echo issues
The echo command has had a long and contentious history. The controversy has revolved around two major issues:

- Sending a Newline at the end of the output line(s)

Should you always? If not, how does the user specify not to?

- Sending special characters (NL (\0012), BEL (\0007), ESC (\0033), etc.

Can you explicitly "echo" these characters? If so, how does the user specify them?

echo issues: Explicitly outputting a Newline
The first issue with echo is explictly controlling if a Newline is sent at the end of the line. There are two schools of thought on this:

- Use the option '-n' to indicate that a Newline should not be output.

- Use a special 'escape character' '\c' to indicate that a Newline should NOT be output.

Different versions of echo use one of these cases. (See the table at the end of this section).

Example:

ksh:
$ echo "Please enter a value: \c"
csh:
$ echo -n "Please enter a value: "
echo issues: Outputting special ASCII characters
The second issue with echo concerns allowing special 'escape characters' to be used to indicate that certain non-printable ASCII characters are to be output.

These escape characters are usually allowed completely or disallowed completely, depending on which version of echo you use.
For the versions that support escape characters, one can also output any ASCII character explicitly by puting a backslash-zero ('\0') followed by the three-digit OCTAL value representing the character into the echo argument. E.g.:

echo Ring the bell: '\0007'

The '\0' means "the next set of numbers are the octal value for a character; substitute that character for this entire string".

* Note that you must use quotes (single or double) around the string representing the \0xxx string. Otherwise the shell will interpret and remove the backslash as part of command line processing before the echo command starts.

The escape characters and their meanings are listed below.

echo escape characters
String
Octal equiv.
Function (ASCII name)
Comment

\a
\0007
Alert (BEL)

Rings terminal bell

\b
\0010
Backspace (BS)
Cursor left one

\c
(None)

Suppress Newline
Special; doesn't represent a character

\f
\0014
Form feed (NP or FF)
Clear; cursor to top left of screen

\n
\0012
Newline (NL or LF)
Cursor moves to left margin next line

\r
\0015
Carriage return (CR)
Cursor to left margin (SAME line)

\t
\0011
Tab (HT)

Horizontal tab (default 8 spaces)

\v
\0013
Vertical tab (VT)
??

\\
\0134
Backslash

Literal backslash character

The various echo commands
The echo command is the worst case of a command having multiple versions with different functionality in UNIX. These are the main distinct versions available:

SYS V behavior

sh

Built-in command

ksh

Built-in command

/usr/bin/echo
UNIX command

BSD behavior

csh

Built-in command

/usr/ucb/echo
UNIX command (BSD compatible version)

Some of these have slightly different behavior if the environment variable SYSV3 is defined.

Features of the various versions of echo

SYS V versions

BSD versions

Feature

sh built-in
ksh built-in
/usr/bin/echo
csh built-in
/usr/ucb/echo

-n option
N*

N

N*

Y

Y

Escape chars
Y* **

Y

Y*

N

N

* Only if SYSV3 is not set (which is the default) are the escape characters recognized;

if SYSV3 is set and exported the escape characters are not recognized, but '-n' is recognized.

** The sh built-in version of echo understands all the escape chararcters except '\a'.

Note the commands inherited from SYSV behave similarly, and the commands inherited from BSD (csh and /usr/ucb/echo) behave similarly. This shows clearly where the various versions originated.

** Note that if you do not specify which to use, you will get the version built into your shell.

* For this reason, it is recommended that scripts that are intended to be portable (work in multiple environments) avoid using echo entirely. Instead, use printf(1), which is a UNIX command, has only one version, and works the same everywhere it is implemented. It understands all the escape characterss, and also behaves almost identically to the C programming language's 'printf' library function.
