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Abstract 

Sequential behavior is observed in various domains of cognitive psychology, including free recall 

paradigms. In this paper, within a neurocomputational framework resampling (RS) mechanisms are 

compared to competitive queuing (CQ) mechanisms. While both types of implementations select the most 

active representation, the subsequent inhibition is at the level of selection for RS-models and at the level 

of (re)activation for CQ-models. It is shown that despite the overwhelming success of CQ-models in 

serial recall (with regard to types of sequencing error), RS-models outperform CQ-models with regard to 

interresponse times (IRT) in a free recall task. Additional analyses show that decay of response 

suppression reduces the difference between the models. The RS-model is sensitive to the size of the 

search set and accounts for memory selection performance in patients with Alzheimer’s dementia or 

Huntington’s disease. Finally, a non-mnemonic clustering behavior is observed, which is related to the 

dynamical process of selection mechanism. 

 

Keywords: Competitive queuing; memory retrieval; recall latencies; resampling; Alzheimer’s dementia; 

Huntington’s disease 
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Sequential Retrieval and Inhibition of Parallel (Re)Activated Representations: 

A Neurocomputational Comparison of Competitive Queuing and Resampling Models 

1 Introduction 

In many complex systems that exhibit sequential ordering of actions, a selection mechanism converts 

simultaneously activated representations into a sequence of actions. The simplest form this selection 

mechanism can take is one by which one action is selected and then executed, after which another action 

is activated (from zero), selected and executed and so on. However, research within psychology has 

demonstrated that this type of selection mechanism is inconsistent with detailed error analyses in serial 

recall (Henson, et al, 1996) and typing (see Salthouse, 1986), as it would, for example, be unable to 

account for the smooth transitions between successive actions. Instead, evidence points towards a two-

stage mechanism by which in the first stage, all task-appropriate representations are activated in parallel 

(instead of sequentially) and in the second stage representations are selected one at a time to produce its 

corresponding action. Although most of the initial knowledge was gathered from motor behavior, with 

typing as one familiar example (see the review by Salthouse, 1986 and its references), researchers have 

suggested that this two-stage mechanism may also be central to other forms of sequential behavior, from 

walking through a room or grasping a mug to producing speech, preparing coffee, or even memorizing 

words. Given this centrality of serial ordering in our daily lives, it may come as no surprise that 

computational modelers have developed models through which simultaneously activated representations 

produce serially ordered actions. Two of these models are highlighted in this paper and relate to 

sequential retrieval from memory. 

The reason for focusing on memory retrieval is two-fold. First, a long tradition of mathematical 

sampling models has led to a wide range of memory models that are currently used to account for 

memory phenomena. During the 1990s, a new generation of models emerged that were embedded in a 

connectionist framework and used a particular mechanism called “competitive queuing” that is able to 

transform an activation gradient over to-be-reported memoranda into a sequential order of reports. As will 
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be argued in this paper, the two mechanisms make different predictions with regard to the timing of 

actions. This difference may be important beyond the memory literature in other areas in which sequential 

selection of parallel-activated actions is a common implementational choice. A modeler would need to 

know which mechanism to use to account for a particular type of data and empirical researchers 

(psychologists, biologists) would need to know what the behavioral signatures of these mechanisms are. 

For example, it is useful to know that if a certain mechanism underlies higher-order behavior (e.g., 

parallel activation and sequential selection), specific implementational details may lead to different 

behavior at a more finer-grained level (in this paper, the profile of the timing between successive actions). 

Second, in recent years evidence has been found that favors some components and disfavors other 

components of competitive queuing. Given the wide applicability of a two-stage activation-selection 

mechanism, it could be beneficial to reexamine the components with computational-analytic tools that are 

currently available. This paper aims at directly comparing two well-known mechanisms that were never 

before compared in this way. The memory literature contains much of the data needed for this 

comparison; this paper uses this data in an attempt to validate these models. 

In this paper, the term “action selection” is used loosely and relates to the selection of 

representations that when executed has a behavioral consequence. Within this definition, retrieving a 

word from memory will eventually lead to the spoken or typed version of that word. Similarly, retrieving 

a plan of actions (e.g., making coffee) will eventually lead to the selection of a series of goal-directed 

movements. This paper therefore deals only with situations in which a higher-order action plan (retrieving 

memoranda) activates lower-order plans (produce a word) that eventually lead to a behavioral response 

that can be measured in real-time. The paper does not deal with situations that require unpacking of a 

motor sequence, such as walking or throwing a ball. 

The next section outlines the competitive queuing and sampling-mechanisms, which is then 

followed by a brief introduction of the retrieval latencies that differentiates these mechanisms. A generic 

computational model is presented in which both mechanisms are implemented. This model is then used to 
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demonstrate the impact of the different mechanisms on retrieval latencies and is used to show its ability to 

qualitatively account for psychological data through a number of simulations. The paper closes with 

implications of the computational evaluation for models of memory, action selction, and other domains. 

 

2 Competitive queuing versus resampling 

This section presents the two mechanisms that will be compared in a generic model. Before describing 

these mechanisms, it should be noted that models of recall memory fall into either one of two almost 

separate literatures. On the one hand are the models that deal with serial recall, while on the other hand 

are models that deal with free recall. Each literature has its own debates, model implementations, 

empirical methods and focus on what is relevant in the data. This paper focuses on free recall or 

sequential selection in any order for three reasons. First, neurocomputational models of free recall are 

being developed (Davelaar, et al, 2005, 2006), but still rely on the non-dynamic retrieval process, as used 

in current mathematical models. The question is how to extend this new neurocomputational work by 

borrowing dynamical mechanisms of sequential selection from the literature on serial recall. Second, 

detailed analyses of retrieval latencies exist for free recall (see section 3) that form a benchmark against 

which to evaluate the model. Although data for serial recall exists (Farrell & Lewandowsky, 2004; 

Kahana & Jacobs, 2000), similar rigorous analyses have not yet been conducted. Third, as free recall is 

per definition free from any constraints on output order, the task is highly suitable to investigate 

mechanisms of sequential selection. Like the properties of inherent circadian rhythm in agents (man, 

animal, plants) can be investigated by taking away external cues of time, so can the sequential selection 

mechanism of agents be investigated by taking away external constraints of sequencing (i.e., the 

requirement to produce actions or report words in a pre-specified order). Given that sequential selection is 

central to behavior in general, the analyses in the following support the view that measuring latencies 

between successive behaviors can provide insight into the type of the underlying selection mechanism 

that led to the sequence of behaviors. 
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2.1 Competitive queuing 

Grossberg (1978a,b) developed a model in which sequential output can be obtained from parallel 

activation in a dynamical model with feedforward excitatory and feedback inhibitory connections. The 

basic architecture is shown in Figure 1. The profile of activations in the activation layer is fed into the 

selection layer. This profile may originate from an activation-based short-term buffer, or from long-term 

memory with or without a static signal. There are three critical components. First, the activation profile 

shows the degree of activations for all yet-to-be executed plans, with the desired sequential order being 

from most active to least active. Second, the activations compete, i.e., the representations in the activation 

layer all inhibit each other. A nonspecific arousal signal arrives at the selection layer which brings the 

activations above a response threshold. Third, as soon as a plan is selected (e.g., for moving the fingers to 

the desired key for typing, or flexing the muscles for articulation of a word), the representation in the 

selection layer inhibits the representation it received input from. This prevents perseverative behavior and 

allows the next-strongest representation to become selected for output. 

This two-layer output module produces all actions corresponding to the activated representations 

in the correct serial order with smooth transitions from one selected action to the next. In addition, by 

adding noise to any of the three critical components, it can account for errors in sequencing seen in 

human behavior, such as seen in typing (e.g., Salthouse, 1986) and memory for serial order. 

    = = = = = = = = = = = = = = = = = =  

    INSERT FIGURE 1 ABOUT HERE 

    = = = = = = = = = = = = = = = = = = 

 

In the 1990s, starting with Houghton (1990), this architecture received much attention in the 

memory literature (Brown, Preece & Hulme, 2000; Burgess & Hitch, 1999; Henson, 1998; Page & Norris, 

1998; see for a review, Page & Henson, 2001) and related areas (planning: Cooper & Shallice, 2000; 
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spelling: Glasspool & Houghton, 2005; speech production: Hartley & Houghton, 1996) leading to a range 

of models employing the select-then-inhibit dynamics (see for review, Glasspool, 2005). The models are 

collectively referred to as competitive-queuing (CQ) models, as the activations are placed in a 

competitive queue before being selected.1

It should be noted, however, that these models of serial ordered recall are different than the 

original Grossberg’s model (1978) in at least two critical aspects. First, in Grossberg’s model, the 

inhibition of the representation in the activation layer is complete (i.e., total response suppression), 

whereas the CQ-models were aimed at capturing errors such as repetitions and thus assumed a need for a 

gradually decaying inhibition (for a non-decaying inhibition account, see Farrell & Lewandowsky, 2002). 

If the set of activated representations in the activation layer is called the search set, then Grossberg’s 

model could be referred to as a sampling-without-replacement model and the CQ-models could be 

referred to as sampling-with-delayed-replacement models. Second, whereas Grossberg’s model focuses 

on producing sequential behavior given a single activation gradient, the aforementioned CQ-models 

(except the primacy model by Page & Norris, 1998 which follows Grossberg in this regard) have 

addressed various forms of changing the source of activation during the course of retrieval. A contextual 

representation is incorporated in those models that changes along a certain dimension (e.g., temporal, 

absolute, or relative position in the list) and gets linked with the representations of the to-be-remembered 

items. During retrieval this context signal is replayed leading to serial recall. Not surprising, this context 

signal may contribute greatly to variations in the timing of actions. However, these models have yet to be 

extended to account for retrieval latencies.2  

Neurophysiological studies support the dynamics assumed in these types of models. For example, 

Averbeck and colleagues (2002) trained macaque monkeys to draw geometric figures (triangle, square, 

trapezoid, inverted triangle). After training, the recorded neural firing patterns of neurons in the prefrontal 

cortex during drawing suggested that representations of all segments of a figure were coactivated before 

the initiation of the first action. During drawing, the neurons corresponding to the upcoming action 
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increased and then decreased in firing rate before and after the action, respectively, in the same manner as 

predicted by Grossberg’s model and CQ-models that use a single context representation. However, the 

results did not show that the activation of the selected-and-then-inhibited representations gradually 

increased, as is critical in CQ-models to account for repetition errors. Although it is certainly possible that 

the motor task of drawing figures by monkeys is not comparable to human memory performance, recent 

research on human memory has questioned the existence of a gradual decaying inhibition and employed 

other forms of response suppression (Duncan & Lewandowky, 2005; Farrell & Lewandowsky, 2002, 

2004). Nevertheless, the simulation study in this paper (specifically in the Appendix) will consider both 

the sampling-without-replacement (CQ0) and the sampling-with-gradual-replacement (CQ∆) versions. 

 

2.2 Resampling models 

Although the CQ-models gained much success, a different approach to producing sequential retrieval has 

been employed in global memory models, such as Search of Associative Memory (SAM; Raaijmakers & 

Shiffrin, 1980, 1981), MINERVA 2 (Hintzman, 1984), and Theory Of Distributed Memory (TODAM; 

Murdock, 1982). Here, SAM is used to exemplify the retrieval process, which is broken down into three 

critical components. First, a search set is defined based on available retrieval cues, which in most models 

is the list context, but could also be categories (e.g., Gronlund & Shiffrin, 1986) or chunks (e.g., 

Anderson, et al., 1998; Anderson & Matessa, 1997). Second, a single trace is selected (sampled) from the 

search set and used to recover the full memory representation. This could correspond with recovering the 

phonemic representation in order to utter the word or the execution of the motor plan for typing the word. 

Third, after successful recovery, the trace is allowed to compete for resampling if the same cue is used to 

probe the memory system, but will not produce an output. Due to the possibility of resampling (but not 

re-recovery) of an item, SAM could be seen as a resampling (RS) or selection-with-replacement model. In 

order to compare the CQ-model with the RS-model, it is assumed that the first two components of both 

models are equivalent, and that the critical difference lies in the post-response suppression mechanism. 
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The assumption in SAM that a resampled representation never leads to an output can be relaxed and the 

assumption of gradual decay of inhibition could be used instead. Such a model has never been used in the 

SAM framework, but will be used in the simulation study for completeness. 

Functional imaging data supports the view that the brain has separate components for activation 

and selection (Badre, et al., 2005). For example, in a study by Badre and colleagues, participants 

performed a number of tasks that have previously been used in investigations on memory retrieval and 

have been argued to rely to different degrees on the ability to select the correct response among 

distractors. The authors were interested in whether selection and activation mechanisms are subserved by 

the same or by different neural substrates. Factor analysis on the behavioral results produced two factors 

that were labeled as a selection and a non-selection component. These behaviorally-defined factors were 

associated with variance in different brain regions, with the anterior ventrolateral prefrontal cortex 

(aVLPFC) and the inferior-temporal cortex (IT) related to activation of information and the mid-

ventrolateral prefrontal cortex (mVLPFC) related to selection of task-appropriate representations. This 

two-stage model of retrieval supports the global memory models, but does not necessarily falsify the CQ-

mechanism. Nevertheless, the retrieval dynamics are different for the two mechanisms, as will be 

discussed in the next section. 

 

3 Retrieval dynamics 

This section summarizes the data patterns that will be used to compare and validate the above two models. 

Recall latencies provide information on the underlying memory processes and distinguish different patient 

populations. 

3.1 Recall latencies 

In a series of analytical studies, Rohrer and Wixted (Rohrer, 1996, 2002; Rohrer & Wixted, 1994; Wixted 

& Rohrer, 1993) investigated the temporal dynamics in free recall of words. This work, which extends the 

limited number of previous empirical investigations (e.g., Murdock & Okada, 1970; Patterson, Meltzer & 
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Mandler, 1971; for a review see, Wixted & Rohrer, 1994), provided critical insight regarding the 

sampling and recovery of items. In a typical experiment, a participant memorizes a number of words and 

after a distractor task reports as many words as possible in any order. During the retrieval phase, the time 

taken to retrieve an item is measured as the main dependent variable. The basic findings are as follows. 

The time needed to retrieve an item increases with the number of items that were memorized (set size 

effect). The inter-response time (IRT), the elapsed time between two consecutive responses, increases 

during the retrieval phase and is a function of the number of words yet to be recalled (see Figure 2). These 

findings have been interpreted to support the RS-mechanism of selection, where the recall latency reflects 

the size of the search set. The larger the search set, the longer it takes to select an item from the set. 

    = = = = = = = = = = = = = = = = = =  

    INSERT FIGURE 2 ABOUT HERE 

    = = = = = = = = = = = = = = = = = = 

3.2 Utility of retrieval latencies 

The analysis of recall latencies has provided an empirical tool for measuring the size of the memory 

search set, dissociating the effect of episodic and semantic cues (Rohrer, 2002), and measuring the loss of 

semantic memory in patients with Alzheimer’s dementia (AD). Rohrer and colleagues (1995), after 

analyzing the recall latencies (minus the first recall latency), argued that AD-patients have a structural 

memory deficit. The loss of neural tissue in AD leads to a smaller size of the memory set, which in turn is 

observed as shorter recall latencies for AD-patients compared to controls. This is in contrast with the 

longer recall latencies observed in patients with Huntington’s disease (HD) (Rohrer, et al., 1999). 

Whereas both AD- and HD-patients have lower total recall compared to controls, the retrieval latencies 

revealed marked differences.  

3.3 Model predictions 

As mentioned above, CQ- and RS-models have a stage in which all target representations are activated by 

a cue. It takes time for the first item to be selected and produce an output. Given that no differences exist 
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between these two models at this initial stage, both models will produce the same first retrieval latency. 

However, after the first item is retrieved, in CQ-models the representation of this item is inhibited (is 

deleted from the queue). As every output is followed by inhibition of the retrieved item representation, 

there is an ever-decreasing competition during the retrieval phase. This model therefore predicts that the 

time needed for selecting a new item decreases: IRTs become shorter. In RS-models, the item 

representation is still activated by the cue and can therefore be sampled, even though it will not be output.  

The more items have been output the lower the probability (and therefore the longer it will take) that a 

new not-yet retrieved item will be sampled. This model predicts that the time needed to report the next 

item depends on the activation gradient and therefore reflects the size of the memory set. This model 

therefore predicts that the time needed for selecting a new item increases: IRTs become longer. 

 

4 Generic model 

In order to evaluate the mechanisms, a generic model is presented in which RS- and CQ- mechanisms can 

be explored. The main dependent measures are the IRTs and the distributions of recall latencies. As 

Simulation 1 makes clear that the CQ-mechanism does not capture the IRTs, simulations 2, 3, and 4 only 

address the RS-model to illustrate its applicability. 

4.1 Model architecture  

The model consists of 4 layers (see Figure 3). Each layer contains 20 localistic representations that are 

connected to corresponding representations in other layers. Each unit corresponds to a large number of 

neurons that together participate in the neural code for that particular representation. For every unit in 

each layer, its current activation depends on the activation value on the previous time-step, the self-

recurrent excitation, the inhibition felt from every other unit in the same layer, the external input and 

some random noise. The activations of all units in the model are updated at each time-step according the 

following differential equation (see also Davelaar, et al., 2005, 2006; Usher & McClelland, 2001): 
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xi(t+1) = λxi(t) + (1-λ)(αF(xi(t)) + Ii(t) - βΣjF(xj(t)) + ξ)    (1) 

 

Here, x represents the internal activation, λ=0.98, α is the self-recurrent excitatory connection, F(x) = 

x/(1+x), for x>0 represents the output activation function. Ii(t) represents the external input at time-step t 

to unit i. Units in each layer compete for activation, which is governed by the within-layer inhibition 

parameter β. Each unit receives inhibition from every other unit in the same layer. The activation of each 

unit (only in the memory layer) is supplemented with zero-mean Gaussian noise ξ, with standard 

deviation σ. The parameter values vary between layers, but are chosen to minimize epiphenomological 

dynamics that may obscure the comparison between the CQ- and RS-mechanisms. For example, in order 

to compare the models, each model should be able to produce an output. If the connection between the 

activation and selection layer is too weak, the CQ-model, but not the RS-model, produces an output, and 

if the response suppression is too weak, the RS-model, but not the CQ-model, produces an output. Each 

layer can be interpreted as representing a set of brain areas that have been implicated in memory 

activation, memory selection, and action selection. 

Figure 4 shows the influence of the parameters α and β on the activation of the representations, 

which eventually govern the overall system behavior. Figure 4A shows for a variety of values for α and β, 

the average number of representations (out of 10, Ii=0.33 for all) that are still activated above a fixed 

threshold (0.2, as used in previous work) after 2000 iterations over 100 simulation runs (σ = 0.1). Figures 

4B-D show for three points from the Figure 4A, the corresponding activation trajectories. As can be seen, 

increasing the self-recurrent excitation will increase the number of representations that are still active 

above threshold at the end of the simulation. However, this is only true for low levels of inhibition, as an 

intermediate level of inhibition dampens the overall activation, putting an upper bound to the total number 

of activated representations. With high inhibition, the system goes into a winner-take-all selection mode. 

    = = = = = = = = = = = = = = = = = =  
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    INSERT FIGURE 3 ABOUT HERE 

    = = = = = = = = = = = = = = = = = = 

    = = = = = = = = = = = = = = = = = =  

    INSERT FIGURE 4 ABOUT HERE 

    = = = = = = = = = = = = = = = = = = 

4.1.1 Activation layer 

The activation layer contains representations of the words that are to be recalled. The memory 

representations may already be in an active state (they are in the short-term buffer; Davelaar, et al., 2005) 

or are (re)activated by a cue, which could be a category name (semantic cue, as in a verbal fluency task) 

or a contextual reference (episodic cue, as in a list memory task). In this paper, only cued activations are 

considered. The cue activates the first 10 items in the memory layer range from 0.28 to 0.37 (0.01 

difference between units). The activated representations compete weakly with each other. In the 

simulations, zero-mean Gaussian noise is added to the activations of the memory units (α = 0, β = 0.1, σ 

= 0.1). 

4.1.2 Selection layer 

The selection layer (modeled after Usher & McClelland, 2001) contains representations that receive 

weighted input, WmsF(x), from those in the activation layer, where Wms represents the connection weight 

between the activation and the selection layer. The activated representations compete strongly, β=1.0, 

with each other, and have moderate, α = 1.0, self-connections. Both the activation and selection layer 

could be implemented in prefrontal areas, such as the ventrolateral prefrontal cortex (Badre, et al, 2005; 

see for a recent discussion on prefrontal cortex and memory, Ranganath & Blumenfeld, in prep). 

4.1.3 Output layer 

The output layer contains representations that receive weighted input, WsoH[F(x),0.4], from those in the 

selection layer, with Wso=2.0 and H[F(x),0.4]=1, when F(x)>0.4, 0 otherwise. The units are inert with no 

dynamics other than activation decay after a unit in the selection layer has provided a pulse to the output 
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layer. This allows for obtaining an exact point in time in which a response is initiated. The connection 

between the selection and the output layer represents the “direct pathway” or the “selection pathway” 

(Gurney, Prescott & Redgrave, 2001) in the basal ganglia. 

4.1.4 Inhibition layer 

The inhibition layer contains representations that receive input, H[F(x),0.4], from those in the selection 

layer. To maximize the influence of the inhibition layer on the retrieval dynamics and thereby make the 

whole system sensitive to differences related to the RS- and CQ-mechanisms only, units in the inhibition 

layer have strong self-excitation and do not inhibit each other (α = 2.0, β = 0). This implements a form of 

output buffer in which all selected items are maintained throughout the retrieval phase and prevents 

perseverations and repetitions. The neural substrate of the inhibition layer is assumed to include 

subcortical areas of the basal ganglia that are in the “indirect” or “control” pathway. In addition, the self-

recurrent connection may be interpreted as including cortical projections to the subthalamic nucleus. 

Recent work by Frank (in press; Frank, Sherman & Scheres, in press) suggests that a critical function of 

the subthalamic nucleus is to prevent (too early) responding. 

4.2 Simulation 1: RS- versus CQ-mechanism 

In the first simulation, the weighted output of the inhibition layer, WinhF(x), is sent to the selection layer 

or the memory layer to implement the RS- and CQ-model, respectively. Figure 5 shows a noise-less 

simulation of both implementations. As can be seen, of the 10 activated representations in the memory 

layer, only 8 produce a response in the RS-model, whereas all produce a response in the CQ-model. 

Figure 6A presents a comparison of the first recall latency and the subsequent IRTs for both noise-less 

simulations. The results are striking. The RS-model shows increasing IRTs throughout the retrieval phase, 

whereas the CQ-model shows a gradual decrease in IRTs. The RS-model produces increased IRTs 

because with each response the responsible unit in the activation layer keeps sending activation to the 

corresponding unit in the selection layer. As this unit is inhibited, the next-highest unit will win the 

competition, but as it receives less activation, it takes longer to reach the response threshold. This 
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continues throughout the recall phase, leading to ever-increasing IRTs. The CQ-model on the other hand 

reduces the number of activated units in the activation layer, thereby reduces the competition in the 

selection layer. With less competition, the units in the selection layer can more readily reach the response 

threshold, resulting in ever-decreasing IRTs. 

The models were run with noise (σ = 0.1) in the activation layer. To obtain a wide range of total 

recall, 1000 simulations were run with Wms = [1.4 : 2.0, step 0.1], which is justified under the assumption 

that the activations of the memory representations are modulated by attentional (Usher & Davelaar, 2002) 

or motivational factors. Despite this range, the CQ-model produced all 10 responses in 99.2% of the 

simulations. Figures 6B and 6C show the IRTs as a function of the total recall and the recall interval for 

the RS- and CQ-model respectively. These figures mimic the noise-less results in Figure 6A. Human 

behavioral data are in accordance with the results of the RS-model (e.g., Murdock & Okada, 1970; shown 

in Figure 2). 

    = = = = = = = = = = = = = = = = = =  

    INSERT FIGURE 5 ABOUT HERE 

    = = = = = = = = = = = = = = = = = = 

    = = = = = = = = = = = = = = = = = =  

    INSERT FIGURE 6 ABOUT HERE 

    = = = = = = = = = = = = = = = = = = 

The results of Simulation 1 are expanded with additional analyses in the Appendix, in which the slope of 

the IRT-profile is compared in four model implementations: RS- and CQ-model with (RS∆, CQ∆) and 

without (RS0, CQ0) gradual decay of response suppression. The analyses reveal that the RS-models 

produce the positive slope of the IRT-function more often than the CQ-models and that this difference 

between RS- and CQ-models is smaller if the response suppression decays gradually during the retrieval 

phase. 

4.3 Simulation 2: setsize effects 
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Given that the RS-model captures the basic profile of IRTs, the question arises whether it also shows the 

critical sensitivity to setsize. Rohrer and colleagues (Rohrer, 1994, 1996, 2002; Rohrer, et al., 1995, 1999; 

Wixted & Rohrer, 1993) have shown that the distribution of recall latencies reflect the size of the memory 

set, which could be utilized to identify loci for memory deficits in patient populations. To this end, 1000 

simulations of the RS-model were run with 5 or 15 memory units being activated (the 5 highest activated 

units were used in both setsizes, therefore any effect on first recall latencies can only be attributed to 

setsize). Inhibition in the selection layer was lowered to β=0.8 and Wms=4.0. As can be seen in Figure 7, 

the RS-model is sensitive to differences in setsize (average recall: .918 and .307, for setsize 5 and 15, 

respectively). In particular, the model is slower when the memory set is larger. The reason for this is that 

with larger setsize, more items activate units in the activation layer and therefore in the selection layer. 

The overall increase in competing representations leads to a slower rise in activation for each of the units 

in the selection layer. This continues throughout the recall phase, leading also to longer IRTs. For the first 

recall latencies, the average latency was 3164 timesteps with size=5 and 3456 timesteps with size=15. For 

the IRT: 99 timesteps with size=5, 603 time-steps with size=15. The RS-model not only captured the 

IRT-profile, but is also sensitive to the size of the memory set, thereby providing computational 

validation of the theoretical analyses of Wixted and Rohrer (1994).  

    = = = = = = = = = = = = = = = = = =  

    INSERT FIGURE 7 ABOUT HERE 

    = = = = = = = = = = = = = = = = = = 

4.4 Simulation 3: Alzheimer vs. Huntington 

Patients with Alzheimer’s dementia suffer from increased loss of neural tissue that represents long-term 

memory (see e.g., Fleischman & Gabrieli, 1999). This includes aspects of episodic and semantic memory. 

As in memory retrieval tasks, recall latencies reflect the size of the memory set, AD-patients are faster in 

retrieving items, but have a lower total recall. Simulation 2 already showed the effect of setsize and will 

not be repeated here. Huntington’s disease is caused by a loss of striatal neurons, resulting in a decreased 
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output to the thalamus (see for a review, Alexi, et al., 2000). In the model, HD would affect the selection 

layer and is approximated by increasing the selection threshold, which slows down the retrieval process 

without affecting the memory set. 

The RS-model with selection β = 1.0 and Wms = 2.0 was used (10 items; 1000 runs) with the 

difference that the selection threshold was increased from 0.40 to 0.44. As can be seen in Figure 7, the 

HD-simulation is indeed slower in retrieving items. For the first recall latencies, the average latency was 

991 timesteps (HD) compared to 825 timesteps (baseline). For the IRT: 1262 timesteps (HD) compared to 

700 time-steps (baseline). This contrasts the results of the AD-patients (setsize effect). 

    = = = = = = = = = = = = = = = = = =  

    INSERT FIGURE 8 ABOUT HERE 

    = = = = = = = = = = = = = = = = = = 

4.5 Simulation 4: non-mnemonic clustering 

During model exploration, an interesting form of clustering was observed. When the weight between the 

activation and selection layer is high (or the inhibition in the selection layer is low), a number of 

representations may still be active when a representation is selected. As the selection layer is assumed to 

receive modulated input (for a model of attentional modulation of response selection see, Usher & 

Davelaar, 2002), the model links attentional and motivational factors to the speed of retrieval. However, 

this pattern could only be observed in the distributions if the binsize for the distributions was small 

enough. 

An illustrative simulation of these parameters was conducted. Five items were activated in a 

simulation with two levels of activation-selection weight, Wms= [1.5, 2.0]. Figure 9 presents activation 

trajectories of a single trial (with noise, σ = 0.1; the same randomseed was used in both simulations), 

while Figures 10A and 10B present the recall latency distributions (from 1000 simulation runs) with large 

(1000 timesteps) and small (100 timesteps) binsize, respectively. It is immediately apparent that the 

model is able to produce a form of clustering that is independent of the mnemonic structure of the to-be-
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retrieved representations. In fact, there is no mnemonic structure. Instead, this type of clustering reflects 

the pressure that the representations feel in the selection layer combined with the self-recurrency. The 

simulation also shows that in order to observe this profile, an adequate temporal resolution is required. 

Therefore it is recommended that in empirical studies, looking at retrieval latencies in free recall tasks, 

care is taken to obtain precise timing measurements. It remains an open question whether the clustering 

profile can be observed in neurobiological studies with animals. 

    = = = = = = = = = = = = = = = = = =  

    INSERT FIGURE 9 ABOUT HERE 

    = = = = = = = = = = = = = = = = = = 

    = = = = = = = = = = = = = = = = = =  

    INSERT FIGURE 10 ABOUT HERE 

    = = = = = = = = = = = = = = = = = = 

5 Discussion 

The aim of the current paper was to compare two commonly used mechanisms of sequential memory 

retrieval and evaluate their ability to capture the inter-response times in free recall. A generic model in 

was used in which the two mechanisms were implemented. Simulations revealed that the resampling 

mechanism provided a better overall qualitative match to the published data on retrieval latencies in a free 

recall paradigm than the competitive queuing mechanism. A comparative analysis of four model 

implementations (RS∆, CQ∆, RS0, CQ0, see section 4.2 and appendix) reveal that the RS-models produce 

the positive slope of the IRT-function more often than the CQ-models and that this difference between 

RS- and CQ-models is smaller if the response suppression decays gradually during the retrieval phase. 

This latter mechanism made the CQ∆-model (CQ with gradual decay of suppression) more similar to the 

RS-models (RS0 and RS∆). The resampling mechanism was subsequently tested on its sensitivity to the 

size of the activated memory set and its success is promising for further research in the specific neural 

implementation of the mechanism. The use of recall distributions has been shown to provide a better 
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understanding of the memory deficits in Alzheimer’s dementia and Huntington’s disease (section 4.4) and 

resolve theoretical debates that have focused mainly on total recall as the dependent variable. The 

resampling model captures the differences in recall latency distributions between patients with 

Alzheimer’s dementia or Huntington’s disease. The important utility of IRT-analyses in this domain 

justifies further developments and analyses of the computational architecture to quantitatively account for 

the neuropsychological data. The implications of the present model comparison follow next. 

5.1 Implications for dynamical models of memory 

The CQ-mechanism has had great impact on the memory literature, but the simulations show that for 

profiles of inter-response times in free recall, the mechanism does not fare well compared to the RS-

mechanism unless additional assumptions are in place. Even though the evaluation between the two types 

of models in simulation 1 may imply that CQ-models are inappropriate for free recall, this does not 

invalidate CQ-models. In fact, given the neurophysiological support for CQ-dynamics, it is conceivable 

that CQ-dynamics may play a dominant role at the response level and less so at the memory level. Note 

that the successes of CQ-models are found in tasks that require execution of a well-learned motor 

program, whether it is drawing geometric shapes (Averbeck, et al., 2002), or pronouncing words (Hartley 

& Houghton, 1996). As such the use of CQ-dynamics may be more related to the unpacking of chunks, 

where the content of chunks could be words (as in serial recall), movements (as in typing, spelling; 

Glasspool & Houghton, 2005; Hartley & Houghton, 1996) or even other chunks (as in planning; Cooper 

& Shallice, 2000). Within the literature on serial recall, not much emphasis has been placed on retrieval 

latencies (but see Farrell & Lewandowsky, 2004; Kahana & Jacobs, 2000). Nevertheless, in a production 

system, Anderson and Matessa (1997) explicitly modeled the inter-response times as the unpacking of 

chunks, with equal time needed for each item within a chunk and with additional time to move from one 

to the other chunk. In a follow-up paper (Anderson, et al., 1998) some aspects of free recall were modeled, 

but not retrieval latencies. 
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An important assumption of some CQ-models is that after a response it made, the representation 

leading to an overt response is inhibited. This response suppression decays gradually over time, leading to 

reselection. Despite this critical feature (i.e., decay of response suppression), the neurophysiological data 

that supported competitive queuing in general (Averbeck, et al., 2002) does not show this pattern. 

Although repetitions in movements in making geometric shapes are unlikely, decay of response 

suppression seems not to be needed to account for repetition errors in serial recall (Botvinick & Plaut, 

2006; Farrell & Lewandowsky, 2002) and is even directly contested empirically (Duncan & 

Lewandowsky, 2005). 

Although the modeling work in this paper highlighted a critical difference in employment of CQ- 

and RS-mechanisms, the model itself requires extensions in order to account for a variety of other 

memory-related findings in sequential retrieval. These include semantic (Davelaar, et al., 2006) or 

episodic clustering, strategic retrieval (idiosyncratic cues: Gronlund & Shiffrin, 1986; output order: 

Dalezman, 1976) or semantic dementia (Forde & Humphreys, 2002). However, the evaluation presented 

here was of a qualitative nature and was aimed at providing a means to justify the choice of mechanism 

used, with analyses of retrieval latencies as the main dependent measure that constraints the modeling 

choice. Future work may merge the current generic model into other more-specified models of recall 

memory to address the other findings. 

Recent work on recall memory has incorporated new theoretical approaches to working memory 

(Davelaar, et al., 2005, 2006). In this research, the content of working memory is defined as the activated 

part of long-term memory (e.g., Cowan, 2001) and the modeling work was focused on the encoding of 

information in episodic memory. In that work, episodic memory is the matrix of connection weights 

between a contextual system (related to the medial-temporal lobe) and the cortical long-term memory 

system. In these models of free recall, the retrieval process was approximated by a selection and recovery 

phase, akin to that of global memory models. The dynamical model of retrieval presented in this paper 

provides the back-end to those previous models of encoding. It is noteworthy that the level of inhibition 



 comparing mechanisms of sequential selection 21

in the retrieval component produces some form of clustering. A few items are reported in rapid succession, 

but are not interconnected. The size of this cluster is directly related to the number of items that are active 

simultaneously in the selection layer (see Figure 9), which could potentially be used in empirical 

investigations on working memory capacity (reviewed in Cowan, 2001). 

5.2 Implications for dynamical models of sequential selection 

As mentioned in the introduction, studying free recall may be a more useful paradigm than serial recall to 

study the properties of sequential retrieval from memory, as serial recall places an external constraint on 

the inherent selection mechanism. However, under the assumption that this is indeed the case, the 

question then arises how the inherent selection mechanism is influenced by this external constraint of 

output order. In other words, assuming that an RS-mechanism underlies all kinds of sequential behavior, 

how does the need for a particular correct serial order affect the operations of the selection? A partial 

answer to this is revealed by a closer look at how the slope of the RS-models is affected by the parameters 

(see Appendix). In free recall, a positive slope of the IRT-function is observed, whereas a negative slope 

is observed for serial performance such as typing (Salthouse, 1986). To capture a negative slope (i.e., ever 

faster responding) in the RS0-model, the higher self-recurrency would normally lead to more items 

becoming active, but the also higher lateral inhibition prevents this (together with the lower weight from 

the activation layer to the selection layer). With every retrieved item (in the selection layer) being 

inhibited after reaching a threshold, the item next-highest in activation shoots up. As the overall 

competition within the selection layer decreases during the retrieval phase, the IRT between successive 

retrievals becomes shorter. The same dynamics happens in the RS∆-model where due to the gradual decay 

of response suppression, the overall selection mechanism needs to be liberal and with a low response 

threshold. Interestingly, the amount of self-recurrency is lower too. 

In a recent computational study of response selection, Usher and Davelaar (2002) proposed that 

the parameters for self-recurrency and lateral inhibition in a selection layer are modulated by 

norepinephrine (NE) in a positive manner (both parameters are positively correlated with the level of NE). 
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Application of that study to the current discussion produces the hypothesis that the instruction to perform 

in a particular ordered sequence leads to a modulation in NE, which translates into a higher or lower self-

recurrency and lateral inhibition in the selection layer and thereby producing an observable negative or 

positive slope in the IRT-function of actions, respectively. Note that the covariation between self-

recurrency and lateral inhibition as function of the IRT-slope is negative for the CQ-models, critically 

distinguishing the CQ- and RS-models on their reliance on these two parameters. Granted that the 

analyses in the Appendix are not full-proof and requires further extensions incorporating noise and a 

consideration of other types of behavior (e.g., error profiles), the current hypothesis is not inconsistent 

with previous work on response selection (Usher & Davelaar, 2002) and memory for free recall (Davelaar, 

et al., 2005). Linking the idea of neuromodulation to the different IRT-profiles within a single system 

may be a useful vehicle for the investigation in the control of selection among competing behavioral 

alternatives. Recent work has linked NE and the locus coeruleus with conflict monitoring and attentional 

control (Botvinick, et al, 2001) and with the balance between exploitation-exploration behavior in animals 

(e.g., Cohen, Aston-Jones & Gilzenrat, 2004). 

5.3 Relation to other psychological domains 

The evaluation of the memory retrieval dynamics could inform other domains within psychology, such as 

decision-making, neuropsychological assessment, and language/sequence learning/production. Recent 

work in the field of decision-making makes increasingly more use of memory theories (e.g., Dougherty, 

Gettys & Ogden, 1999). For example, when a physician is generating a number of hypotheses about a 

possible diagnosis, the information about the symptoms is used to cue the memory system and search the 

activated part of memory to produce a number of likely diagnoses. This type of research could benefit 

from a deeper understanding of how the retrieval dynamics are affected by such variables as number of 

possible hypotheses (search set), motivation of the physician (focus of attention for selection), and dual-

task situation (affects the retrieval-speed). 
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In the domain of neuropsychological assessment, a recent study (Scahill, Hodges & Graham, 

2005) showed that current episodic memory tasks fail to differentially diagnose patients with Alzheimer’s 

dementia from patients with semantic dementia (SD, a progressive neurodegeneration of the temporal 

lobe, characterized by loss of semantic memory). Of course, SD-patients can be distinguished from AD-

patients using semantic tasks, but it is not certain yet whether episodic memory tasks may contribute in 

the differential diagnosis. Rohrer and colleagues (1999) argued that recall latencies contain information 

that separates AD- from HD-patients. The search for alternative (and additional) methods of 

differentiating between these two groups of patients can be facilitated by neurocomputational models of 

the kind presented in this paper in which certain components have a clear neurological counterpart. 

Through simulations of lesions, they can create informed predictions to guide development of more 

sensitive tests. This type of modeling extends beyond the measures related to sequential retrieval and 

combined with other dynamical models of memory may prove to be of high value to clinicians. 

Finally, Dominey (2005) reviewed his work on sequence learning and grammatical constructions. 

Whereas the tasks focused more on the learning of sequences, the core component of the modeling 

comprises the learning of connections between internal states (retrieval cues) and the correct output 

response. The advantage of his model over standard recurrent networks is that the Dominey-model 

iterates activation over multiple time-steps and thereby is sensitive to temporal structure of input 

sequences. In the same vein, the present model could be extended to produce actions (e.g., speech) and 

thus would require a mechanism to transform the activated abstract message into a sequence of function 

and content words. 

5.4 Limitations and extensions 

The current model focused on two proposed inhibition mechanisms involved in memory retrieval. To this 

end, the inhibition layer and the output layer were oversimplified. This oversimplification was needed in 

order to reveal the consequences of either implementation. However, two pointers will be given that may 

be of interest to those involved modeling human behavior. First, adding within-layer inhibition within the 
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inhibition layer leads the system to exhibit recycling or rehearsal behavior. This could be prevented by 

having the content of the inhibition layer function as retrieval cues (breaking the cycle), which echoes the 

use of retrieved cues in subsequent retrieval in global memory models, such as SAM. Second, the pulses 

in the output layer could be temporally extended through self-connections. These activation profiles could 

in turn activate subsequent selection mechanisms involved in sequencing actions at a lower level in the 

action hierarchy, such as speech production (or any other motor sequence), allowing examination of the 

relation between the information being searched and the speech rate, or speech confusions. These 

extensions go beyond comparing the two mechanisms and would have obscured the unique differences 

between them, which are relevant for both the psychological and non-psychological domains. Future 

work can take the RS-model and investigate the implications of an output buffer to retrieval dynamics. 

5.5 Conclusion 

This paper compared two mechanisms by which simultaneously activated representations produce actions 

(here the recall of memoranda) in a sequential manner. Although these two mechanisms have been used 

in a variety of models, they have not been compared directly to each other before. By examining the 

dynamics of sequential selection through retrieval latencies, it was shown that sampling-with-replacement 

captured human memory retrieval better than sampling-without-replacement. Both are further improved 

by including dynamics of response suppression that gradually fades. This evaluation provides the 

cognitive modeler with a tool with which to choose the components of a selection mechanism and provide 

insights in the internal dynamics of a chosen implementation by addressing the patterns it produces given 

a certain parameter space. Finally, the analyses provide a handle to understand qualitative differences in 

sequential behavior through global modulation of critical parameters, which require further evaluation 

from empirical and computational studies in humans and animals. 
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Appendix 

This appendix presents an analysis of four model implementations: the RS-model and the CQ-model that 

differ in the locus of the post-response suppression and within each model, this suppression remains 

throughout the remainder of the retrieval phase or gradually decays.  A qualitative analysis addresses the 

question of how central a particular pattern, in this case the slope of the IRT-profile, is to a particular 

model and thereby provides a general answer to what type of implementation of sequential retrieval 

captures existing data on IRT-profiles in a free recall paradigm best. Note that all four implementations 

exhibit sequential behavior and are compared to data from memory experiments. Different results may be 

obtained if the models are compared against data from motor planning. After a brief description on the 

computational method used, the results will be presented and the appendix closes with some evaluation of 

this method. 

The analysis takes its inspiration from a recent paper by Pitt, Kim, Navarro and Myung (2006) in 

which they presented a procedure called Parameter Space Partitioning (PSP) that allows a computational 

modeler to analyze the parameter space of a given model. The procedure involves the modeler to identify 

a particular set of patterns and to go through the multidimensional parameter space in search of those 

patterns. The full procedure was not used in this study and the reader is referred to the paper by Pitt and 

colleagues for details on the procedure and how to use it. Briefly, the PSP-procedure selects a set of 

parameters and evaluates the model’s prediction (or pattern). The algorithm works such that it samples 

from each pattern at least once and uniformly. An interesting feature of this procedure is that it provides 

an estimate of the size of the parameter space that is occupied by a particular pattern. In other words, the 

procedure is able to address the question how central a particular data pattern is to a given model, which 

is exactly what is needed in comparing CQ- and RS-models. 

 The inspiration from the PSP procedure was to go through the parameter space of the four models 

(CQ and RS, with and without gradual decay of inhibition) and address whether and how much the slope 

of the inter-response time function is influenced by (1) the structural differences between the models, (2) 
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the presence/absence of decaying inhibition, and (3) the four chosen parameters. These parameters were 

chosen because initial explorations by hand showed that these parameters mattered most in the 

simulations in section 4. These parameters were, the connection weight between the activation layer and 

the selection layer, Wms, the self-recurrency of the unit in the selection layer, α, the lateral inhibition 

between all pairs in the selection layer, β, and the threshold, θ, above which a response is made. In the 

models with decaying inhibition, the self-recurrency of the units in the inhibition layer was reduced to 1.2, 

which was shown to be a compromise between obtaining noticeable reactivation while preventing too 

many repetitions (perseverations). The models are named RS0 and CQ0 for those without decaying 

inhibition, and RS∆ and CQ∆ for those with decaying inhibition. 

 

Procedure 

Step 0: Explore all models by hand and define a parameter boundary and an initial set of parameters. The 

parameter vector used for the initial parameters was P0=[Wms; α; β; θ]=[2.0; 1.0; 1.0; 0.4]. The 

boundaries were set to Wms = [1.2 : 2.2], α = [0.8 : 2.0], β = [0.2 : 2.0], and θ = [0.3 : 0.5]. 

Step 1: Patterns were defined by the slope of the IRT-function and the number of items reported within a 

simulation run of 6000 iterations. This yields 2 (slope>0, slope<=0) x 8 (3 through 10 outputs) + (no 

output or less than 3 outputs) = 17 patterns. The PSP-program from Pitt et al was used on the noiseless 

models with the initial set of parameters, P0, and default values. All models produced all 17 patterns. The 

PSP program produced values that indicate the volume of the region of all possible patterns occupied by a 

certain pattern (see for details, Pitt, et al, 2006). Although the log(volume) favored the RS-models, as 

measured with the number of times that the log(volume) is greater for the positive slope for a given total 

output (RS0 – 8/8; CQ0 – 4/8; RS∆ – 8/8;CQ∆ – 3/8), this result is not optimal as the models were run 

without noise (and the procedure is limited to nonstochastic simulation runs). This step also produced 

additional parameter sets (in matrix xmcv from the program), one for each of the 17 patterns, Ppsp1. 
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Step 2: Parameter sets that were obtained under step 1 were used as initial parameters in a further search 

through parameter/pattern space. This guarantees that all regions will be sampled from. To speed up the 

simulations (each of the 4 simulations under step 1 took 2.5 hours of computing time) the number of 

patterns was reduced to 3 (slope>0, slope<=0, no output or less than 3 outputs). The program was also 

modified to store all unique combinations of parameters and the corresponding pattern. 

As 17 PSP-runs were done on each (noiseless) model, the averaged log(volume) was informative. 

The results are shown in Table A1, showing great consistency across the two steps. The RS-models do 

generally better than the CQ-models, but this difference is greatly attenuated when a decaying of response 

suppression is implemented (for all comparisons, p<.001). 

Volume estimates support the central thesis of this paper that when it comes to modeling inter-

response times, resampling is preferred over competitive queuing. However, as all models are able to 

produce all possible patterns, caution should be taken to prevent over-interpretation. As mentioned, all 

points that were being evaluated in the PSP-algorithm were stored together with the results. This yielded 

more than 100,000 parameter sets for each model. Table A2 shows the number of parameter sets for each 

model against each pattern. Again it can be observed that a positive slope is more central to the RS- than 

to the CQ-model, and that with decay of response suppression implemented this difference decreases. 

    = = = = = = = = = = = = = = = = = =  

    INSERT TABLE A1 ABOUT HERE 

    = = = = = = = = = = = = = = = = = = 

    = = = = = = = = = = = = = = = = = =  

    INSERT TABLE A2 ABOUT HERE 

    = = = = = = = = = = = = = = = = = = 

    = = = = = = = = = = = = = = = = = =  

    INSERT FIGURE A1 ABOUT HERE 

    = = = = = = = = = = = = = = = = = = 
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Figure A1 shows the normalized distributions of relative frequencies for each model, for the valid 

patterns and for each of the four parameters. A uniform distribution would be centered on 0.05. This 

means that for all models the strength between the activation and selection layers does not affect the slope 

of the IRT-function. Only the RS0-model tends to be somewhat affected by this parameter. Note however, 

that Wms does seem to be relevant when it comes to clustering behavior in the output (see simulation 4). 

The same holds for the parameter for the response threshold. The self-recurrency and the lateral inhibition 

in the selection layer greatly affect the slope of the IRT-function, depending on the model. For RS0, 

positively sloped IRT-functions have intermediate values of α and β, whereas for negatively sloped IRT-

functions the values of α and β are large. For CQ0, positively sloped IRT-functions have high α and low 

β (suggesting low selection), whereas for negatively sloped IRT-functions α is low and β is large 

(suggesting high selection). For RS∆, positively sloped IRT-functions have undetermined values of α and 

β, whereas for negatively sloped IRT-functions the values of α and β are small. Finally, for CQ ∆, 

positively sloped IRT-functions have undetermined values of α and β, whereas for negatively sloped IRT-

functions have low values of α and high values for β (suggesting high selection). 

In summary, the values for α and β seem to suggest that the CQ-models tend to settle into high or 

low mode of selection producing negatively or positively sloped IRT-functions, respectively, whereas RS-

models are consistently keeping the same mode of selection. These mode preferences are attenuated with 

decaying response suppression. 

 

Limitations 

Although this new procedure may prove to be a very useful addition to the modeler’s toolbox, a number 

of simplifications have been applied here that should be noted. First, the models are stochastic models and 

the PSP assumes a stationary pattern space. To this end the models were run without noise, which reduces 
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the full model potential, but does allow for addressing the slope of the IRT-function. Second, the number 

of patterns was greatly reduced compared to what the models can do. Besides having distributions of total 

recalls, the models are also able to show clustering behavior. This feature was not part of the pattern-

definitions, but was instead addressed in a full stochastic version in simulation 4. Third, default parameter 

for the PSP algorithm was used and it can be argued that more optimal values are possible that allow 

better estimates of volume. Nevertheless, the volume results from steps 1 and 2 were consistent and the 

algorithm produced a massive amount of data used in distributions of the parameters. Finally, only a 

subset of parameters was varied, limiting the size of parameter space. This should not be an issue, as the 

aim of this exercise was to compare models given the same 4 parameters that were found to be greatly 

affecting performance, some of which could be linked to brain damage. 

 These limitations aside, the procedure has given much more than an analysis by hand could have 

given. Future work may address the above problems more directly and give more principled answers to 

questions of how central the full (stochastic) pattern of IRT-functions is to a given model.  
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Footnotes 

1. The literature seems somewhat inconsistent in its definition of which post-Houghton (1990) models can 

be called CQ-models. Here, the definition is used that a CQ-model is a model in which given the same 

context, the layer immediately preceding the selection (or sampling) layer, (1) drives the selection, (2) has 

multiple representations active, and (3) has its activation profile altered as a consequence of the selection 

layer. This captures the notion of a queue that is altered with subsequent selection. Within this definition, 

models like the Primacy model (Page & Norris, 1998) and the Start-End model (Henson, 1998), but also 

Grossberg’s (1978) models are CQ-models. Models of free recall, such as SAM (Raaijmakers & Shiffrin, 

1980, 1981) do not alter the activation profile given the same context, and thus are not considered CQ-

models, but instead are here referred to as resampling (RS) models. 

2. The reader may also have noted that the timing signal itself could be implemented using a simple 

chaining mechanism. Whereas the strong arguments have been raised against item-to-item chaining 

(Henson, et al, 1996), all the models converged on using a temporal context signal that can be 

implemented using a simple chaining sub-model (for an early CQ-model of serial recall with random 

context change, see Burgess & Hitch, 1992). This issue has not been clarified in the CQ-literature and 

with the development of recurrent network models of serial recall that capture the error patterns 

(Botvinick & Plaut, 2006), a closer look at mechanisms of serial order seems warranted. 
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Tables 

Table A1. Result of the PSP-algorithm under steps 1 and 2. The percentages indicate the amount of the 

valid space (where the model produces slopes for the IRT-function) and the percentage of that space that 

contains the pattern of positive slopes. Step 1 results are taken over all total output (8 datapoints). Step 2 

results are averaged across 17 PSP runs with standard deviations in brackets. 

  Model 

  Without decay With decay 

PSP-run  RS0 CQ0 RS∆ CQ∆

Step 1 Valid 54.9% 32.2% 17.2% 28.7% 

 Slope>0 85.0% 38.0% 83.9% 78.9% 

Step 2 Valid 56.2% (3.6%) 37.8% (3.3%) 25.9% (2.6%) 34.2% (3.8%) 

 Slope>0 89.1% (5.8%) 42.5% (5.9%) 91.4% (7.4%) 77.3% (5.7%) 

 

Table A2. Total number of parameter sets obtained in step 2 for each model against each possible pattern. 

 Model 

 Without decay With decay 

 RS0 CQ0 RS∆ CQ∆

Invalid 34357 43409 49980 43878 

Valid (slope<=0) 22498 36861 16377 17966 

Valid (slope>0) 43640 37567 51989 44676 
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Figure captions 

Figure 1. Architecture of the model used in Grossberg (1978). Each unit in the activation layer has self-

recurrent excitatory connection and inhibits all other units in the same layer. The feedforward one-to-one 

connections from the activation layer to the selection layer are excitatory, whereas the feedback one-to-

one connections are inhibitory. At the lower end is a snapshot of the activation gradient in the activation 

layer. On the left, the left-most unit is the most active and leads to a response. After that, the feedback 

inhibition causes that unit to be lowered in activation. Due to decrease in the amount of inhibition in the 

activation layer, the unit with the next-highest activation level can increase in activation and will lead to 

the next response. This cycle continues until all units who received activation have produced an output. 

Figure 2. Mean interresponse time (IRT) as a function of ordinal position in output. The list had twenty 

items and because participants successfully report a variable number of items, the data is partitioned 

according to total number of words recalled (4-9). Note that independent of the total number of items 

reported from a 20-word list, the interresponse times increases with the number of words reported so far. 

From Murdock, B. B., & Okada, R. (1970). Interresponse times in single-trial free recall. Journal of 

Experimental Psychology, 86, 263-267. Published by APA. Reprinted with permission. 

Figure 3. Model architecture. The model consists of 4 interconnected layers. The arrows ending in pointed 

heads and circled heads are excitatory and inhibitory connections, respectively. A number of 

representations are activated at the activation layer which feeds activation to the selection layer. When a 

unit in the selection layer reaches a selection threshold, the input to the inhibition and response layers 

receive a sharp pulse. Depending on the employed mechanism, the output of the inhibition layer inhibits 

the selection (in the RS-model) or the activation (in the CQ-model) layer. 

Figure 4. Profiles of the influence of the self-recurrency and lateral inhibition parameters on the activation 

of 10 activated units. A: two-dimensional contour map of the number of activated units (at 2000 iteration 

time-steps). Note that the values for the lateral inhibition are on a logarithmic scale. The three dots are 

parameter combinations that were used to illustrate activation trajectories. B: Activation trajectories for 
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high selection. Note that at first two (out of 10) units are most active, followed by one unit increasing in 

activation; a selection has taken place. C: Activation trajectories with low inhibition, but high activation 

leading to no selection, but all units being above a 0.2 threshold. D: Activation trajectories with low 

inhibition and low activation, leading to no selection and all units being below a 0.2 threshold. 

Figure 5. Activation trajectories of the RS- and CQ-model. Activation between layers goes from 

“memory” to “selection” to “output”, with “inhibition” suppressing the activation at either the “memory” 

(CQ-model) or the “selection” (RS-model) layer. Note that the RS-model does not produce all responses 

(8 spikes in the output layer), whereas the CQ-model does. Note also that the activation in the memory 

layer for the CQ-model shows the signature of the CQ-mechanism (after an output the corresponding 

trace is inhibited, which causes increase in activation for the remaining traces). 

Figure 6. Results of simulation 1. A. First recall latencies and inter-response times for the noise-less RS- 

and CQ-models. Note the increase in IRT for the RS-model and the decrease in IRT for the CQ-model. B. 

IRTs as a function of total recall and recall interval for the RS-model. C. IRTs as a function of total recall 

and recall interval for the CQ-model. 

Figure 7. Results of simulation 2. Comparison of small (thin line) and large (thick line) memory set sizes. 

A. First recall latency distributions. The two distributions overlap considerably. B. IRT distributions. 

Figure 8. Results of simulation 3. Comparison of normal selection threshold (thin line) and high selection 

threshold (representing Huntington disease; thick line). A. First recall latency distributions. The mean 

recall latency is slower for the HD-simulation. B. IRT distributions for normal and HD-simulation. 

Figure 9. Activation trajectories of the RS-model, with strong connection weight between memory and 

selection layer (left) compared to a baseline (right). Note the bursting behavior of the model despite 

equivalent mnemonic structure, which is due to not having a full selection in the selection layer (2 units 

are active simultaneously before the first response is made). 
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Figure 10. Results of simulation 4. Recall latency distributions for weak (solid line) and strong (dotted 

line) Wms. A. course-grained binsize (1000 time-steps), and B. fine-grained binsize (100 time-steps). Note 

the faster latencies with increased strength and the appearance of clustering with small binsize. 

Figure A1. Normalized relative frequency distributions for each of the four parameters and for each of the 

four models. From top to bottom: Wms, α, β, and threshold. The thick lines represent the distribution of 

the parameter values (shown on the x-axes) for which the corresponding model produced and IRT-

function with slope>0. The thin lines represent the distribution of the parameter values for which the 

corresponding model produced and IRT-function with slope<=0. A uniform distribution would be y=0.05. 

Note the strong influence of the self-recurrency (alpha) and lateral inhibition (beta) parameters. Note also 

that models implementing decaying response suppression (the two right columns) are less sensitive (flat 

line) to the values of the alpha and beta parameters than the models that do not implement a decaying 

response suppression (two left columns). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 

 



 comparing mechanisms of sequential selection 48

Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure A1 
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