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Abstract

Patterns formation of gravitactic microorganism in a vertical cylinder is described by the Navier–Stokes

equation coupled with the microorganism conservation equation. The control volume method is used to solve

numerically these equations. It is found that when the Peclet number is decreased, the critical Rayleigh

number also decreases to approach the value corresponding to Bénard convection under fixed-flux heating

condition. However, at high Peclet numbers, the development convection is very different from that of Bénard

convection. The most fundamental difference is that, while Bénard convection is a supercritical instability, the

gravitactic bioconvection is shown to be a subcritical bifurcation from the diffusion state.
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1. Introduction

Bioconvection, as coined by Platt in 1961 [1], is the process of spontaneous pattern formation in

suspensions of upswimming microorganisms [2]. Upward swimming of the microorganisms slightly

denser than water can result in an instability similar to the Bénard convection, in which the upper

region of fluid becomes denser than the lower region. The source of bioconvection in this case comes

from the internal energy of the microorganisms. A detailed description of the hydrodynamics of

swimming cells is given in the papers of Pedley and Kessler [3,4] and Ghorai and Hill [5,6]. The

upswimming response of the microorganisms is due to an external stimulus which depends on the
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species considered. The first model of gravitactic bioconvection has been developed by Childress et al.

[7] for geotactic microorganisms, based on the Navier–Stokes equation with the Boussinesq

approximation and the conservation equation of motile microorganisms. They then analyzed the

stability of the equilibrium state resulting from the upward swimming and downward diffusion of the

motile organisms. Fujita and Watanabe [8] presented a numerical study based on the equations derived

by Childress et al. [7]. They discretized the equations using finite differences method with a spatially

staggered grid. They found that the system of bioconvection can be led into chaotic behavior via a

sequence of bifurcations by increasing the Rayleigh number. The preferred wave number of gravitactic

bioconvection in a rectangular cavity was studied by A. Harashima et al. [9] who carried out numerical

experiments to show that the system evolves in the direction of intensifying downward advection of

microorganisms and reducing the total potential energy of the system. Recently Ghorai and Hill [10]

presented a study of axisymmetric bioconvection of gyrotactic microorganisms in a cylinder using the

continuum model of Pedley et al. [11]. The Navier–Stokes equation and the microorganism

conservation equation were numerically solved. They made a comparison between axisymmetric and

two-dimensional bioconvection to show that the time period of the varicose oscillation in axisymmetric

bioconvection is more realistic and smaller than that of two-dimensional bioconvection.

From a review of published literature, it appears that the problem of gravitactic bioconvection has not

been fully studied, especially in case of a tall vertical cylindrical cavity, which is the subject of this paper.

The effects of the aspect ratio and Peclet number on the onset and development of convection will be

investigated numerically. We will show that at very low Peclet numbers the phenomenon is similar to

Bénard convection, but for larger Peclet numbers, gravitactic convection is qualitatively and

quantitatively different from Bénard convection, the most fundamental character being a subcritical

bifurcation from the diffusion state.
2. Description and formulation

The system consists of a suspension of gravitactic microorganisms enclosed in a vertical cylinder of

height H and radius R (Fig. 1). Initially we have a uniform concentration distribution n̄ and each cell has

a volume # and density qc.

We assume that the fluid is incompressible and the flow is axisymmetric. Under these assumptions the

continuity and momentum equations of the suspension may be expressed as

jd uYT ¼ 0 ð1Þ

q
DuYT
DtT

¼ �jpTþ lj2uYTþ qgk
Y ð2Þ

where uYT is the fluid velocity, p* the pressure and l the suspension viscosity. The cell concentration can

be described by the equation

BnT
BtT

¼ �jd J
YT ð3Þ
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Fig. 1. Problem geometry and boundary conditions.
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where the flux of the cells is

J
YT ¼ uYTþ Vck

Y
� �

nT� Dcd jnT ð4Þ

with n* being the number of cells in a unit volume, Vc the upward velocity, and Dc the diffusion

coefficient of the cells.

The Boussinesq approximation assumes that all physical properties were constant except for the

density in the buoyancy term, which may be expressed as a linear function of cell concentration

q ¼ qw � qc � qwð ÞnT ¼ qw 1þ bnTð Þ ð5Þ

where q is the density of the suspension, qw and qc the density of the fluid and of the cells, respectively.

Introducing the stream function and the vorticity such that

uYT ¼ 1

rT
� BwT

BzT
;

BwT
BrT

� �
ð6Þ

xT ¼ BvT
BrT

� BuT
BzT

ð7Þ

Eqs. (1) and (2) with the Boussinesq approximation (5) become

xT ¼ � 1

rT
j2wTþ 2

r2
BwT
BrT

ð8Þ

BxT
BtT

þ B uTxTð Þ
BrT

þ B vTxTð Þ
BzT

¼ m j2xT� xT

r*2

� �
þ gb

BnT
BrT

ð9Þ
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Eqs. (3), (8) and (9) are made dimensionless using the length scale H, the time scale H2 /Dc and the

concentration scale n̄. The resulting system is

x ¼ � 1

r

B
2w
Bz2

� 1

r

B
2w
Br2

þ 1

r2
Bw
Br

ð10Þ

Bx
Bt

þ B uxð Þ
Br

þ B vxð Þ
Bz

¼ Sc j2x � x
r2

� �
þ ScRa

Bn

Br
ð11Þ

Bn

Bt
þ u

Bn

Br
þ vþ Peð Þ Bn

Bz
¼ j2n ð12Þ

Here Sc=m/Dc is the Schmidt number, Pe=VcH /Dc the Peclet number and Ra=gbn̄H3 /m/Dc the

Rayleigh number.

The initial and boundary conditions are

n ¼ 1 at t ¼ 0 ð13Þ

We impose rigid, non-slip boundary conditions at the top, bottom, and side walls so that

w ¼ 0 at r ¼ F and z ¼ 0; 1 ð14Þ
where F=R /H is the aspect ratio of the cylinder.

The boundary conditions on concentration is that there is no flux of cells through the walls, thus

Bn

Br
¼ 0 at r ¼ 0;F ð15Þ

nPe� Bn

Bz
¼ 0 at z ¼ 0; 1 ð16Þ
3. Numerical method

The governing Eqs. (10)–(12) are discretized using a control volume method [12] with a uniform

staggered grid. The discretized equations are derived using the central differences for spatial derivatives

and backward differences for time derivatives. We consider that convergence is reached when

j f kþ1
i; j � f ki; jj
maxj f ki; jj

Ve ð17Þ

where f corresponds to the variables (x, w, n) and E is the prescribed tolerance, k is the iteration number,

and i, j denote the grid points.

The results presented here are obtained with uniform meshes Dr=Dz=0.01, Dt=0.005 and an initial

concentration n̄=1. We first note that Eqs. (10)–(12) under boundary conditions (14)–(16) possess the

following steady-state solution with w=x=0

nd ¼ Pe
ePeZ

ePe � 1
ð18Þ

where nd denotes the vertical concentration distribution for diffusion state.



Fig. 2. Comparison of the numerical solution with the exact analytical solution for diffusion state at Pe =1 and Pe =10.
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Fig. 2 shows the exact analytical solution and the solution obtained using the numerical program.

It appears that the numerical and analytical solutions practically coincide for Pe=1 as well as for

Pe=10.
4. Numerical results

The results shown here are obtained for Schmidt number Sc=1, and for Peclet numbers varying from

0.1 to 10.

Figs. 3 and 4 show the bifurcation diagrams for aspect ratios F=1 and F=0.1, and for various

values of Peclet number. These diagrams are obtained by beginning the simulation with the

diffusion state as initial condition, gradually increasing the Rayleigh number until convection arises,

and continuing to obtain solutions at higher Rayleigh numbers with the solution at the previous

(lower) Rayleigh number as initial condition. Once the solution at the highest Rayleigh number is

obtained, we proceed backward to obtain solutions at lower Rayleigh numbers using the solution at

the previous (higher) Rayleigh number as initial condition. It is found that for very small Peclet

numbers (less than 0.1), the bioconvection arises (as the Rayleigh number Ra is increased) at a

certain critical value Rac, and disappears (as Ra is decreased) at almost the same Ra. However, at

higher Peclet numbers, bioconvection suddenly disappears at a certain subcritical value Rasub when

the Rayleigh number is decreased beyond the critical value Rac (where bioconvection arises from

the diffusion state). We may therefore conclude that gravitactic convection is a subcritical

bifurcation from the diffusive state. It is worth noting than the critical Rayleigh number decreases

when the Peclet number is increased.

Figs. 5 and 6 show the streamlines and isoconcentration patterns for aspect ratios F=1 and F=0.1,

and Rayleigh numbers slightly above the critical values. These figures illustrate the strong influence of

the Peclet number and the aspect ratio on the concentration distribution and the flow patterns. For low

Peclet numbers, the cell concentration and fluid flow extend all over the cylinder for both aspect ratios

F=1 and F=0.1. For high Peclet numbers and for F=1 the cells are accumulated in the top region while



Fig. 4. Bifurcation curves for F =0.1.

Fig. 3. Bifurcation curves for F =1.
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Fig. 5. Streamlines and isoconcentration patterns for F =1; (a) Pe =0.1, Ra =18,000; (b) Pe =1, Ra =1900; (c) Pe =5, Ra =700;

(d) Pe =10, Ra =900.
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Fig. 6. Streamline and isoconcentration patterns for F =0.1; (a) Pe=0.1, Ra =4.6�107; (b) Pe =1, Ra =4�106; (c) Pe =5,

Ra =4.3�105; (d) Pe =10, Ra =1.6�105.
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the fluid flow still extends all over the cylinder. However, in a tall cavity (F=0.1), both the cells and the

fluid flow are concentrated in the top region.
5. Concluding remarks

Study of gravitactic bioconvection in a cylindrical cavity is presented to show that gravitactic

bioconvection may be significantly different from Bénard convection. Both the Peclet number and the

aspect ratio play an important role in the onset and development of cell distribution and flow patterns. A

fundamental difference between these two phenomena is that bioconvection is a subcritical bifurcation

while Bénard convection is a supercritical bifurcation from the diffusion state.
Nomenclature

Dc cell diffusivity, m2/s

F cylinder aspect ratio, F=R /H

g gravitational acceleration, m2/s

J
Y

cell flux, cell/m2 s

k
Y

vertical unit vector

n cell concentration, cell/m3

n̄ mean cell concentration in the cylinder, cell/m3

P pressure, Pa

Pe Peclet number (dimensionless cell velocity) Pe=HVc /Dc

Ra Rayleigh number; Ra=gH3bn̄Vc /mDc
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uY dimensionless fluid velocity, uY ¼ uYTH=Dc

Vc gravitactic cell velocity, m/s

r, z dimensionless coordinates, r= r* /H; z= z* /H

Sc Schmidt number, Sc=m /Dc

t dimensionless time t=Dct* /H
2

b density variation coefficient of suspension; b=#Dq /q
Dq difference of cell and water densities, Dq=qc�qw

x dimensionless vorticity, x=x*H2 /Dc

w dimensionless stream function, w=w* /Dc

m kinematic viscosity of suspension, m2/s

qw water density, kg/m3

qc cell density, kg/m3

q density of suspension bfluid-cellQ, kg/m3

# cell volume, m3/cell

Superscripts

* dimensional variables
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