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We report analytical and numerical results for delocking of flux-flow states in two magnetically
coupled annular Josephson junctions (JJ’s). JJ stacks with different damping parameters are con-
sidered. An analytical model of the delocking is developed for dense fluxon chains. Analytically
predicted and numerically found delocking thresholds are in good agreement.
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I. INTRODUCTION

Recently, stacked Josephson junctions (SJJ) have re-
ceived much attention due to several new effects found in
such systems. In particular, SJJs were proposed as co-
herently operating magnetically coupled oscillators with
enhanced power and frequency yield [1]. Spectral char-
acteristics of the two-fold SJJ have been investigated nu-
merically [2]. It has been found that the spread of pa-
rameters affects mainly the locking margins, rather than
the spectrum of the output voltage.

In this work, our objective is to investigate in detail the
margins of the delocking region between flux-flow states
in two annular magnetically coupled JJ’s. We assume
that both junctions are biased by the same dc current,
while their dissipation constants are different. This sit-
uation is relevant for a typical experiment. In fact, the
subgap resistances could differ by as much as one order
of magnitude whereas the ratio of critical currents does
not exceed 2. It is necessary to mention that a similar
locking/delocking problem was considered, both theoret-
ically and experimentally, in Ref. [3]. However, there are
some essential differences from our approach: the dis-
sipation constants were identical and only one junction
was biased. In another recent work [4], synchronization
and desynchronization of two JJs operating in flux-flow
regimes in relatively short linear coupled junctions was
considered from the viewpoint of the Fiske-step theory.
For the single fluxon case, the analytical and numerical
analysis of delocking was accomplished in [5] for the case
of different Swihart velocities of JJ’s. Due to the small
value of coupling parameter |∆| = 0.05 in Ref. [5], the au-
thors gave incorrect interpretation of the delocked state.
In the delocked state fluxons in the stack move with ve-
locities c̄− and c̄+ that characterize the whole system
rather than with velocities c̄1 and c̄2 that characterize
uncoupled JJ’s. Having small ∆, c̄1 is very close to c̄−
and c̄2 is very close to c̄+.

The paper is organized as follows. In section II, the an-
alytical model is formulated and an equation predicting
delocking points is derived. Results of numerical simula-

tions and their comparison with the model are presented
in section III. Concluding remarks are collected in section
IV.

II. THEORETICAL MODEL

The theoretical model describing the dynamics of N-
fold stacks of magnetically coupled long Josephson junc-
tions (LJJ) was developed by Sakai et al. [6]. For two
weakly coupled junctions, in the standard notation, it
takes the form

φA
xx − φA

tt − sinφA = −γ + αAφA
t − ∆φB

xx; (1)
φB

xx − φB
tt − sinφB = −γ + αBφB

t − ∆φA
xx, (2)

where ∆ > 0 is the coupling constant, γ is the dc bias
current density, and αA,B are dissipation constants in
the two junctions. We will develop an analytical approx-
imation for the case of large fluxon density. A similar
analytical approach was already considered in [3]. Here,
we assume the same bias currents but different loss pa-
rameters of the JJ’s. Moreover, we extend the approach
of [3] to the relativistic case. The most important ef-
fect, the decoupling of the fluxon chains in the junctions,
mainly takes place in the relativistic region. The subse-
quent comparison with numerical simulations will show
that the analytical model provides a satisfactory agree-
ment only in the general relativistic form.

We will consider the case of two fluxon chains locked
in out-of-phase mode. The limiting velocity in this mode
is equal to c̄− = c̄0/

√
1 + ∆. Neglecting the perturbation

term in the r.h.s. of Eqs. (1) and (2), one can use the
well-known exact flux-flow solution to the unperturbed
sine-Gordon equation. In the high-density limit, when
the mean magnetic field H ≡ φA

x = φB
x is a large param-

eter, the solution can be conveniently represented by the
expansion

φA,B = (x − ut − ξA,B)H − sin [(x − ut − ξA,B)H]
H2 (1 − u2)

, (3)
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where u (0 < u < 1) is the fluxon chain velocity assumed
to be the same in both JJ’s, and ξA,B are arbitrary con-
stants. We have to mention here, that the fluxon veloc-
ity in (3) is normalized to the modified Swihart velocity
c̄− = c̄0/

√
1 + ∆.

Following the pattern of Ref. [3], we consider each
fluxon chain as an effective particle with the single de-
gree of freedom ξA or ξB . Our immediate objective is to
derive equations of motion for these coordinates. To this
end, we notice that the momentum of each “particle” is

PA,B = −
L∫

0

φA,B
x φA,B

t dx = H2uL, (4)

L being the length of the junction (L and H are related
according to the periodic boundary condition, HL =
2πN , where N is the number of the flux quanta trapped
in the annular junction, i.e. H is quantized). The New-
ton’s equation of motion reads that the time derivative of
the momentum is the net force applied to the particle. In
our model, we have three forces: friction Fα, driving Fγ ,
and coupling F∆ forces. First of all, it is straightforward
to find the friction and driving forces:

FA,B
α = −αA,BPA,B = −αA,BH2uL, (5)
Fγ = γHL. (6)

Next, the simplest way to calculate the coupling force F∆
is using the coupling Hamiltonian H∆ which generates
the coupling terms in Eqs. (1) and (2):

H∆ = −∆

L∫
0

φA
x φB

x dx. (7)

Substituting the approximation (3) into (7), it is easy to
obtain

H∆ = −1
2
L∆

cos [(ξA − ξB)H]
H2 (1 − u2)2

. (8)

Finally, the coupling force F∆ acting on each “particle”
can be obtained from (8) as

FA,B
∆ = − ∂H∆

∂ξA,B
= ∓1

2
L∆

sin [(ξA − ξB)H]
H (1 − u2)2

. (9)

To get a stationary solution corresponding to a constant
velocity u, we insert the expressions (5), (6), and (9) into
the Newton’s equations of motion for the two “particles”

dPA,B

dt
= FA,B

γ − FA,B
α + FA,B

∆ .

In the stationary case dPA,B/dt = 0 and the two New-
ton’s equations amount to

γ =
1
2

(
αA + αB

)
Hu, (10)

∆
sin [(ξA − ξB)H]

H (1 − u2)2
=

(
αA − αB

)
H2u. (11)

From a formal point of view, a solution to these equations
exists provided that it produces | sin [(ξA − ξB)H] | ≤ 1.
Physically, the point | sin [(ξA − ξB)H] | = 1 implies cease
of existence of a coupled state of the two fluxon chains,
i.e., delocking. Eliminating the velocity u from Eqs. (10)
and (11), we finally arrive at an inequality which deter-
mines the value of the bias current density at which the
system is locked:

αA − αB

αA + αB
γ − ∆

2H2
[
1 − 4γ2

H2(αA+αB)2

]2 ≤ 0. (12)

Taking the equal sign in (12) one gets the expression for
the critical value of γ when the system switches from
the locked to unlocked state (delocking) corresponding
to points A and C in Fig. 1 (see below). It is very easy
to solve the fifth-degree algebraic Eq. (12) numerically.
In the next section, we compare the prediction for the
critical value of γ following from this equation with re-
sults of direct numerical simulations of Eqs. (1) and (2).
It will be shown that Eq. (12) has two physically rele-
vant solutions, which implies that the two fluxon chains
remain locked at either very small or very large values
of bias current, and are delocked at intermediate current
range.

III. NUMERICAL RESULTS

Details about the numerical methods used in simula-
tions will be published elsewhere [2]. To simulate the de-
locking in the present model, we took L = 5, αA = 0.1,
and the periodic boundary conditions.{

φA,B
∣∣
x=0 = φA,B

∣∣
x=L

− 2πNA,B ;
φA,B

x

∣∣
x=0 = φA,B

x

∣∣
x=L

.
(13)

The number of fluxons N is preserved during simulation
due to (13). N defines the fluxon density in each JJ and
is equivalent to the applied external magnetic field in the
case of linear geometry. We always choose equal fluxon
densities NA = NB = N in the junctions. The periodic
boundary conditions allow us to neglect Fiske resonances
in the system, thus, concentrating our attention on the
flux-flow regimes.

A typical numerically obtained I-V characteristic is
shown in Fig. 1. The current is proportional to γ, and
the average voltage is proportional to the fluxon velocity.
One can see that the junctions are locked at zero driv-
ing current. This can be easily understood. In a static
state, the fluxons in the two junctions repel each other
(coupling Force F∆) and form a sort of triangular array,
which corresponds to the locked state. Applying a small
bias current, one makes the fluxon array move as a whole.
With increase of the bias current and the corresponding
velocity, the difference of the friction forces acting upon
the two chains also increases. Beyond the decoupling
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FIG. 1. I–V curve of the annular stacked JJ with delock-
ing region. The parameters of the system are: ∆ = 0.5,
αA/αB = 1.5, N = 3, L = 5. A and C are delocking points,
B and D are relocking points.

point the coupling force F∆ between the chains can no
longer compensate this difference.

The decoupling point is marked by A in Fig. 1. After
decoupling, the chains are sliding relative to each other.
However, with further increase of the bias current, the
motion of the decoupled chains becomes relativistic, i.e.
their velocities approach the limiting (Swihart) velocity
c̄−. The velocities are close again, the friction force differ-
ence gets small, and, finally, the locked state is recovered
(point B in Fig. 1). This explanation of the delocking
and relocking is a qualitative interpretation of the math-
ematical formalism developed in the previous section.

The simulated I-V curve in Fig. 1 demonstrates a
small-scale hysteresis around the delocking and relock-
ing points. The analytical model presented above does
not account for this hysteresis. The delocking points ob-
tained from (12) correspond to the points A and C (de-
locking) rather than B and D (relocking) in Fig. 1.

In Fig. 1 one can also see an interesting feature on I-V
curve close to the hysteresis region between points B and
C marked as “collisions”. This is a mode which is dif-
ferent from viscous sliding of two fluxon chains relative
to each other. The fluxon chains become less dense in
the region near the resonance and single fluxon-fluxon
collisions start to be important. The fluxon moving with
higher velocity in one JJ collides with the slower fluxon
from the other JJ. A part of the kinetic energy is trans-
ferred from the fast fluxon to the slow one which results
in a change of velocities of fluxon chains as a whole. This
change of velocities can be seen as the above mentioned
feature in the I-V curve. This collisions can be clearly
seen if one simulates a long (L = 20) stack with one
fluxon in each JJ and different damping parameters. De-
pending on parameters, the collision region may appear
in the I-V curve. Other interesting modes may be ob-
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FIG. 2. Typical behavior of function f(γ) (12). Continuous

curve – strong coupling with ∆ = 0.5 (1 root), no delocking
region; dashed curve – weak coupling with ∆ = 0.1 (3 roots),
delocking region is present. Other parameters: αA = 0.12,
αB = 0.1, N = 3

served as well for different values of parameters.
The delocking points A and C can be regarded as ze-

ros of the function f(γ), defined as the l.h.s. of (12).
Fig. 2 shows a typical behavior of the function f(γ) for
weak (∆ = 0.1) and strong (∆ = 0.5) coupling. One
can see that the function f(γ) has either 1 or 3 roots.
The range of γ, where f(γ) < 0, corresponds to the
locked state, while the region between the first two roots
(for ∆ = 0.1) corresponds to the delocked chains. In-
terestingly, the function f(γ) has the third root which
corresponds to the delocking at very high γ. We will
not consider this root because the approximation of the
dense fluxon chain does not work very close to the top
of the flux-flow step. Indeed, due to the relativistic con-
traction, the fluxon size reduces and the chain becomes
sparse. The numerical simulations show poor agreement
between the top of the step obtained numerically and the
value given by the third root of f(γ). The locking range
is much wider than it is predicted by the third root of
f(γ). If the coupling ∆ is large enough, the function f(γ)
has only one root, which corresponds to the completely
locked fluxon chains at all values of γ.

We have performed a series of simulations for different
fluxon densities (with N = 3, 5, and 10 trapped flux-
ons in L = 5 long annular junction), different coupling
strengths (∆ = 0.1, 0.2, 0.3, 0.5), and various ratios of the
damping coefficients αA/αB in the two junctions (from
1 up to 1.5). The results of simulation for N = 3 are
shown in Fig. 3. The analytical curves for the same pa-
rameter set are shown in this figure as well. Excellent
agreement between the analytical curves and the simula-
tions for both delocking points is found. The simulated
and analytical data for the case N = 5 are shown in
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FIG. 3. Numerically found dependence of delocking points
on the ratio of the damping parameters αA/αB for different
coupling strengths (symbols), and comparison with analytical
prediction (curves). Each junction contains N = 3 fluxons.

Fig. 4. We have also performed simulations for N = 10,
which qualitatively showed the same behavior.

One can note that for αA/αB close to 1.5 and large γ
a small deviation of the analytical model from the simu-
lation results takes place. This results from the fact that
the fluxon chains are not very dense in this region due to
relativistic contraction. Nevertheless, simulations give a
wider locked region than the analytical model.

IV. CONCLUSION

We have demonstrated that Eq. (12) derived by means
of the perturbation theory yields a very good approxi-
mation for the two delocking points on the I-V curves of
two magnetically coupled annular Josephson junctions.
Using this equation, one can find a critical value of the
coupling parameter ∆? so that the junctions never delock
if ∆ > ∆?. In this case, the function f(γ) defined above
(as the l.h.s of Eq. (12)) has only one root (see Fig. 2).
If ∆ < ∆?, a delocking region exists, and the function
f(γ) (12) has 3 roots (see Fig. 2). At ∆ = ∆? the two
smallest roots coincide, so that, at some value of γ = γ?,
f(γ?) = 0 and f ′(γ?) = 0 simultaneously. Solving these
equations, one obtains the following relation:

∆?
√

1 + ∆? =
16
125

√
5H3|αA − αB | ≈ 0.286H3|αA − αB |

(14)

Using (14), one can easily evaluate the minimum value of
the coupling parameter ∆? required to avoid delocking in
the system for given values of αA, αB and magnetic field
(fluxon density) H. The deviation discussed at the end of
section III does not affect this result because the system
locks better than predicted by the analytical model.
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FIG. 4. The same as in Fig. 3 but for N = 5.
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