Trabajo # 2
Estrategias
de Inversión
Valuación
de Activos Financieros
Participante: Melania La Rosa
Profesor:
Asdrúbal Lozano
En el trabajo anterior se estudió sobre las estrategias de inversión en la toma de decisiones, los tipos de inversiones, mercados financieros entre otros puntos. En este trabajo se pretende aprender sobre los procesos de evaluación financiera, es decir, aplicar a través de métodos, la forma de obtener el precio justo de la acción.
En diferentes países, existe una norma que intensifica el uso del valor razonable para el tratamiento contable de los instrumentos financieros, tales instrumentos serian:
a) Activos o pasivos financieros mantenidos para ser negociados
b) Inversiones mantenidas hasta su vencimiento
c) Préstamos y cuentas por cobrar originados por la empresa
d) Activos financieros disponibles para ser vendidos
Dentro de esta norma, se maneja que el costo amortizado es el importe por el que un activo o pasivo financiero fue valuado inicialmente, menos los pagos del principal, más o menos, la amortización acumulada de la diferencia entre dicho monto inicial y el monto al vencimiento y menos cualquier reducción por desvalorización ( Por CPC. Pablo Elías Maza) http://cpn.mef.gob.pe/cpn/articulos/NIC39.htm
Terminologías
importantes
Valor
Intrínseco
Valor de una compañía, que surge de la aplicación de un modelo de valuación. Es
el valor que para el analista fundamental debería tener la empresa estudiada.
Valor
de Libros (Book Value)
Valor contable de una acción. Surge de dividir el Patrimonio Neto de la empresa
por la cantidad de acciones.
Valor
Nominal
Importe originalmente emitido de un bono.
Valor
Presente
Valor hoy equivalente de un monto futuro. Se calcula descontando del valor
futuro el importe que surge de aplicar la tasa de descuento en proporción al
plazo. El valor presente es menor que el valor futuro. La diferencia entre
ambos es la tasa de interés.
Volatilidad
Término utilizado para referirse al grado de fluctuación e impredecibilidad de
un precio en el mercado. Medida del riesgo de un activo.
Volumen
Cantidad de unidades de acciones comercializadas durante un período. En algunas
Bolsas se lo utiliza para referirse al monto operado en el día.
Suma de dinero colocada en el mercado financiero para
obtener una
rentabilidad
futura y la forma o representación de esas colocaciones. Tenemos dos tipos:
Acciones, son activos financieros que representan una
participación en la propiedad
de la
empresa.
Obligación, activo financiero que representa una participación en
un crédito de la
empresa que
lo ha emitido.
El
accionista
es propietario mientras que el obligacionista es acreedor.
En cuanto
al plazo de amortización, la acción no tiene, es de tiempo indefinido,
mientras
que la obligación tiene establecido un determinado plazo de amortización,
llegado
el cual se
devuelve su importe.
En cuanto a
la remuneración, la acción reporta dividendo (participaciones en los
beneficios
de la empresa), mientras que la obligación reporta el interés establecido en la
misma
(también llamados cupones).
¿ Cómo reconocer un
Activo Financiero o un Pasivo Financiero?
Reconocimiento Inicial: La empresa reconoce UN ACTIVO O PASIVO
FINANCIERO cuando se convierte, en parte obligada por lo estipulado en el
contrato del respectivo instrumento financiero.
Bajas de un Activo Financiero: Se da de baja cuando se
pierde el control de los derechos contractuales de dicho activo.
Reconociendo como ganancia o pérdida la
diferencia entre:
a) El
valor en libros del activo
b) La
suma de: i) los importes recibidos y ii) cualquier ajuste anterior llevado a
patrimonio para reflejar su valor razonable.
Baja de un Activo Financiero Acompañado de
la Aparición de un Nuevo Activo o Pasivo Financiero: Se debe reconocer el nuevo activo o pasivo
financiero, a su valor razonable y reconocer una ganancia o pérdida, en base a
la diferencia entre: a) el importe de la venta; y b) el valor en libros del
activo financiero vendido, más el valor razonable del nuevo pasivo asumido,
menos el valor razonable del nuevo activo adquirido y más o menos cualquier
ajuste anterior llevado a patrimonio para reflejar el valor razonable de dicho
activo.
Baja de un Pasivo Financiero Se
debe dar de baja a un pasivo financiero, cuando la obligación haya sido
cancelada o expirada.
Medición Inicial de los Activos y Pasivos
Financieros
Al hacer el reconocimiento inicial de una
activo o pasivo financiero, la empresa debe medirlo a su COSTO.
Medición Posterior de un Activo
Financiero.- Después del reconocimiento inicial de los
activos financieros, la empresa debe valuarlos a su VALOR RAZONABLE, salvo las
siguientes categorías de activos financieros: a) préstamos y cuentas por cobrar
originados por la empresa y no mantenidos para ser negociados; b) inversiones
mantenidas hasta su vencimiento; y c) todos los activos financieros que no
tengan precio cotizado en mercado activo y cuyo valor razonable no pueda ser
valuado de modo confiable. Estas categorías de activos financieros, y las de
vencimiento fijo, se valúan a su COSTO AMORTIZADO. Los que no tienen un
vencimiento fijo se valúan al COSTO.
Medición Posterior de un Pasivo
Financiero: Después del reconocimiento inicial, se deben
medir a su COSTO AMORTIZADO.
Ganancias y Pérdidas Provenientes de la
Revalorización del Valor Razonable, En este caso la
empresa debe tratarlo como sigue: a) la ganancia o pérdida proveniente de un
activo o pasivo MANTENIDO PARA SER NEGOCIADO debe incluirse en la utilidad o
pérdida neta del ejercicio; y b) la ganancia o pérdida proveniente de un activo
financiero DISPONIBLE PARA SER VENDIDO debe: i) incluirse en la utilidad o
pérdida neta del ejercicio o ii) reconocerse directamente en el patrimonio
hasta que tal activo financiero sea enajenado o hasta que se determine que se
ha desvalorizado, debiendo en tal momento la ganancia o pérdida cumulada que
anteriormente había sido reconocida en el patrimonio, incluirse en la utilidad
o pérdida neta del ejercicio.
Ganancias y Pérdidas Provenientes de los
Activos y Pasivos Financieros que no se han Revalorado a su Valor Razonable
Para los activos y pasivos financieros
LLEVADOS A SU COSTO AMORTIZADO, las ganancias o pérdidas se reconocen en los
resultados del año cuando el activo o pasivo financiero ha sido dado de baja o
se ha desvalorizado.
Deterioro del Valor e Incobrabilidad de un
Activo Financiero: En este caso, la empresa debe estimar el
monto recuperable de dicho activo y reconocer cualquier pérdida por
desvalorización.
Activos Financieros Contabilizados a su
Costo Amortizado: El
monto de la pérdida producida por la desvalorización o malas deudas será la
diferencia entre el monto contable del activo y el valor actual de los flujos
de efectivo futuros. Si en un subsiguiente ejercicio el monto de la pérdida por
desvalorización o malas deudas disminuye, y tal disminución puede relacionarse
con un hecho ocurrido después de la amortización, la reducción del activo
financiero debe reversarse, sea directamente, o ajustando la pertinente cuenta
correctora.
Activos Financieros Revalorados a su Valor
Razonable Si la pérdida proveniente de un activo
financiero que se ha llevado a su valor razonable ha sido reconocida
directamente en patrimonio y haya evidencia que el activo está desvalorizado,
la pérdida neta acumulada que se había reconocido en patrimonio debe
trasladarse a la utilidad o pérdida neta del ejercicio, aún cuando el activo
financiero no haya sido dado de baja. Si en un subsiguiente ejercicio el valor
razonable o el monto recuperable del activo financiero llevado a su valor
razonable se incrementa, tal pérdida debe reversarse llevando el monto de la
reversión a la utilidad o pérdida neta del ejercicio.
En cuanto a
la Valoración de un Activo
Financiero existen dos tipos de análisis:
de los títulos.
Análisis técnico: Estudia la
serie histórica de precios del activo con el objeto de encontrar indicios sobre
su comportamiento futuro.
Según los fundamentalistas todo
activo financiero va a tener un valor
teórico intrínseco que va a depender de la capacidad
de generar renta y riqueza de la empresa
emisora.
La capacidad de generar renta de una empresa depende
de múltiples factores:
Entorno General: afecta a todas las empresas,
Dimensión Socio – cultural, Dimensión económica, Dimensión tecnológica,
Dimensión político legal
Entorno Específico: afecta al sector. (las 5 fuerzas de Porter).
Competidores actuales, Competidores potenciales,
Productos sustitutivos, Proveedores y
Clientes.
Otra cosa
es el precio del título en el mercado, que no es lo mismo que el valor
intrínseco.
Esto es así porque los mercados de capitales son imperfectos. Esta diferencia
nos va a determinar la estrategia de inversión a seguir.
p0 = Valor teórico, intrínseco o precio de equilibrio.
Pm = Precio de mercado o cotización en el mercado.
Si p0 > Pm Comprar
Si p0 < pm
Vender
si lo tienes y No comprar si no lo
tienes.
Lo
importante en el mercado de valores es la anticipación, informarte e intervenir
antes que los demás.
Valor Intrínseco de un Título o Valor Teórico
Es aquel importe en que el mercado valoraría el activo
financiero si dispusiera de
toda la
información relevante. Es aquel importe en que la rentabilidad esperada por el
inversor al comprar ese activo cubre estrictamente la rentabilidad requerida
por el mercado para ese activo dadas las características del mismo y las
condiciones generales del mercado.
Rentabilidad
Esperada.
Es la rentabilidad que obtendría un inversor si compra
hoy el activo
financiero. Es la TIR de esa inversión. Se denomina por r.
Es la rentabilidad mínima que ha de tener la inversión
para que un
inversor esté dispuesto a comprar el activo. Se denomina por k.
Si el precio de mercado es igual a
r, entonces la rentabilidad esperada coincide con la rentabilidad requerida.
Según el Análisis Fundamental el valor de un activo financiero va a ser igual
al valor actual de los flujos de caja que sea capaz de generar el activo
financiero, incluido el precio de venta, descontados a una tasa adecuada en
función de la inflación y del riesgo asumido con el activo financiero.
Po = Valor Intrínseco.
Q1, Q2,
..., Qn son los flujos de caja generados por el
activo financiero.
Pn = Precio de venta
K = tasa rentabilidad requerida.
Q1
Q2 Qn Pn
Po = 1+k (1+k)2 (1+k)n
(1+k)n S Qi/(1+k)i
+ Pn/(1+k)n
El valor
intrínseco de una obligación será igual a:
I1 I2 In
Pn
Po =
+ +...+
+
1+k (1+k)2
(1+k)n (1+k)n S Ii/(1+k)i
+ Pn/(1+k)n
donde In =
valor de los intereses periódicos o cupones.
El plazo de
la obligación se denomina plazo de amortización.
Nos importa
a la hora de calcular cupones, Pn, etc. el valor nominal.
Ejemplo:
Cual es
la rentabilidad esperada por un inversor que compre ahora ese título por
1307 y
lo venda por 1287 dentro de 1 año.
El Valor
Intrínseco de un título no varía mientras no varíe la rentabilidad requerida.
Si la
rentabilidad requerida cambia, cambia el valor intrínseco.
Relación
entre I y K
Si I = K entonces El valor intrínseco P = VR todos los años.
Si I <
K entonces P < VR y va creciendo hasta coincidir con el VN el último año.
Si I >
K entonces P > VR y disminuye
paulatinamente hasta coincidir con el VN en el último
año.
Ejemplo
Obligaciones
con Pago
Son
aquellas obligaciones que pagan intereses en periodos inferiores al año.
(semestral,
trimestral, mensual).
El periodo
de actualización va a ser inferior al año.
A la hora
de calcular su valor, el horizonte temporal en este tipo de obligaciones
es n x m.
Siendo:
n: número de años a plazo de
amortización de la obligación
m: número de periodos de pago de
intereses comprendidos en un año.
Hay que
emplear la tasa de actualización correspondiente al periodo de pago de
intereses:
Km = K / M
Ejemplo:
Una
obligación de nominales de 10.000 ptas. al 14% anual nominal con pago de
intereses semestral. ¿cuál será su valor intrínseco si su vencimiento es dentro
de tres años y la tasa requerida para el inversor es del 12% nominal anual?.
Si eres el
que pide el préstamo nos interesa que los periodos sean grandes y viceversa.
Bonos o
Cupón Cero
Son bonos
que no producen pagos periódicos de intereses, hay un pago final que es
el valor de
reembolso.
0
0
...
0 Pn
Po = Pn
/(1+k)n
Estos son
los bonos que se emiten al descuento.
Ejemplo: Telefónica emitió unos pagarés de
1 millón de ptas. nominales cuyo reembolso se
realiza
dentro de tres años siendo emitidos al descuento a un tipo de interés del 12%.
¿cuál
es el
precio de emisión (valor intrínseco) en el momento actual?.
Po =
1.000.000 / 1.123 = 711780 ptas.
Obligaciones
con pago Perpetuo de Interesas
El pago de
intereses tiende al infinito, por consiguiente podemos afirmar que:
Po = I / K
Ejemplo: El Banco de Inglaterra emitió unos
bonos que garantizaban el pago en cupones
para
siempre, siendo el cupón de 50 libras anuales de forma perpetua. Si la tasa
requerida
por el
inversor es del 10% ¿cuál será el valor intrínseco del bono?.
Po = 50/0.1
= 500 libras.
¿Qué
ocurre cuando varían los tipos de interés?
Las
obligaciones son valores de renta fija, pero si les afectan los tipos de
interés. La
rentabilidad
requerida por el mercado ha subido, entonces baja el precio y viceversa. A
esto se le
denomina “riesgo del tipo de interés”. Si suben los tipos de interés el
tenedor de
un título
de renta fija sufrirá una perdida y si los tipos de interés del mercado bajan,
el
tenedor del
título obtendrá un beneficio.
Estas
relaciones fueron formalizadas en los años 60 por Malhel y titulados:
Teoremas
sobre los cambios en el precio en los títulos de renta fija.
1. Los precios y los tipos de interés o rendimientos
se miden de forma inversa.
2. Los títulos con mayor plazo de vencimiento
experimentan mayor alteración en sus
precios que los títulos a corto plazo al variar los
tipos de interés.
Este riesgo
de tipo de interés se emite a través del concepto Duración (D), que relaciona
los cambios
en el precio con los cambios en el tipo de interés.
ro = tasa interna de rentabilidad del
bono antes de la variación del tipo de interés.
r1 = tasa interna de rentabilidad
después de la variación.
Po = precio antes de la variación
P1 = precio después de la variación
Duración
El concepto de Duración sirve para pequeñas variaciones en
los tipos de interés, es decir, sirve para predecir la variación en el precio
de un bono cuando la variación de los tipos de interés es pequeña.
Cuando la variación de tipos de interés es muy grande,
utilizando la duración se
cometen errores grandes. Estos errores se producen
porque la relación entre el precio de un
bono y la TIR no es lineal sino convexa. Se utiliza
sobre todo para la cobertura de carteras
(Conjunto de títulos de un mismo individuo).
Es la relación que existe entre los
tipos de interés y los plazos. Concretamente la estructura temporal de tipos de
interés es la función que relaciona los tipos de interés de contado con sus
respectivos plazos.
Tipos de Interés de Contado:
son los
tipos de interés derivados de la compra y
mantenimiento hasta el vencimiento de un bono cupón
cero.
Utilizamos bonos cupón cero porque
intentamos relacionar cada tipo de interés con
su plazo, por tanto para que esa relación no se
desvirtúe utilizamos los bonos cupón cero.
Valoración
de las Acciones Preferentes
Son títulos
que están a medio camino entre obligaciones y acciones. En caso de
existir
beneficio dan derecho a un dividendo fijo y regular, parecido a los intereses o
cupones de las obligaciones. Se le denomina Dividendo Preferencial.
Dp
Po = T /
K entonces las Obligaciones
Perpetuas son
Po = Dp /
Para la valoración de las acciones ordinarias
utilizaremos también el Análisis
Fundamental. Nos encontraremos ante un problema y es
que mientras que conocemos en las obligaciones los cupones con exactitud, en
las acciones no conocemos los dividendos.
Además sobre los dividendos existen expectativas de
crecimiento.
Tenemos dos métodos:
Método
basado en Dividendos Futuros :Aplicando la regla general, tenemos dos tipos de
flujos de caja: Dividendo y Precio de
venta de la acción
El valor
intrínseco será igual al valor actual de los dividendos futuros y del precio de
venta y eso
es igual que el valor actual de los dividendos futuros solamente.
Suponemos
una acción que paga un dividendo D1 y al cabo de un año la vendemos
por P1,
entonces
Po = (D1/1+K)+ (P1/1+K)
Lo mismo
con el año 2:
sustituimos
y:
Po =
(D1/1+K) + (D2+P2)/(1+K)2
P1 =
(D2/1+K) + (P2/1+K)
El problema
será calcular los dividendos. Hay tres tipos:
Dividendos
constantes o
de crecimiento cero, tenemos el mismo caso que en las acciones
preferentes
o en las obligaciones con cupones perpetuos.
Po = D / K
-
Dividendos
crecientes a una tasa constante:
Po = Di /
(K – g)
-
Dividendos
con crecimiento variable. En este caso no hay posible simplificación:
Po = D1/1+K + D1(1+g1)/(1+K)2
+ ... + D1(1+g1)...(1+gn)/(1+K)n
Llegado un
tiempo asumiremos que crece a una tasa continua de forma perpetua.
Cálculo de
la Tasa de Crecimiento “g” de los dividendos.
Estimar:
Va a
depender de la tasa de crecimiento de g
Beneficio
que reporta la empresa a los accionistas en efectivo.
Beneficio
que retenga la empresa.
Rentabilidad
que sea capaz de generar la empresa con esa retención.
g = (1 - g) x ROE
donde b =
tasa de reparto de dividendos
(1- b):
parte de los beneficios que reparte la empresa à tasa a la que la empresa retiene
beneficios.
ROE: BN/RP significa
Rentabilidad de los recursos propios.
Suponemos que la tasa de retención de beneficios es
igual todos los años, la rentabilidad de los beneficios retenidos es igual a la
rentabilidad financiera y que los beneficios crecen a una tasa constante.
Método
basado en el PER
Precio
acción
PER=
BPA
Hay
empresas que no reparten dividendos dadas sus expectativas.
Precio
acción = PER x BPA (Beneficio por acción)
Se trata de
estimar el PER y así obtener una estimación el precio de la acción. El PER
no es el
real sino el estimado.
El PER se utiliza
mucho en el ámbito bursátil y presenta una estimación del precio
normalizado,
ya que se usa para todas las acciones que cotizan en bolsa.
Ventajas:
1. Es
una forma de comparar los distintos precios de las acciones (por la
normalización).
2. Es la
única forma para estimar el precio de acciones que no aportan dividendos.
3. Es
más fácil estimar el PER que estimar los dividendos futuros.
Valuación de los nuevos
Bonus Por
Iván Aftalión y Erich Mones Ruiz “Ofrecemos un método de
valuación de los nuevos bonos nominados en pesos comparable con la valuación
tradicional de los bonos nominados en dólares.”
“A partir de la sanción
del decreto 214/2002 donde se determinó la pesificación “de todas las
obligaciones de dar sumas de dinero que se encuentran regidas bajo leyes
argentinas”- y su respectivo ajuste según el Coeficiente de Estabilización de
Referencia (CER)- quedó establecido un nuevo mecanismo de indexación para un
vasto conjunto de operaciones financieras que fueron re-nominadas en pesos. Dicho
ajuste busca compensar aunque con un pequeño rezago la inflación del
índice de precios al consumidor. El presente informe tiene por objeto
determinar un marco teórico para la valuación de varios activos financieros
indexados por dicho coeficiente que sea equivalente, consistente y comparable
con el criterio de valuación que se utiliza para descontar flujos de pagos en
dólares.
Posteriormente
ofrece una descripción de las alternativas vigentes para el tenedor de un
depósito reprogramado con sus ventajas y desventajas, y seguidamente brinda una
valuación de los bonos ofrecidos a los depositantes reprogramados a la luz de
una experiencia histórica similar como fue la emisión del Bonex 89. Finalmente
contrastamos nuestros supuestos de valuación para el bono en pesos según la
experiencia internacional en materia de depreciaciones cambiarias e inflación.
Marco Teórico para la
valuación de activos en pesos indexados por CER
A la hora de determinar
un criterio de valuación de una estructura de pagos en pesos que sea
consistente y comparable con el criterio de valoración de un flujo de pagos en
dólares debemos reconocer lo siguiente: el rendimiento requerido en pesos una
vez ajustado por la depreciación esperada debe ser igual al rendimiento
requerido en dólares a igual riesgo crediticio del emisor. Dado que la
depreciación esperada la podemos descomponer en dos elementos: (a) tasa de
inflación esperada y (b) margen entre la depreciación y la inflación (que como
dijimos anteriormente es seguida por el CER), podemos plantear las siguientes
relaciones:
(1)
( 1+ R$ ) = ( 1 + RU$S ) * ( 1 + Depr. )
(2) ( 1 + Depr. ) = ( 1
+ CER ) * ( 1 + Mg. )
R$ : tasa de
rendimiento anual requerida en pesos
RU$S : tasa de
rendimiento anual requerida en dólares
Depr.: tasa de
depreciación esperada anual
Mg.: margen requerido
anual
Esto es, el rendimiento
requerido para un activo (bono) en pesos debe ser igual al requerido para un
activo en dólares una vez considerada la expectativa de depreciación. Asimismo,
como se desprende de la ecuación (2), el margen depende del diferencial entre
la depreciación y el CER medido en términos de tasa anual.
En un ejemplo
hipotético, caso de un bono cupón cero en pesos a un año de plazo cuyo capital
se ajuste a través del CER, la valuación del mismo como vemos en el siguiente
ejercicio dependerá únicamente de la tasa de interés en dólares (RU$S) y del
Margen (Mg.) cualquiera sea el nivel del CER y de depreciación esperada del
período.
Valor Presente Bono en
Pesos = 100*(1+CER) / (1+R$)
=
(100)*(1+CER) / ((1+RU$S)*(1+Depr.))
=
(100)*(1+CER) / ((1+RU$S)*(1+CER)*(1+Mg))
(3) Valor Presente Bono
en Pesos = 100 / ((1+RU$S)*(1+Mg))
Con esto, observamos
que la valuación de los activos financieros que se ajustan vía el CER es
función de la expectativa que se tenga respecto del diferencial entre la
depreciación y el CER y de la tasa requerida para activos en dólares. Como
corolario de esto, resulta inapropiado pensar en el rendimiento en pesos de un
activo indexado por CER ya que se desconoce el nivel de este último durante el
plazo del vida del activo, al tiempo que es irrelevante a la hora de hallar el
valor presente del activo en cuestión.
Alternativas para un
depósito reprogramado
Los tenedores de un
depósito reprogramado (originariamente constituido en pesos o en dólares)
tienen la alternativa de permanecer dentro del esquema de reprogramación
original establecido en la Comunicación “A” 3467 del BCRA o bien optar por un
bono del gobierno (depende del caso en pesos o en dólares) según lo determinado
por el decreto 494/2002.
Así, las alternativas
son las siguientes:
(I) Depósitos
reprogramados constituidos originariamente en pesos: alternativas.
a) Permanecer en
el esquema de reprogramación original establecido en la Comunicación “A” 3467
la cual posee el siguiente cronograma de devolución y características:
Importes Hasta $10.000:
4 cuotas mensuales a partir de marzo de 2002
Desde $10.000 hasta
$30.000: 12 cuotas mensuales a partir de agosto de 2002
Más de $30.000: 24
cuotas a partir de diciembre de 2002
Tasa: 7% anual pagadera
mensualmente
Desafectación:
(i) para el pago de
remuneraciones del personal en relación de dependencia
(ii) para el pago de
obligaciones de cualquier naturaleza con el Estado.
(iii) para la
cancelación total o parcial de financiaciones otorgadas hasta el 5 de enero de
2002 con saldos reprogramados dentro de la misma entidad, aunque los clientes
no sean los titulares de los depósitos reprogramados (endoso).
(iv) transferibilidad
entre bancos mediante su aplicación al pago de compra de inmuebles o vehículos
0 km.
b) Optar por
recibir un bono del gobierno nacional en pesos cuyo capital ajusta a través del
CER con una tasa de interés del 3% y vencimiento el 3 de febrero de 2007 (plazo
de 5 años) con amortizaciones en 16 cuotas trimestrales iguales a partir de
mayo de 2003. Dicha opción rige hasta el 15 de abril de 2002 inclusive.
(II) Depósitos
reprogramados constituidos originariamente en dólares:
Alternativas
a) Permanecer en
el esquema de reprogramación original establecido en la Comunicación “A” 3467
la cual establece: Importes Desde $1.200 hasta $7.000: 12 cuotas mensuales a
partir de enero de 2003 Desde $7.000 hasta $14.000: 12 cuotas mensuales a
partir de marzo de 2003 Desde $14.000 hasta $42.000: 18 cuotas mensuales a
partir de junio de 2003 Más de $42.000: 24 cuotas a partir de septiembre de
2003
Capital: Se ajusta cada
una de las cuotas de capital por el valor del índice CER.
Tasa: 2% anual pagadera
mensualmente sobre saldos de capital ajustados vía el CER.
Desafectación:gual que
en el caso de reprogramados de depósitos constituidos originalmente en pesos.
b) Optar por
recibir entre (b1) hasta U$S30.000 de valor nominal total de: (i) un bono del
gobierno nacional en dólares con tasa de interés de 2% y vencimiento el 3 de
febrero de 2012 y/o (ii) un bono del gobierno nacional en dólares a tasa libor
más 1% capitalizable hasta su vencimiento el 3 de febrero de 2012.
(b2) Un bono del
gobierno nacional en pesos con las mismas características del caso de
reprogramados de depósitos constituidos originalmente en pesos, sin límite de
monto. Ambas opciones no son excluyentes entre si y se encuentran disponibles
hasta el 15 de abril de 2002.
“Ventajas y
Desventajas”
A
primera vista, resulta claro que para el caso del depositante reprogramado
originariamente de una imposición en pesos, la alternativa de permanecer en el
esquema de reprogramación original si bien es positiva en términos del tiempo
de recupero del dinero, no lo es en términos de cobertura frente a la
depreciación de la moneda. Dado que dicho esquema no posee ningún ajuste del
capital por intermedio del CER o cualquier otro indexador, esta carencia puede
ser muy perjudicial a los intereses del depositante y por ello la alternativa
del bono en pesos indexado por CER puede ser preferible según la
cirscunstancia.
En
el caso de depositantes reprogramados originariamente de una imposición en
dólares creemos que la mejor alternativa entre las enumeradas es el bono en
dólares a tasa del 2%. Esto se debe a que su precio de salida va a ser mayor al
de su par a tasa libre más 100 pbs. (en el caso que el ahorrista prefiera un
bono capitalizable es preferible optar por el bono a tasa fija y luego venderlo
en el mercado y comprar el bono capitalizable obteniendo mayor cantidad de
nominales). Sin embargo, en el caso de montos superiores a los U$S30.000
originales, la alternativa entre la reprogramación según el esquema original o
el bono en pesos dependerá del cronograma de devolución del depósito según el
monto del mismo. Así, para el caso de depósitos superiores a $42.000, el plazo
promedio de recupero del capital (vida promedio) es similar para ambos casos
(2,5 años en el caso del depósito reprogramado versus 3 años en el caso de
bono). Así, dado que la tenencia del bono implica la posibilidad de liquidez
inmediata y a un precio transparente, a la vez que también posee un cupón de
interés superior, vemos como preferible hacer uso de la opción disponible.
En
todos los casos debe tenerse presente la posibilidad de utilizar los casos de
desafectación disponibles: compra de bienes registrables, pago de impuestos
(falta reglamentar) o endoso dentro de la misma institución financiera. En este
último, la falta de transparencia y profundidad en la formación de los precios
para este tipo de transacción debe tenerse presente a la hora de tomar una
decisión por este camino.
Valuación de los nuevos
“Bonus”
A
la hora de establecer un precio tentativo al cual podrían cotizar los nuevos
“Bonus” podemos utilizar los niveles de referencia que nos ofrece la historia.
La emisión del Bonex 89, que tuvo fecha de emisión el 28 de diciembre de 1989 y
comenzó a cotizar los primeros días de 1990, nos sirve a estos efectos. Como
podemos observar en el siguiente gráfico, dicho bono tuvo un precio de
cotización inicial de U$S 42 que luego de las primeras ruedas se redujo hasta
alcanzar niveles inferiores a U$S 30. Esto se puede explicar por la venta
inicial de tenedores que requerían hacerse de liquidez inmediata.
Terminado
dicho efecto, la evolución fue positiva (las sucesivas caídas verticales que
muestra la línea del precio se debe a las amortizaciones).
Con
esta referencia y conocidas las estructuras de pagos de los 3 bonos en cuestión
podemos determinar un rango de precios indicativos para los mismos. Según lo
expresado en la ecuación (3) de la primera parte de este informe, para valuar
el bono en pesos indexado a través del CER la tasa de descuento es 1900 puntos
básicos por encima del rendimiento promedio de la curva de bonos americanos de
similar plazo (a efectos de este ejercicio 3,5%) que arroja una tasa de
rendimiento en dólares requerida (RU$S) de 22,5%, al cual se le debe sumar el
diferencial (margen) entre la depreciación y el CER en términos anualizados.
Así,
según lo que se asuma de dicho diferencial obtendremos distintos valores de
este instrumento. Por tanto, si al cabo de 3 años (que es el plazo promedio de
vida de este bono) se asume que la depreciación superará al CER en un 33,3% de
su valor final, el margen anual a exigir será el promedio geométrico de dicho
diferencial, que bajo este supuesto sería de 10% ó 1000 puntos básicos en tasa
anual. De esta manera la tasa de descuento a requerir para este instrumento
sería 34,75% según resulta de la siguiente expresión:
Rendimiento
Requerido = (1+RU$S)*(1+Mg.) - 1= (1+22,5%)*(1+10%) - 1 = 1.3475 - 1 = 34,75%
Llegamos así a poder
valuar los 3 “Bonus” de una manera comparable
Valuación
de Acciones.
Modelo
de Gordon y Shapiro
Luego
de haber hallado el coste de los recursos propios de la empresa, vamos a
aplicar la fórmula de Gordon y Shapiro: método sencillo que se utiliza para
hallar el valor de las acciones de una empresa. Su expresión general relaciona
las siguientes variables:
Va = Div1/k-g = (Divo * (1+g))/k-g
Siendo:
Va: valor de la acción de la empresa
Div1:
dividendo por acción que espera obtener la empresa en el próximo año
Divo:
dividendo por acción que obtiene la empresa este año
k:
coste de los recursos propios de la empresa (CAPM)
g:
tasa de crecimiento a perpetuidad del dividendo por acción
Modelo de valuación para los dividendos con crecimiento cero.
Este
modelo se aplica cuando se espera que los pagos de dividendos futuros
permanezcan constantes para siempre. La expresión matemática es:
VP = Valor presente descontando.
D =
Dividendo por acción.
ke:
= Tasa de rendimiento requerida
sobre la inversión
Métodos
de Valuación de una Inversión Financiera.
La valuación de los activos financieros ha sido un tema de
estudio por diferentes autores. Según estos métodos, se obtiene el valor justo
de cada Activo. De esta manera, se puede determinar a que precio se puede
negociar el instrumento para obtener los mejores beneficios a futuro.
Valor del dinero en el
tiempo.
Línea de Tiempo de Flujo de
Efectivo
La línea de tiempo de
flujo de efectivo es una representación gráfica que se utiliza para analizar el
valor del dinero a través del tiempo:
El tiempo está representado en esta línea, expresado
por el cero en el día inicial, el tiempo 1 equivale al periodo que se cuenta
desde el día inicial hasta el final del periodo 1. La tasa de interés se coloca arriba de la línea de tiempo y los
flujos de efectivo se colocan debajo de la línea de tiempo en cada una de las
marcas de final de periodo. El gráfico
de ejemplo representa en flujo de salida de efectivo por una cantidad de 1000
al inicio del periodo señalado con un signo (-) negativo, si no aparece el
signo (-), significa que el flujo es de entrada.
El Valor
Presente es el “valor actual de un flujo de efectivo futuro o una serie de
flujos de efectivo.” Se puede
representar por:
VP = VFn [1/(1+r)n]
en donde el
Valor Futuro es el “valor hasta el cual crecerá un flujo de efectivo o una
serie de flujos de efectivo a lo largo de un periodo determinado, cuando este
se capitaliza a una tasa de interés específica.” Se puede representar por:
VF = VPn
(1+r)n
VP: Valor Presente
VF: Valor Futuro
n: periodo de tiempo
r: tasa de interés
Valor Presente de una Anualidad.
Supone
el cálculo de la valoración en el momento presente de un flujo de capitales
futuros que se perciben en varios períodos. Desde la perspectiva financiera
existen multitud de tipos de anualidades. Aquí solo se dará una formulación del
valor presente válida sólo para las anualidades constantes, inmediatas,
temporales y pagables luego y con ley financiera compuesta:
Donde:
A:
el valor de la anualidad
i:
Tasa de interés del período
n:
el número de períodos
La
Tasa Interna de Retorno (TIR) es una de las medidas más populares de
rendimiento de un inversión. Según la misma, el rendimiento de cualquier
inversión puede ser determinado por la tasa de interés que iguala el valor
Presente del flujo de fondos de dicha inversión con su precio.
La
TIR constituye una punto de referencia para la toma de decisiones financieras,
en el sentido en que la medida que la tasa interna de retorno es superior al
costo de oportunidad la inversión se acepta o se rechaza. Por otro lado, la TIR
de una inversión es la tasa a la que el dinero colocado en dicha inversión
crece, de forma que la TIR es una tasa comparable con la tasa de interés de un
préstamo bancario o con la que proporciona una caja de ahorros.
La
TIR de cualquier inversión es igual a la tasa de interés (i) que mantiene la
siguiente igualdad:
P: Precio
Cn: Flujo
de fondos período n
n: Número de períodos
El cálculo del valor del dinero a través del tiempo es
el análisis primordial que debe ser utilizado para obtener el valor de
cualquier activo, el cual se obtiene a partir de flujos futuros de efectivo.
Valuación de Activos.
Modelo
de Valuación de Activos de Capital (CAPM)
El Modelo de Valuación de Activos de Capital o
CAPM (Capital Asset Pricing Model), describe el rendimiento esperado de un
activo como la suma del rendimiento de un instrumento "libre de
riesgo" y la prima por riesgo. El riesgo es medido sólo como la
sensibilidad del rendimiento de un activo hacia movimientos de un índice de
mercado general, mientras que la prima por riesgo depende de dicha sensibilidad
y del spread (diferencial) entre el rendimiento esperado del índice general y
la tasa "libre de riesgo". A pesar de que el CAPM provee una
descripción simple de lo que es riesgo y rendimiento, presenta ciertas
desventajas. Una de ellas se refiere a lo restrictivo de los supuestos que
respaldan al modelo. Otra desventaja es el hecho de asumir que el riesgo se
encuentra medido solamente por la sensibilidad de una acción hacia los
movimientos del índice de mercado general. Para clarificar el sentido de la
crítica anterior, por un momento consideremos un mundo donde los inversionistas
tienen portafolios completamente diversificados; si reconocemos que existen
múltiples fuentes de riesgo en la economía, dichos inversionistas se
preocuparán por varios aspectos, incluyendo, por ejemplo, variaciones en los
niveles de los índices accionarios, tasas de interés, inflación, cambios en el
PIB (Producto Interno Bruto) o cualquier otra variable macroeconómica cuyo
impacto resulte difícil de eliminar de su portafolio mediante la
diversificación, y no solamente se preocuparán por la varianza entre su
portafolio y el de mercado (única fuente de riesgo, como lo señala el CAPM).
Para ello se tiene la siguiente fórmula:
CAPM = Rf + ß (Rm
- Rf)
Rf: rentabilidad de un activo que no ofrece riesgo
Rm:
rentabilidad del mercado
(Rm-Rf):
prima de riesgo del mercado
ß:
coeficiente de variabilidad del rendimiento de los recursos propios de la
empresa respecto al rendimiento de los recursos propios del mercado. Cuánto
mayor sea ß, mayor será el riesgo que corre la empresa.
Si ß>1: la rentabilidad esperada de los fondos propios será mayor a
la rentabilidad del mercado (Rm).
Si
ß<1: la rentabilidad esperada de los fondos propios será menor a la
rentabilidad del mercado (Rm).
Si
ß=0: la rentabilidad esperada de los fondos propios será la rentabilidad
de un activo sin riesgo (Rf).
Si
ß=1: La rentabilidad esperada de los fondos propios será la rentabilidad
del mercado (Rm).
Infografia
http://www.inversiones.bankboston.com.ar/mividayeldinero/articulo.jsp?id=2952
http://www.oocities.org/es/yamelisquivera/e2/ei2.htm
Valuación de Instrumentos
financieros
http://cpn.mef.gob.pe/cpn/articulos/NIC39.htm
Terminología de Valor de los
instrumentos financieros
http://www.invertiland.com/GlosarioEsp.shtml
http://server2.southlink.com.ar/vap/finanzas_de_la_empresa.htm
http://www.elprisma.com/apuntes/apuntes.asp?page=24&categoria=102
http://www.abanfin.com/modules.php?name=Manuales&fid=gd0bcac
Valoración de activos
financieros
http://www.elprisma.com/apuntes/economia/valoraciondeactivosfinancieros/