La materia y sus propiedades

La química actúa sobre la materia, que es todo aquello que nos rodea, ocupa un lugar y un espacio en el universo, y que somos capaces de identificar y conocer.
La materia presenta dos tipos de propiedades: propiedades extensivas y propiedades intensivas.

Glosario

Punto de ebullición: temperatura a la cual una sustancia pasa del estado líquido al gaseoso.
Calor específico: cantidad de calor requerida para elevar la temperatura de un gramo de una sustancia en un grado centígrado (1ºC).
Punto de fusión: temperatura a la cual una sustancia pasa del estado sólido al líquido.
Molécula: es una agrupación estable de átomos, unidos por un tipo de enlace químico llamado enlace covalente.

Las propiedades extensivas se relacionan con la estructura química externa; es decir, aquellas que podemos medir con mayor facilidad y que dependen de la cantidad y forma de la materia. Por ejemplo: peso, volumen, longitud, energía potencial, calor, etcétera. Las propiedades intensivas, en cambio, tienen que ver más con la estructura química interna de la materia, como la temperatura, punto de fusión, punto de ebullición, calor específico o concentración (ver glosario para estos tres últimos términos), índice de refracción, entre otros aspectos.

Las propiedades intensivas pueden servir para identificar y caracterizar una sustancia pura, es decir, aquella que está compuesta por un solo tipo de molécula (ver glosario), como, por ejemplo, el agua, que está formada solo por moléculas de agua (H2O), o el azúcar, que solo la conforman moléculas de sacarosa (C12H22O11).

Sólido, líquido y gaseoso

La materia normalmente presenta tres estados o formas: sólida, líquida o gaseosa. Sin embargo, existe un cuarto estado, denominado estado plasma, el cual corresponde a un conjunto de partículas gaseosas eléctricamente cargadas (iones), con cantidades aproximadamente iguales de iones positivos y negativos, es decir, globalmente neutro.

El estado sólido se caracteriza por su resistencia a cualquier cambio de forma, lo que se debe a la fuerte atracción que hay entre las moléculas que lo constituyen; es decir, las moléculas están muy cerca unas de otras.

En el estado líquido, las moléculas pueden moverse libremente unas respecto de otras, ya que están un poco alejadas entre ellas. Los líquidos, sin embargo, todavía presentan una atracción molecular suficientemente firme como para resistirse a las fuerzas que tienden a cambiar su volumen.

En cambio, en el estado gaseoso, las moléculas están muy dispersas y se mueven libremente, sin ofrecer ninguna oposición a las modificaciones en su forma y muy poca a los cambios de volumen. Como resultado, un gas que no está encerrado tiende a difundirse indefinidamente, aumentando su volumen y disminuyendo su densidad.

La mayoría de las sustancias son sólidas a temperaturas bajas, líquidas a temperaturas medias y gaseosas a temperaturas altas; pero los estados no siempre están claramente diferenciados. Puede ocurrir que se produzca una coexistencia de fases cuando una materia está cambiando de estado; es decir, en un momento determinado se pueden apreciar dos estados al mismo tiempo. Por ejemplo, cuando cierta cantidad de agua llega a los 100ºC (en estado líquido) se evapora, es decir, alcanza el estado gaseoso; pero aquellas moléculas que todavía están bajo los 1001C, se mantienen en estado líquido.

Cambios físicos y químicos de la materia

Aunque al mirar a nuestro alrededor podemos apreciar distintos estados de la materia (por ejemplo, una silla es materia en estado sólido, la leche un líquido y el humo de las fábricas es gaseoso), en la naturaleza ocurren infinitos cambios a cada instante.

Si tomamos, por ejemplo, un vaso con agua (estado líquido), observaremos que el agua ocupa el espacio interno del vaso. Luego, si colocamos en un recipiente el agua contenida en el vaso y la calentamos, veremos que en cierto momento comienzan a observarse burbujas en la superficie, y el agua en estado líquido pasa a ser vapor de agua (estado gaseoso). Este evento, que es común observar en nuestra vida diaria, corresponde a un cambio de estado de la materia.

El agua, tanto en estado líquido como en estado gaseoso, presenta la misma composición química (H2O). Los cambios de estado de cualquier material en los que su composición química permanece invariable se denominan cambios físicos.

Ahora, si tenemos agua mezclada con azúcar (agua azucarada) y la calentamos hasta evaporar toda el agua posible, en el recipiente queda el azúcar; es decir, se obtienen los materiales iniciales: agua (ahora en forma de vapor) y azúcar. Así, cuando mezclamos dos materiales y podemos separarlos por procedimientos físicos, entonces el cambio ocurrido también es un cambio físico. Otros tipos de cambios físicos pueden ser patear una pelota o romper una hoja de papel. En todos los casos podría cambiar la forma, como cuando cortas el papel, pero la sustancia se mantiene, es decir, el papel sigue estando ahí.

Pero existe otro tipo de cambio que sí modifica la estructura química de uno o más materiales. Es el que se conoce como cambio químico. Este sucede cuando el material experimenta una transformación en su estructura química, como consecuencia de su interacción o relación con la estructura química de otro material, transformándose ambas estructuras. Esto da como resultado la formación de un nuevo material con características diferentes a las iniciales; es decir, ocurrió una reacción química.

Glosario

Oxidación: reacción química en la cual el oxígeno participa como reactante e interactúa molecularmente con otra sustancia dando como resultado un producto oxidado.

En el experimento de la manzana se puede apreciar un cambio químico, ya que sus constituyentes externos reaccionaron con el oxígeno del aire y se produjo un oscurecimiento por la reacción de oxidación (ver glosario) o envejecimiento. Su estructura interna cambió y ya no es posible recuperarla por medios físicos, por ejemplo, cortar la parte oxidada, ya que solo se obtendría un tejido vegetal nuevo.

Las frutas, como las manzanas, pueden conservarse por refrigeración, que hace más lento el proceso de oxidación, o cubriéndolas, para que el oxígeno no actúe sobre la fruta. En el experimento, como habrás podido apreciar, el trozo de manzana cubierto con el plástico no se oscureció. Tampoco la parte de la manzana impregnada con jugo de limón se alteró. Es más, seguirá en buen estado, ya que el jugo de limón contiene vitamina C (ácido ascórbico), la cual actúa como antioxidante; es decir, evita que el oxígeno reaccione con la manzana y retarda el envejecimiento. El tercer trozo, al estar sin jugo de limón y sin plástico (es decir, al estar expuesto al oxígeno del aire) se oscureció, evidenciando una reacción de oxidación, la misma que corresponde a un cambio de estado de tipo químico.

En la naturaleza, la mayoría de las alteraciones que se producen son cambios químicos, como la combustión, la pudrición, la fermentación, la digestión de los alimentos, etcétera.

Sin embargo, también existen otros tipos de transformaciones químicas, como cuando se quema basura, o uno fundamental, que es la respiración, donde hay una reacción química.

Así como la manzana, otras frutas experimentan las mismas modificaciones, como, por ejemplo, el plátano y la palta. Tú mismo puedes repetir el experimento usando otras frutas o verduras, haciendo comparaciones y verificando lo que sucede. Incluso puedes invitar a tus amigos para que cada uno elija una fruta o verdura y después comparen y discutan los resultados de cada uno.

Así, aplicarás también el método científico (observación, problema, hipótesis y experimentación).

Oxígeno para la química

Antonio Lavoisier.

Al químico francés Antonio Lavoisier (1743-1794) se atribuye el descubrimiento del oxígeno, al comprobar que el aire está compuesto por este elemento y el nitrógeno.

Lavoisier, considerado uno de los fundadores de la química moderna, sostuvo que, para que se realice la respiración, no solo es necesaria la combustión de compuestos carbonados (como los azúcares), sino que se requieren otros elementos, descubriendo así que los seres vivos utilizan el oxígeno del aire para la combustión de los alimentos.

También estableció la ley de la conservación de la materia y realizó importantes trabajos sobre la nomenclatura química.

Fue guillotinado durante la Revolución Francesa por pertenecer a la nobleza.

 

Mezclando sustancias

Ya sabes que todo lo que existe en el universo está compuesto por materia. Esta, a su vez, se clasifica en mezclas y sustancias puras. Las sustancias puras comprenden un solo compuesto, y las mezclas son combinaciones de sustancias puras en proporciones variables o diferentes; por ejemplo, una mezcla de arena y sal.

Los compuestos están conformados por los elementos (como, por ejemplo, el hidrógeno y el oxígeno, que forman el agua), los cuales existen en los compuestos en una proporción definida, es decir, en cantidades suficientes que permiten que dichos elementos se mantengan siempre estables y que también impiden su separación por métodos físicos. Por ejemplo, si se hace reaccionar sodio (Na) con cloro (Cl2) se obtendrá Na1Cl1 exclusivamente y no sustancias tales como Na0.5Cl2.3 o mezclas raras.

Las mezclas se clasifican en homogéneas (soluciones) y en heterogéneas. En una mezcla homogénea no hay distinción de fases, es decir, de una porción de la sustancia pura. Es el caso, por ejemplo, del agua con alcohol, el agua azucarada o el agua con café, donde se observa una sola fase: la líquida. Además, en este tipo de mezcla los componentes se unen hasta el nivel molecular, de manera que no es posible distinguirlos. Por ejemplo: oxígeno en agua o sal en agua. También existen las soluciones sólidas (mezcla de metales), llamadas aleaciones.

En las soluciones hay dos sustancias involucradas: una que disuelve, solvente, y otra que se disuelve, el soluto. Cuando mezclamos agua (solvente) con azúcar, tenemos que cada molécula de azúcar (soluto) queda rodeada por varias moléculas de agua. Lo mismo sucede en otras soluciones. Por esta razón, una vez que han sido mezclados no podemos diferenciar a simple vista el soluto del solvente.

En cambio, en una mezcla heterogénea pueden distinguirse con facilidad las diferentes fases que forman la mezcla. Por ejemplo, el agua con arena. Aquí se forman dos fases: una fase sólida, conformada por la arena, y otra fase líquida, constituida por el agua. Otros ejemplos son el agua con aceite, sal y arena, entre otros.

Las mezclas pueden separarse en sus componentes por procesos físicos, mientras que los compuestos se separan en sus constituyentes por procesos químicos.
En cualquier caso, la mezcla de materiales es un proceso que utilizamos a diario, tanto en la cocina (al mezclar los ingredientes de una torta) como en las industrias altamente tecnificadas (como la farmacéutica). En la naturaleza también encontramos mezclas, como la sangre, la orina y el aire.

La familia del petróleo

 

 

Colorida separación

 

 

Filtrando el aire

 

 

La ensalada es una mezcla heterogénea, cuyos componentes pueden ser separados por medios físicos.


 

Un antiguo alambique usado para destilar alcohol.

 

            Mezcla, combinación y descomposición

Ahora que conocemos la clasificación de la materia, es importante diferenciar algunos términos muy comunes usados en química y que serán útiles cuando veamos las reacciones químicas.

Aparte de la definición y clasificación de las mezclas, es conveniente tener presente que a ellas se puede agregar dos, tres o más sustancias, en cantidades indefinidas. Al final de cualquier mezcla seguiremos teniendo las sustancias que agregamos y en las mismas cantidades, es decir, no surgirá nada nuevo. Es el caso de una ensalada, por ejemplo, la que solo es una mezcla de verduras o frutas, o del aire, que es una mezcla de gases, o de la sal disuelta en agua, que es una mezcla de agua y sal, al igual que el aceite y agua, que se pueden separar utilizando los medios adecuados.

Otro concepto que hay que saber es el de combinación, que es un cambio químico donde, a partir de dos o más sustancias, se puede obtener otra (u otras) con propiedades diferentes. Para que esto suceda, debemos agregar las sustancias que queremos combinar en cantidades perfectamente definidas. Además, para que se produzca efectivamente la combinación, también se necesitará liberar o absorber calor (intercambio de energía). Este calor se le puede suministrar, por ejemplo, con un mechero. Un ejemplo es el cobre, donde cierta cantidad de él reaccionará con el oxígeno del aire cuando se le acerque la llama de un mechero. Entonces se combinan el cobre y el oxígeno, y se formará óxido de cobre gracias a la energía proporcionada por el calor de la llama del mechero.

En esta reacción, el Cu y el O2 son los reactantes y el CuO es el producto de la reacción química.

Además de los mencionados anteriormente, la descomposición también es otro cambio químico, por medio de la cual se pueden obtener dos o más sustancias con diferentes propiedades, a partir de una sustancia compuesta (formada por dos o más átomos).

Un ejemplo es cuando se calienta óxido de mercurio y se consigue oxígeno y mercurio; o se hace reaccionar el dicromato de amonio para obtener nitrógeno, óxido crómico y agua.

En resumen, tanto en la combinación como en la descomposición, y con la necesaria intervención del calor (al liberar y absorber energía), al final del proceso tendremos sustancias distintas a las originales.

Separando mezclas

Hasta ahora hemos abordado diferentes tipos de mezclas y conocemos sus clases; pero también es importante poder reconocer los elementos que la integran, porque eso facilita su separación una vez que se han mezclado. Para este propósito, te mostraremos y explicaremos los distintos métodos de separación que existen y que se basan en las diferencias entre las propiedades físicas de los componentes de una mezcla. Algunas de estas propiedades son: punto de ebullición, densidad, punto de fusión, solubilidad, presión de vapor, etc.

Los métodos más conocidos de separación son: filtración, decantación y destilación.

La filtración consiste en retener partículas sólidas por medio de una barrera, la cual puede consistir en mallas, fibras, material poroso o un relleno sólido. Un ejemplo es hacer pasar una mezcla de arena con agua por una malla; en la malla queda atrapada la arena, mientras que en un recipiente recuperamos el agua.

Con el experimento de las uvas te debe haber quedado claro cómo funciona la filtración. En ese ejercicio pudiste observar cómo, después de exprimir manualmente las uvas en un recipiente de plástico y obtener el jugo, el colador actuó como una barrera que separó el jugo de uvas al caer este hacia el vaso, mientras que en la malla quedaron retenidas pepas y algunas fibras de la uva. De esta forma, quedaron aparte los componentes sólidos (pepas y fibra) de los líquidos (jugo).

Glosario

Densidad: propiedad de la materia que mide la relación entre la masa y el volumen de un determinado cuerpo.

 

 

Por otra parte, la decantación consiste en dividir los componentes que contienen diferentes fases, como, por ejemplo, dos líquidos que no se mezclan (agua y aceite). La condición básica para usar este tipo de separación es que exista una diferencia significativa entre las densidades (ver glosario) de las fases. Eso se puede comprobar claramente en el experimento del agua y aceite que te mostramos. Al principio se puede ver que se forman dos fases: una superior, en donde se ubica el aceite, y otra inferior, donde se encuentra el agua.

La explicación de por qué el agua está abajo es que es más pesada que el aceite o, en otras palabras, posee más densidad. Y el aceite, como es menos denso, se mantiene arriba. Así, se ha producido la separación de los componentes por decantación. Incluso, puedes lograr separar ambos líquidos si viertes cuidadosamente el aceite a otro tubo de ensayo o recipiente, de forma que en el primer tubo permanezca solo el agua de la mezcla, recuperando los componentes originales de ella.

Glosario

Punto de ebullición: temperatura a la cual una sustancia pasa del estado líquido al gaseoso.

 

 

Otro método de separación conocido es la destilación, la cual consiste en apartar los componentes de una mezcla basándose en las diferencias en los puntos de ebullición (ver glosario) de dichos componentes.

Un compuesto de punto de ebullición bajo se considera volátil, es decir, que puede convertirse más fácilmente en vapor, en relación con otros componentes de punto de ebullición mayor. Esto queda claro cuando se desea separar el alcohol del agua.

¿Sabías que?

El azúcar se disuelve mejor en té caliente que en agua fría, debido a que, por lo general, la solubilidad (la capacidad para disolverse) de un sólido aumenta con el incremento de la temperatura, y de esta forma obtendremos una mezcla homogénea.
Las peligrosas arenas movedizas son una mezcla que está conformada principalmente por agua y polvo de sílice.

 

 

El alcohol es más volátil que el agua (su punto de ebullición es cercano a los 78ºC, mientras que el de agua es más alto, de 100ºC); por lo tanto, al destilar una mezcla de partes iguales de estos líquidos, como el alcohol es más volátil que el agua, al calentar la mezcla se volatilizará (evaporará) más rápido que el agua, y podrá ser recuperado en otro recipiente. Después de que la temperatura aumente a 100 grados, se detiene el proceso y el agua queda en el recipiente inicial de la mezcla.

Podrás apreciar una situación similar en el experimento de destilación para separar el agua de la sal en una solución salina, es decir, agua salada. Al encender el mechero y calentar la olla que contiene la solución salina, el agua se va evaporando, y al llegar a la superficie de la tapa, que está colocada inclinada hacia el borde de la olla, se condensa. Debido a la inclinación de la tapa, las gotas de agua comienzan a precipitarse en el molde de vidrio. De esta manera se obtiene el agua, y en la olla se recobra la sal que inicialmente se utilizó para la mezcla

 

 

Ordenando los elementos químicos

 

 

El Sol es la principal fuente de energía para las reacciones químicas que ocurren en la naturaleza.


 

Cuando disfrutas de una rica torta, también estás saboreando el resultado de una compleja reacción química.


 

En los incendios, lo que se produce es una combustión, que es un tipo de reacción química.


 

 

¿Sabías que?

Se conocen unos 4 millones de productos químicos, de los que se utilizan normalmente unos 35.000.

 

 

            Reacciones químicas

Cada minuto, millones de reacciones químicas están ocurriendo a nuestro alrededor sin que nos demos cuenta. Algunas de ellas son producto de procesos naturales; otras son el resultado de la acción del hombre.

Ya vimos que el proceso de digestión de nuestro cuerpo involucra una serie de reacciones químicas, que buscan fraccionar el alimento en pequeñas partes para obtener la energía que requerimos para vivir. También sabemos que las plantas realizan una importante reacción química en la fotosíntesis (ver recuadro). Otra reacción química fundamental para la vida que se produce en el ambiente es la que ocurre cuando la atmósfera de la Tierra remueve los dañinos rayos ultravioleta del Sol.

En cuanto a las reacciones químicas producidas por el hombre, muchas de ellas se llevan a cabo en los laboratorios, donde los científicos las provocan con diversos fines: para crear nuevas medicinas, producir nuevos materiales o evitar la descomposición de alimentos, por ejemplo.

¿Pero qué es una reacción química? Si bien ya hemos dado una idea de ella, una reacción química consiste simplemente en romper o separar los componentes de una sustancia, para ocuparlos en la formación de una nueva sustancia. A esta se le llama producto y tiene características completamente diferentes a las de las sustancias originales, que estaban presentes antes de que se produjera la reacción química, y que son denominadas reactantes, porque son las que “reaccionan” para formar algo nuevo.

Para que una reacción química ocurra se requiere de energía. Las fuentes de esta energía pueden ser, entre otras, la luz, calor o electricidad.

El queque químico

Para ejemplificar una reacción química que sueles disfrutar, basta analizar el caso del queque. Para hacer uno se necesita, por lo general, mantequilla, leche, harina, huevo y azúcar. Todos ellos son los reactantes, las sustancias iniciales de la reacción química. Además, se requiere la energía en forma de calor -para acelerar la reacción-, la que es proporcionada por el horno encendido (sea eléctrico o a gas).

Luego de mezclar los ingredientes y cocinarlos en el horno, lo que obtenemos es un delicioso queque, que sería el producto. Este ya no tiene la apariencia ni el sabor de los ingredientes con que fue preparado. Es algo completamente nuevo, el resultado de una reacción química.

Si bien hay algunas reacciones químicas que son reversibles, la mayoría de ellas no lo son. Es decir, son irreversibles, lo que significa que, en este caso, una vez cocinado el queque, no es posible volver a obtener el huevo o la leche utilizados para prepararlo. De igual forma, una vez que has quemado la madera, ya no puedes volver a tenerla; solo quedan cenizas.

El fuego es el resultado de una reacción química llamada combustión. Para que la combustión ocurra se necesita un combustible, que puede ser: madera, petróleo, carbón o algún otro elemento similar que sirva para hacer fuego. También se requiere oxígeno, un gas presente en el aire que respiramos y el calor suficiente para encender el fuego. Si no hay más combustible o se ha acabado el oxígeno o el nivel de calor está muy bajo, entonces el fuego se apaga. Tanto el combustible como el oxígeno y el calor forman parte de los reactantes. La energía que se produce en forma de luz y calor a raíz del fuego, el vapor de agua y otros gases, como el monóxido de carbono, forman parte de los productos de la reacción química.

Otra forma de apreciar una reacción química es con el experimento del vinagre. Ahí se puede observar que, cuando cae el bicarbonato de sodio en el vinagre, se produce una reacción química, formándose un gas que infla el globo. El vinagre y el bicarbonato ya no están presentes como tales en la botella.

La química de la fotosíntesis

Una de las más importantes reacciones químicas que se producen en la naturaleza es la fotosíntesis. Por medio de este proceso, las plantas absorben la energía del Sol utilizándola para convertir el agua y el dióxido de carbono en su alimento y también en oxígeno, es decir, en compuestos orgánicos reducidos.

Para esto, es necesaria la participación de la clorofila, contenida en los cloroplastos de las células vegetales. La fotosíntesis se lleva a cabo en dos etapas, llamadas luminosa y oscura.

Donde más intensamente se desarrolla esta reacción química es en las hojas de las plantas verdes. Y el oxígeno que se libera es aprovechado por nosotros para respirar. De hecho, sin plantas y sin este proceso químico, simplemente nosotros tampoco existiríamos.

El flúor: un asesino

 

El flúor fue el último de los elementos químicos no metálicos que se preparó en estado libre. Desde que fue descubierto, en 1771, por el químico sueco Carl Wilhelm Scheele, pasaron cien años hasta que el químico francés Henri Moissan lo aisló, en 1886. Durante este período se realizaron numerosas tentativas fallidas para obtenerlo. Entre los que lo intentaron sin conseguirlo hay grandes nombres de la historia de la química, como Michael Faraday, Humphry Davy (descubridor del sodio, potasio, calcio y magnesio) y Joseph Gay-Lussac (descubridor del boro).

 

Humphry Davy.


El flúor es un gas de color verde-amarillento, altamente corrosivo y venenoso, de olor penetrante y desagradable. Es el elemento más reactivo de toda la tabla periódica. Se combina directamente, y en general de forma violenta, con la mayoría de los elementos. De ahí que algunos de los científicos que trataron de aislarlo murieran y la mayoría sufriera graves envenenamientos por el flúor y sus compuestos.

En todo caso, este elemento es nocivo siempre y cuando se encuentre en grandes cantidades. En pequeñas porciones, por ejemplo en la pasta de dientes, es benéfico.