GA
a priori and varied the mutation probability with
the number of iterations. This varying mutation
probability scheme has already been applied suc-
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cessfully in connection with an application of GAs
to pattern recognition problem'®.

The process i1s executed for a fixed number of
times (iterations) and the best string, obtained so
far, is taken to be the near-optimal one. In the
present article, the number of iterations, say 7, is
fixed a priori for the termination of GAs.

2.2.1. Description of the algorithm. The genetic
algorithm is implemented using the following
steps.

1. Generate an initial population Q of size § and
calculate fitness value of each string S of Q.

2. Find the best string S,,, of Q. If the best string
is not unique, then call any one of the best
strings of Q as §,,,.

3. Construct a mating pool using proportional
selection strategy (S, belongs to Q). Perform
crossover and mutation operations on the
strings in the mating pool and obtain a popu-
lation Q.

4. Calculate the fitness value of each string S of
Q,, and replace the worst string of Q,,,, by S,
Rename (), as Q.

5. If T iterations are completed then stop, other-
wise go to step 2.

Note that steps 2, 3 and 4 together make an iter-
ation.

3. METHODOLOGY FOR ENCODING EEG
SIGNAL

In this section, initially, the procedure of col-
lecting EEG data used in this article is described.
Then the encoding and decoding mechanisms
are described.

3.1. Electroencephalogram

The EEG data have been collected from male rats
(Rattus norvegicus var. albinus) of Charles Foster
strains. The EEG has been recorded through a 8-
channel polygraph (Medicare, India) on paper
and sampled at 256 Hz through a 12-bit analog-
digital converter (Micronics, India) into the hard-
disk of a PC-AT (HCL, India).

3.2. Generation of fractal codes using affine
transformations

Let, [ be a given signal having w points with a
range of amplitude values [0,g]. Thus, the given
signal [ is a subset of R* as described in section
2.1. The signal is first partitioned into n non-over-
lapping segments having say # number of points,
and let this partiion be represented by R =
(R, Ro,...,R,}. Each R, is called as a range seg-
ment. Note that n = w/b. Let & be the collection
of all possible segments having 26 number of
points. Let & = (D, Dy,...,D,,}. Each D, is called as
a domain segment with m = (w — 2b).

Let &, ={f @—R? fis an affine contractive
map.
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Now, for a given range segment R, let, fj; € &F;
be such that ’

AR fi (D)) < d R, [D)); Ve F, V¥

» Y
Here d measures the distance between two sets

of points.
Now let & be such that
AR fir(B,) = minld(R,.f;, () (4)
7

Also, let f,(D;) = R;,, . Our aim is to find f; (D)
for each ¢ € {1, 2,...,n}. In other words, for every
range segment R, one needs to find an appropri-
ately matched domain segment 9,, as well as an
appropriate transformation f;e. The set of trans-
formations ¥ = {f,,f,...f,;} thus obtained is called
the fractal code of the given signal 7'®1113,

To find the best matched domain segment, as
well as the best matched transformation, we are
to search all possible domain segments as well as
all possible transformations with the help of Equ-
ation (4). The affine contractive transformation
Jie is constructed using the fact that the points of
the range segment are a scaled and shifted version
of the points of domain segment. Thus, the affine
transformation has two parts. The first part indi-
cates which point of the range segment corre-
sponds to which point of the domain segment.
The second part is to find the scaling and shift
parameters.

The first part is shuffling the points of the
domain segment and can be achieved by using
any one of the eight possible transformations
(isometry) on the domain segments as described
in section 3.2.1. Once the first part is obtained,
the second part is estimation of a set of values
(amplitude) of range segments from the set of
values of the transformed domain segments.
These estimates can be obtained by using the least
square analysis of two sets of values.

The distance measure d [used in Equation (4)]
is taken to be the simple mean square error
(MSE) between the original set of amplitude
values and the obtained set of amplitude values
of the concerned range segment. Let R,(p) and
R(p) be respectively the original and the
obtained values of the p" point of the range seg-
ment R, Thus, the expression for MSE will be

b

AR Py) = O (Ri(p) — Rl p))2. (5)

p=1

The MSE is not a metric, though it serves the
purpose of a distance measure. As the selection
of fractal code for a range segment is dependent
only on the estimation of amplitude values of that
segment, it is enough to calculate only the distor-
tion of the original and estimated amplitude
values of the segment. Thus, MSE is taken as the
distance measure. Note that the same measure
had been used in connection with the image com-
pression using IFS!O-!113,

3.2.1. Class of transformations. We have stated
that a contractive affine transformation fj; defined
on R? is such that f;(%,)—R,. Also fj; consists of
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two parts, one for spatial information and the
other for information of amplitude values. The
second part is obtained using least square analysis
of two sets of points once the first part is fixed.
Moreover, the size of the domain segment is dou-
ble that of the range segment. However, the least
square (straight line fitting) needs point to point
correspondence. To overcome this, the amplitude
values of a range segment correspond to the aver-
age values of two consecutive points in the domain
segment, thus making the contracted domain seg-
ment correspond to the range segment. Note that
the size of the contracted domain segment is
equal to the size of the range segment.

The first part of the transformation fj; indicates
which point of the contracted domain segment
corresponds to which point of the range segment.
The following eight transformations (isometries)
simply shuffle the points within a contracted
domain segment so that it can correspond to the
range segment in eight different ways.

Note that we have considered the size of the
range segment as well as the contracted domain
segment to be even ( = 4) though it can be an
odd number too. In such a case, the transform-
ations which are described below for an even
number have to be changed accordingly.

Let s, be the starting point of the contracted
domain segment ¥; = % ,(p) having & number of
points. Here p € oA where,

b

b b
A=s,5,+1,..,5;, + 5~ 2,5, + 5~ 1,5,+ 5

b
sd+§+l,...,sd +b—2,5,+b— 1.

The list of transformations (isometries) () is
presented below.

1. Identity:
L(D;(p)) =D;(p) (6)
2. Second half-reflection:
L(D;(p)) =
D;(p)s fp=si+ g — 1
3b b 0
S’Dj<2sd+—2—— 1- p); ifp> Sat g~ 1
3. First half-reflection:
L(D;(p)) =
b . b
Ebj<‘25d+§ -1- p); ifp= Sd+§ -1
(8)

b
%fp>sd+‘_1

D;(p); 9

4. First halfreflection and second half-swapping:
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A (gzjj (P) )=

b
QZ)]-(Qsd+b- 1 =p); ifp= 541“'5_ 1

(9)
b , b
5. First half-swapping and second half-reflection:

k(@]([’)) =
b

gbj(28d+b— l _P); #p> S{l+§_ 1

ifp= sd+g— 1
(10)

6. Reflection about mid-point:
L)(@;([’)) =@j(25d +b—1—p) (11)

7. First-second and third—fourth quarter reflec-
tion:

L(2;(p) =
@j(2s,,+;— 1 - p); ifp= sd+g -1

(12)
3b ) b
: 2 2
8. Second-third quarter reflection:
ls(gbj([’)) =
b : b
D; sd+2—1——p;zfsd+a—l<p<
3b (13)
gbj(f’); Sa = Z
otherwise

3.3. Fractal codes using GA

The main aspect of fractal-based coding is to find
a suitable domain segment and a transformation
for a range segment. Thus, the whole problem can
be looked upon as a search problem. Instead of
a global search mechanism we have introduced
GAs to find the near-optimal solution.

The number of possible domain segments to be
searched are (w — 2b) (section 3.2). The number
of transformations to be searched for each
domain block is 8 (section 3.2.1). Thus, the space
to be searched consists of M elements. M is called
cardinality of the search space. Here M = 8 X (w
— 2b). Let the space to be searched be rep-
resented by P where P = {1, 2,...,(w — 2b)} X {1,
2,...,8}.

Binary strings are introduced to represent the
elements of P. The set of 2‘ binary strings, each
of length [, are constructed in such a way that the
set exhausts the whole parametric space. The
value of ! depends on the values of w and b. The
fitness value of a string is taken to be the MSE
between the given range segment and the est-
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mated range segment. Note that the problem
under consideration is a minimization problem.
Here we are to minimize the MSE of estimated
range segment with respect to the given range seg-
ment.

Let § be the population size and T be the
maximum number of iterations for the GA.
Initially, S strings are selected randomly from 2’
strings, to result in an initial population for GA.
The various steps of the GA, as mentioned in sec-
tion 2.2, are implemented repeatedly up to 7 iter-
ations. Note that the total number of strings
searched up to 7 iterations is S x 7. Hence,
M/ (ST) provides the search space reduction ratio
for each range segment, and (M — § T) provides
the actual reduction in the search space for each
range segment. Thus, for n number of range seg-
ments, (n X (M — (S T))) would provide the total
search space reduced for finding the set of trans-
formations & for fractal signal compression.

A two-level partition scheme, described below,
is also adopted for the specific implementation of
the present methodology.

3.3.1. Two-Level partition scheme. A two-level par-
tition scheme has been used for the implemen-
tation of the GA-based fractal compression meth-
odology. Range segments of two different sizes, b
and 4/2, have been taken to encode the whole
signal. The range segments of smaller size, called
child range segments are easy to encode and they
take care of finer details of a very small portion
of the signal. On the other hand, large segments,
called parent range segments, lead to a higher
compression ratio. Note that there are two child
range segments of each parent range segment.

The GA-based fractal compression is imple-
mented on a parent range segment to obtain a
good estimate of it. The estimated range segment
1s then split to provide two children. The original
parent range segment is also split into two child
range segments. The distortion measure values
between the estimated child range segments and
the corresponding original child range segments
are calculated. If the distortion measure value for
any one of the child range segments is above a
prefixed threshold value, then new transform-
ations (using the GA-based fractal compression
method) are obtained for both the child range
segments. On the other hand, the transformation
for the parent range segment is stored if the dis-
tortion measure values for both the child range
segments are below the threshold value. This
scheme is repeated for each parent range seg-
ment. Note that the threshold value for compar-
ing the distortion measure for the child range seg-
ments has been fixed heuristically.

3.4. Decoding

The decoding scheme simply consists of iterating
the fractal code ¥ on any initial signal I, until
convergence to a stable decoded signal is
obtained. The transformation of a signal under
the fractal code is done sequentially. The trans-
formation fj, is applied on the kth domain seg-
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ment (9,) of the current signal to produce the
ith range segment (R,) of the next signal. In our
case, all the EEG signals have been reconstructed,
from the respective fractal codes, starting from an
arbitrary signal having all the amplitude values
zero. Also the process of iterating the fractal codes
has been stopped after 20 repetitions.

3.5. Compression

Compression techniques practically aim at
obtaining maximum data volume reduction, while
preserving the significant signal features upon
reconstruction. Conceptually, data compression is
the process of detecting and eliminating redun-
dancies in a given data set. Redundancy may be
defined as that fraction of a message or datum
which is unnecessary and hence repetitive in the
sense that if it were missing the message would
still be essentially complete, or at least could be
completed.

Whenever the term compression is used, we
need to estimate its quantitative extent. The com-
pression ratio and redundancy are two such com-
monly used measures. If N, is the size of the orig-
inal file in bits and N, is the size of the compressed

. . . . N,
signal, then the compression ratio Cy is Cy = N

«

1
and redundancy R, is R,= (1 — . ) X 100%.

R
Clearly, R;,—100% for N, < N, and that indicates
good compression.

We have used EEG signals of 1024 points (4-s
epochs) each. The amplitude value of each point
is a real number ranging from — 10.0 to + 10.0,
where 10.0 denotes the brain electrical activity of
about 200 microvolts. The sign + ve denotes elec-
trical activity towards the recording electrodes,
while the sign — ve denotes electrical activity away
from the electrodes. For the purpose of
implementation, we have converted the ampli-
tude range to 0.0 to 20.0. Thus, 9 bits are suf-
ficient for storing the amplitude values of each
point.

In the encoding process, for each range seg-
ment the matched domain segment and the
matched transformation have been obtained.
Thus, we have to store: (1) the location of the
domain segment; (2) the orientation (isometry)
of the domain segment; (3) the scaling factor; and
(4) the shift factor (section 3.2). So, the number
of bits stored, for a range segment, depends on
the range of values of the four above-mentioned
parameters as well as the size of the range seg-
ment (b). Note that the values of first two para-
meters range from 1 to (1024 — b) and 1 to 8,
respectively. Also we have considered discretized
values for scaling and shift parameters. Moreover,
in a two-evel partition scheme we have parent as
well as child range segments. Thus, to indicate the
type of range segment we have to store another
bit.

In our case, the range segment size b has been
chosen to be 32 (parent) and 16 (child). The
number of bits stored for both parent and child



range segments becomes 21 bits. In single-level
scheme, N, becomes N, = N, x 21, where N,, is
the number of range segments. Also, in a two-level
scheme, N, turns out to be N, = N+ (Npp + Neg)
x 21, where N,,; and N are number of parent
range segments and child range segments,
respectively.

3.6. Fidelity

To validate the reliability of the compression
method, the fidelity (quality) of the reconstructed
signal has to be assessed. Mainly, two types of per-
formance measures, quantitative and qualitative,
are used for this purpose.

The most commonly used quantitative meas-
ures are root mean square (rms) signal-to-noise
ratio (SNR,,;) of a signal and the peak-signal-to-
noise ratio (PSNR). The SNR is defined as the
ratio of the rms signal power to the rms noise
power, (where noise is defined as the difference
between the original and reconstructed signals).
Similarly, PSNR is defined as the function of rms
signal power. If I(x) is the original signal and /(x)
is the reconstructed signal then

D I(x)?
S U(x) — K(x))?

SNR, s =

and

V2 () — [(x))?
2" — 1 ’

PSA[R = - 2010g10

where, n is the number of bits per point (pixel in
the case of images) in the signal.

We have also checked the fidelity of the recon-
structed signal by: (a) using Cross correlation
(CC) between the actual and estimated signal;
and (b) examining the power spectra of both
the signals.

Cross correlation denotes the statistical corre-
lation between two signals. We have measured the
correlation between the original and estimated
EEG signals. The cross correlation is estimated as

_ cov(1(x),1(%))
\/rvar( I(%)) var(1(x))

where cov(I(x), I(x)) is the covariance between
I(x) and I(x); var (I(x)) and var (I(x)) are the
variances of I(x) and I(x), respectively. Cross cor-
relation plays an important role in judging the
resemblance of two signals. We can conclude that
the reconstructed signal is very close to the orig-
inal one as CG—1.

Power spectra of both the signals have been
taken as the other objective quantitative measure.
Apart from comparing the frequency and ampli-
tude changes, power spectra by FFT of EEG sig-
nals often convey more information'”. This is also
known as quantitative EEG or quantified EEG or
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qEEG. Therefore, power spectra by FFT of both
the original and the reconstructed signals have
been computed for comparison. Similarities in
both the power spectra imply that similar clinical
conclusions can be drawn from both the signals.
The EEG power spectra has been calculated by an
FFT routine from the digitized signals'”.

Visual inspection plays an important role in
medical diagnosis. Thus, apart from the above,
the reconstructed EEG signals have been com-
pared (qualitatively) with the corresponding orig-
inal one by visual inspection.

4. IMPLEMENTATION AND RESULTS

We have tested our method on three states of EEG
(wakeful, REM and slow wave sleep). In each state
a datapoint (of 4-s duration) consists of 1024 (w)
points. We have examined the performance of the
proposed algorithm for two-level (parent and
child) partition scheme (section 3.3.1) as well as
single-level partition scheme (parent only) using
eight transformations (section 3.2.1). The other
parameters used are: (i) parent range segment
size (b) = 32; (ii) mating pool size for each iter-
ation (8) = 4; (iii) number of iterations for each
range segment (1) = 390. The search space
reduction ratio (M/(ST)) in each range segment
is found to be about 5. The original and decoded
signals are shown in Figures I and 2, respectively.
In Figures 3 and 4, the power spectra by FFT of
the original and decoded EEG signals, respect-
ively, are shown.

The cross correlation, PSNR and SNR values of
the original and decoded signals (7Table 1) indi-
cate that the performance of the coding method-
ology is good in all the three states. The com-
pression ratios (Table 1) indicate that at least 85%
reduction is achieved in all the data sets.

The algorithm is also tested in single-level
scheme, where the parent range segments are not
subdivided into its child in any situation. The
range segment of two different sizes (namely 16
and 32) have been selected to examine the per-
formance of the algorithm. The other parameters
are as above. The results are shown in Table 2. The
decoded signals using single-level scheme, having
range segment sizes 16 and 32 are shown in Figures
5 and 6. Figures 7 and & show the power spectra
by FFT of the decoded EEG signals in a single-
level scheme having range segment size 16 and
32, respectively.

5. DISCUSSION AND CONCLUSIONS

Hinrichs? has used an adaptive pulse code modu-
lation scheme and achieved up to 75% of data
reduction.

Toraichi et al.® have reduced the data volume
by storing the coefficients of the functions
approximating the EEG waveforms. They have
also divided the waveforms into different seg-
ments but of similar frequencies.

The fidelity of the reconstructed signals, in the
proposed method is comparable with that of the
other existing methods. On the other hand, the
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Figure 2 Decoded EEG, using the two-level scheme, in the three states.
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Figure 3 Power spectra by FFT of original EEG in the three states.
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Figure 4 Power spectra by FFT of EEG using the two-evel scheme in the three states.
Table 1 Results of the algorithm using the two-level partition scheme
State b Npg Ner Cr R, PSNR SNR cC
Awake 32 13 38 8.35 88.03% 51.2 0.12 0.90
Sws 32 2 60 6.91 85.52% 51.0 0.12 0.98
REMS 32 14 36 8.52 88.26% 52.9 0.10 0.95
Table 2 Results of the algorithm using the single-level partition scheme
State b Npg Nexr Cr Ry, PSNR SNR cC
Awake 16 64 Nil 6.86 85.41% 52.6 0.10 0.93
SWs 16 64 Nil 6.86 85.41% 51.0 0.12 0.98
REMS 16 64 Nil 6.86 85.41% 54.1 0.09 0.96
Awake 32 32 Nil 13.71 92.711% 49.4 0.14 0.86
SWS 32 32 Nil 13.71 92.71% 45.7 0.21 0.92
REMS 32 32 Nil 13.71 92.71% 48.2 0.18 0.85

proposed method seems to perform better in
terms of the compression ratios in comparison
with Refs 27,

The effectiveness of the GA based fractal com-
pression technique, depends upon three factors:
(i) the number of points in the search space 26
(i1) the size of the initial population §; and (iii)
the number of iterations 7. The number of iter-
ations needs to be different for different data sets
to achieve the near-optimal solution using GAs.
The GA-based method can provide efficient and
fast encoding by adjusting the initial population
S and the number of iterations T in case of large
data sets. Moreover, by choosing a proper range

segment size, the compression ratio can be
increased for a data set containing a large number
of data points. Note that by proper range segment
size we mean the range segment size which can
take care of the finer details of the segment.

One can achieve a high compression ratio by
sacrificing the quality of the decoded signal. On
the contrary, a high quality decoded signal can be
obtained at the cost of the compression ratio.
Thus, a trade-off has to be made to obtain a good
quality decoded signal with a considerable
amount of compression.

The compression ratio is likely to be raised and
the search space will be decreased if the number
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Figure 5 Decoded EEG, using the single-level scheme having range segment size 16, in the three states.
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Figure 6 Decoded EEG, using the single-level scheme having range segment size 32, in the three states.
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Figure 7 Power specira by FFT of EEG, using the singleldevel scheme having range segment size 16, in the three states.
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Figure 8 Power spectra by FFT of EEG, using the single-level scheme having range segment size 32, in the three states.
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of isometric transformations is reduced. Despite
this, it has to be assured that the fidelity of the
reconstructed signals should not be affected. One
may use fewer than eight transformations for this
purpose. In such a case, the selection of trans-
formations will play a major role.

Here, only normal EEG during the three stages
of sleep and wakefulness has been tested. This
technique may be applied to the EEG in other
(abnormal) states, such as epilepsy and
depression. Moreover, evoked EEG responses too
may be compressed using this method.

In conclusion, using IFS with GA can lead to
efficient and reliable compression of EEG signals.

6. SUMMARY

EEG (Electroencephalography) reflects the elec-
trical activity of the brain during the various states
of sleep and wakefulness. The EEG signals are
quite complex in nature.

EEG compression can help: (a) to augment the
storage capacity of collected EEG data for later
evaluation or comparison; (b) to facilitate trans-
mitting real-time EEG signals to distant places;
and (c) to transmit rapidly and economically off-
line EEG data over telecommunication networks
to remote interpretation centers. Unfortunately,
this area has been very much neglected.

Recently, an approach for one-dimensional and
two-dimensional signal compression has begun to
emerge, based on the theory of Iterative function
system (IFS). Compression of signals using IFS is
a very promising technique. The theory of coding
using IFS and Collage theorem was first proposed
by Barnsley®. Since then, this technique has been
used successfully in image compression by several
researchers'®!®. The method proposed in Ref. '*
(for image compression) is suitably modified here
for signal (2-D) compression.

The basic idea of this technique is to approxi-
mate the given signal from a set of affine (linear)
contractive transformations called IFS. The set of
affine contractive transformations, through an
iterative process produces a signal called the
attractor or the fixed point, which is very close to
the target signal. Thus, it is sufficient to store the
relevant parameters of the transformations in
order to code the signal. The main task is to find
the appropriate set of transformations whose
attractor approximates the given signal. The
aforesaid transformations are obtained using the
selfsimilarities present in the given signal. Here
selfsimilarity implies that the waveform of a parti-
cular segment, called the range segment, of the
signal is a scaled and shifted version of another
segment, called the domain segment, of the same
signal. Out of the several possible transformations
of domain segments to range segments, in the
present article, we have used only a few affine
transformations. Thus, the whole problem can be
viewed as a search problem where the appropriate
domain segment as well as the appropriate trans-
formation are found for a range segment under
consideration.

The encoding technique described here also
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utilizes Genetic Algorithms (GAs) as a search pro-
cess for finding the self-similarity present in the
signal’®>. GAs'*!® are mathematically modeled
algorithms which emulate biological evolutionary
theories to solve the optimization problems. GAs
attempt to find near-optimal solutions without
going through an exhaustive search mechanism.
Thus, GAs have an advantage of minimizing the
search space and hence the search time.
Implementation of GAs as a search mechanism
pl%)vides fast encoding of EEG signals through
IFS.

We have tested our method on three states of
EEG (wakeful, REM and slow wave sleep). In each
state a datapoint (of 4-s duration) consists of 1024
(w) points. We have examined the performance
of the proposed algorithm for a two-level (parent
and child) partition scheme as well as a single-
level partition scheme using eight isometric trans-
formations.

The cross correlation, PSNR and SNR values of
the original and decoded signals indicate that the
performance of the coding methodology is good
in all three states. The compression ratios indicate
that at least 85% reduction is achieved in all the
data sets.

In conclusion, using IFS with GA can lead to
efficient and reliable compression of EEG signals.
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