International Journal of Parallel Programming, Vol. 34, No. 6, December 2006 (© 2006)
DOI: 10.1007/s10766-006-0022-1

An Experimental Ontology Server for
an Information Grid Environment

A. Aiello,"? M. Mango Furnari,” A. Massarotti,’
S. Brandi," V. Caputo,’ and V. Barone'

Received May 27, 2005, accepted September 11, 2006

Semantic web and grid technologies offer a promising approach to facilitate
semantic information retrieval based on heterogeneous document
repositories. In this paper the authors describe the design and implementation
of an Ontology Server (OS) component to be used in a distributed contents
management grid system. Such a system could be used to build collection
document repositories, mutually interoperable at the semantic level. From the
contents point of view, the distributed system is built as a collection of mul-
timedia documents repository nodes glued together by an OS. A set of meth-
odologies and tools to organize the knowledge space around the notion of
contents community is developed, where each content provider will publish
a set of ontologies to collect metadata information organized and published
through a knowledge community, built on top of the OS. These methodolo-
gies were deployed while setting up a prototype to connect about 20 muse-
ums in the city of Naples (Italy).

KEY WORDS: Semantic web; ontology; metadata; information grid.

1. INTRODUCTION

A dynamic computational environment is characterized by entity
autonomy, heterogeneity, and distribution. It is an environment in which
a priori agreements regarding engagement cannot be assumed. Hence,
trading partnerships must be dynamically selected, negotiated, procured,
and monitored. To achieve the flexible assembly of components and

stituto di Cibernetica E. Caianiello, Via Campi Flegrei, 34, 1-80078, Pozzuoli, Italy.
2To whom correspondence should be addressed. E-mail: a.aiello@cib.na.cnr.it

489

0885-7458/06/1200-0489/0 © 2006 Springer Science+Business Media, LLC

490 Aiello et al.

resources requires not only a service-oriented model, but also information
about functionality, availability, and interfaces of the various components.
This information must have an agreed-upon interpretation that can be pro-
cessed by machines. Thus, explicit assertion of knowledge and the explicit
use of reasoning services should be required.

Knowledge is crucial for the flexible and dynamic middleware embod-
ied by the Open Grid Service Architecture (OSGA).'? For example, the
dynamic discovery, formation, and dispatching of ad-hoc virtual organiza-
tions of resources require that Grid middleware be able to use and process
knowledge about availability of services, their purposes, how they are dis-
covered, invoked and evolve.

Knowledge and semantics may be implicitly or explicitly asserted and
used. Computationally implicit knowledge is knowledge merely embedded
in programs or tools in forms such as database schema or algorithms.
Computationally explicit knowledge is knowledge for which some sort of
formal knowledge representation technique exists that can be exposed to
be discovered, processed and interpreted. Machines need formal, standard-
ized declarative representations and reasoning schemes over those repre-
sentations. Thus knowledge may be considered pervasive and ubiquitous,
permeating the Grid.

Semantic web and knowledge-oriented Grid depend on making knowl-
edge explicit so that rich semantics can be used in decision-making and
in purposeful activity by computational entities provided with a machine-
processable account of the meaning of other entities with which they inter-
act. Informally specified knowledge and metadata are suitable only for
human consumption, because humans can hope to make sense of knowl-
edge in a wide variety of forms and contexts.

Metadata is one way to represent knowledge in a knowledge-oriented
Grid system; it is intended to be machine processable and takes the form
of declarative statements to be used when annotating content. Another
representation possibility is given by the ontology approach, where an
ontology is a conceptualization of a domain that provides a shared
language for a community of knowledge (services) providers and consum-
ers, be they machines or people.!” Ontologies can serve as the concep-
tual backbone for every task in the knowledge management life cycle.
As a formal specification, ontology is open to computational reasoning.
Thus, metadata description using terms from an ontology can also be rea-
soned over to infer knowledge implied by, but not explicitly asserted in the
knowledge base. They provide tools to structure and retrieve knowledge
in a comprehensive way and are essential for knowledge search, exchange,
and discovery over the Internet.

Ontology Server for an Information Grid Environment 491

To put metadata and ontologies at work, methods, and tools to sup-
port their deployment are necessary. The core technologies proposed for
semantic web and knowledge-oriented Grids have their roots in distrib-
uted systems and knowledge management systems, where ontologies and
associated ontology reasoners are necessary to allow computational pro-
cesses to fully interact. An adequate architectural view for semantic web
and Grid applications is a component-based one, in which the various
macro-components work together. However, the current ontologies exploi-
tation attempts are oriented to cope with the conceptualization of single
knowledge source. Furthermore, most of the existing tools consider ontol-
ogies as monolithic entities and provide little support for specifying, stor-
ing, and accessing ontologies in a modular manner.

In this paper the authors describe the design and implementation of
an Ontology Server component to be used in a distributed contents man-
agement grid system. Such a system could be used to build collections
of document repositories, mutually interoperable at the semantic level.
The authors’ efforts are based on the hypothesis that it is necessary to
develop an adequate treatment for distributed ontologies, in order to pro-
mote knowledge sharing on the semantic web. As such, appropriate infra-
structures to represent and manage distributed ontologies also need to
be developed. To pursue these goals we developed an ontology server to
deploy a knowledge repository community. An experimental test bed to
verify the developed methodologies and tools was built within the cultural
heritage promotion arena.

The rest of the paper is organized as follows: in Section 2 the Seman-
tic Web and Information Grid scenario are described; Section 3 presents
the ontology life cycle in detail. In Section 4 the adopted Ontology Server
Architecture is described, while in Section 5 the implemented test bed and
the experience gained with this deployment are summarized.

2. THE SEMANTIC WEB AND INFORMATION GRID SCENARIO

The intent of ontology middleware is to develop new capabilities to
be constructed in a dynamically and transparent way from distributed ser-
vices, reusing existing components, and knowledge resources. The aim is to
assemble and coordinate these components in a flexible manner.

Although different knowledge management tasks are coupled, their
interactions are not hardwired. Each component will deal with different
tasks and can use different techniques and tools. Each of them could
be updated while others are kept intact. Thus, the architecture should
be robust in the sense that new techniques and tools can be adopted at
any time. Knowledge could be added into the knowledge warehouse at

492 Aiello et al.

any time. It should be necessary only to register the knowledge with the
knowledge authority. After registration all of the services, such as publish-
ing and inferencing, should be used to expose the new knowledge for use.

The various Semantic Web or Grid application components can be
organized in software layers and placed into service-oriented relationships
with one another. This service-oriented architectural view can be summa-
rized as follow:

Basic services cover data and computational services such as networked
access, resource allocation and scheduling; they use metadata asso-
ciated with services and entities, but the semantic meaning of that
metadata is implicit or missing;

Semantic knowledge services introduce explicit meaning and semantic
description about a service that explicitly and declaratively assert their
purposes and goals, not just the syntax of the data type or the sig-
nature of the function calls, so that computational entities can make
decisions in light of that knowledge.

Knowledge services are the core services needed to manage knowledge in
the semantic web or Grid, such as knowledge publication, annotation
services, and inference engine services.

The minimal set of needed components consists of: annotation mech-
anisms, repositories for annotations and ontologies, query, and lifecycle
management, as well as inference engines that are reliable and perform
well. Knowledge publishing should allow users to register new distributed
knowledge and service knowledge, which should be accessed and retrieved
in the same way we browse the web.

In addition, tools are needed for acquiring and managing knowledge,
such as an entrance point to an integrated knowledge management system,
or the knowledge authority to provide a secure infrastructure for authenti-
cation and authorization, so that knowledge can be used and updated in
a controlled way. These functionalities could be organized, for example, in
the following set of services:

— Annotation services associate entities and their metadata together,
in order to attach semantic content to those entities.

— Ontology services provide access to concepts in an underlying
ontology data model. Services include extending the ontology,
querying it and returning the parents or children of a concept,
as well as determining how concepts and roles can be combined
to create new legal composite concepts.

— Inference engine applies different kinds of reasoning over the
same ontologies and the same metadata set.

Ontology Server for an Information Grid Environment 493

Ontology Server API
Ontology Inference Query Working
Directory Engine Optimizer Memory
Web Connector

Internet

Fig. 1. “Thin client” ontology server configuration.

The deployment configurations and the corresponding functionalities
for such an environment could range from the most lightweight deploy-
ment to very complex ones. Below, a few of these possible configurations
are briefly described.

Thin-Client: In this configuration (see Fig. 1), the ontological knowledge
is made available via Web based protocols. Such a system would be
appropriate for use with applications that require to reference stan-
dard ontology knowledge .

Fat-Client: A “fat-client” configuration provides local persistence for onto-
logical knowledge that the application generates (see Fig. 2). Depend-
ing on the configuration details, knowledge may be stored locally as
files or in a database for increased performance and reliability. The
local persistent storage can also provide local caching for ontological
knowledge accessed via Web.

Client-Server: This configuration models a full-fledged ontology man-
agement system with a complex set of functionalities. To provide
ontology sharing and evolution among a large number of clients,
the ontology management functions would be moved to an ontol-
ogy server (see Fig. 3). Not only does this arrangement provide
for easier ontologies sharing and updating in a distributed environ-
ment, but it also allows for additional optimization and optimized
indexing to support better knowledge query and retrieval. The ontol-
ogy knowledge can also be preprocessed to speed up the handling
of the most common queries. In addition, this configuration can
be further extended to accommodate different sources of ontological
knowledge.

494

Ontology Server API
Ontology Inference Query Working
Directory Engine Optimizer Memory

File Connector

Web Connector

Fig. 2.

Internet

“Fat client” ontology server configuration.

Application Program

Ontology Server API

OS Diriver on Client

Ontology Server API
Ontology Inference Query Working
Directory Engine Optimizer Memory
- Ontology
Source
Database Connector
Fig. 3.

Client/server ontology server configuration.

Aiello et al.

We had in mind this last scenario when designing and implementing

the Ontology Server described in the rest of the paper and which we used

in implementing a distributed content management system for the cultural
heritage area, as described in Section 5.

Ontology Server for an Information Grid Environment 495

3. THE ONTOLOGY LIFE CYCLE

Ontologies vary greatly in size, scope and semantics. They can
range from generic upper-level ontologies (SUMO,?? Cyc)) to domain-
specific schema (NCI Cancer).!¥) They can be created by knowledge
representation experts or novice web users. They can be small ontologies
containing a handful of concepts (FOAF®) or large ontologies contain-
ing thousands of terms and relationships (Galen®), GOU!%). In such a
diverse and heterogeneous knowledge space, ontology engineering assumes
tremendous practical significance. Tools supporting it need to provide
a seamless environment for browsing, searching, sharing, and authoring
ontological data. To provide management support for the entire lifecy-
cle of ontological knowledge, an ontology management system need to
address a wide range of problems. Ontology lifecycle spans from creation
to evolution.

The main ontology language requirements for the representation of
a formal conceptualization of a domain are: a well defined syntax, for-
mal semantics, an efficient support, and sufficient expressiveness power.
In this context formal semantics describe the meaning of knowledge pre-
cisely. Here, precisely means that the semantics neither do refer to subjec-
tive intuitions, nor are they open to different interpretations by different
people or machines.

The Resource Description Framework (RDF)19 provides a founda-
tion for representing and processing metadata. It has a graph-based data
model and its key concepts are resources, properties, and statements, where
a statement is a resource-property-value triple. The RDF allows incre-
mental building of knowledge, its sharing, and reuse and furthermore, it
is domain independent. The RDF Schema is a primitive ontology lan-
guage. It provides a mechanism to describe specific domains and offers
certain modelling primitives with fixed meaning. The key concepts of RDF
Schema are classes, subclass relations, property, subproperty relations, as
well as domain and range restrictions.

Ontology Web Language (OWL)?® is the standard for ontologies
proposed by W3C !. The OWL builds on top of RDF and RDF Schema,
uses RDF’s XML-based syntax and allows to describe the semantics of
knowledge in a machine accessible way. Furthermore, formal semantics
and reasoning support is provided through the mapping of OWL on logic,
such as Predicate Logic and Description Logic.

Tool support should be available for all stages of the ontology
lifecycle, whose main steps are:

'W3C is the acronym for World Wide Web Consortium, http://www.w3c.org

496 Aiello et al.

Creating: An ontology may be built from scratch, using a tool for editing
and creating class structures, usually with an interface similar to a file
system directory or bookmark folder interface. In the process of cre-
ating a new ontology it is also possible to reuse, in whole or in part,
ontologies that have been previously developed.

Populating: Refers to the process of creating instances of the concepts in
an ontology and linking them to external sources, such as web pages
that are good sources of instance knowledge, or legacy sources of
instances like product catalogues, white pages, database tables, etc.

Deploying: There are many ways to deploy an ontology once it has been
created and populated. For example, the ontology provides a natu-
ral index of the instances described in it, and hence can be used as
navigational aid while browsing those instances. Since OWL has capa-
bilities for expressing axioms and constraints on the concepts in the
ontology, powerful logical reasoning engines can be used to draw con-
clusions about instances in an ontology.

Validating, Evolving and Maintaining Ontologies: Like any other compo-
nent of a complex system, ontologies will need to change as their
conceptualization changes. Some changes might be simple responses
to errors or omissions in the original ontology; others might be in
response to a change in the environment. There are many ways in
which an ontology can be validated in order to improve and evolve.
The most effective ones are based on strict formal semantics of what
the class structure means.

The ontology maintenance task may require merging ontologies from
diverse sources. When this is the case tool support is important, for exam-
ple to provide human-centered capabilities for searching through ontol-
ogies for similar concepts (usually by name), provisioning for merging
the concepts, or performing more elaborate matching, based on common
instances or patterns of related concepts.

A number of ontology development tools currently exist; notable
among these are Protégé,(zg) OilEd,® OntoEdit,?? OntoLingua,(“) and
WebODE.() Most of these tools provide an integrated environment to
build ontologies, to check for errors and inconsistencies (using a reasoner),
to browse multiple ontologies, and to share and reuse existing data by
establishing mappings among different ontological entities.

4. THE ONTOLOGY SERVER ARCHITECTURE

Within the knowledge Grid scenario, the Ontology Server (OS)
provides the basic semantic interoperability functionalities. In fact, it

Ontology Server for an Information Grid Environment 497

Protégé2Sesame User Interface

Ontology Middleware

Jena Framework
Query Engine CacheHandler

OWL Models | Reasoner

Sesame
i i
Repository Repository

Fig. 4. Ontology server architecture.

provides the knowledge producer with the possibility of interacting with
heterogeneous and distributed document repositories. It guarantees to the
knowledge providers the necessary autonomy to organize the managed
contents space.

From the conceptual point of view, the OS is one of the most impor-
tant kinds of server since it manages the schema for the stored knowl-
edge expressed using OWL/RDF@® and determines the interactions with
the other semantic web or Grid servers and components.

The main components of the OS architecture are organized into the
Ontology Middleware, which coordinates the activities for the ontology
development, the reasoner system and the user interface component, as
shown in Fig. 4.

To achieve these goals, the OS was designed around the following lay-
ers:

Ontology Development: This layer covers the main minimal functionalities
such as building the ontology models, validating, and/or maintaining
the deployed ontologies.

Ontology Middleware: This layer implements the minimal functionalities
such as the extraction of the ontological model knowledge, individ-
uals insertion and extraction, reasoning on and about the ontology,
querying the ontology model, etc.

Ontology Access: It consists of a set of modules that implement
functionalities to walk through the ontology graph and the associated

498 Aiello et al.

attributes. These functionalities could be used by a document access
system to build the user interfaces, to browse the ontology structures,
to implement an ontology driven search engine, and so forth. The
ontology interface component can answer queries about the ontology
class hierarchy and/or the class properties, giving back an RDF-XML
document that could be transformed into HTML documents.

Ontology Repository: For the OWL/RDF data persistency we started with
the Sesame package,® which we extended in order to expand its
functionalities and improve the performance. We chose it because it
is an open source, platform-independent, RDF Schema-based reposi-
tory, equipped with an efficient querying facility written in Java. The
low-level persistent storage is achieved using Postgresql.(2®)

4.1. The Ontology Development Environment

To build an ontology model we rely on a group of domain experts
equipped with the Ontology Development Environment (ODE). This envi-
ronment covers the following main ontology lifecycle phases: building the
ontology model, either from scratch or reusing parts of the previously
developed ontologies, and validating and/or maintaining the deployed on-
tologies. Next, in order to insert the knowledge facts into the ontology
repository we proceed as follows:

(a) insert the contents into buffered persistency area;
(b) validate and reason on and about the knowledge base;
(c) register the facts through the persistency module.

The identified ODE users are:

— the editor: as in the person in charge of defining the ontology
model and inserting it into the ontology repository;

— the reviewer: as in the person in charge of validating and main-
taining the ontology models;

— the visitor: as in the person and/or software components that
can browse the ontology repository or walk the ontology clas-
ses/properties hierarchy.

All these operations are made available through the OS functionalities.
Clearly, since they regard different kinds of users, different user authen-
tication processes have been implemented.

We choose the Protégé-2000 ontology editor since it has an user
friendly interface and a modular architecture that is extensible through a
flexible programming interface. We developed an extension for the OWL
Protégé-2000 Plug-in in order to store the ontology directly into the
Ontology Repository using the client/server scheme, shown in Fig. 5.

Ontology Server for an Information Grid Environment 499

OWL GUI Plugins OWL Extension APls
(SWRAL., E 2O o
5 . v o
Jana APY M Protege OWL APl _ Protage OWL GUI

OWL File P Foasnnal fogical claas datrrtirs

{eapression edlior, conchion
restncnans, ek) widgen. eec |

OWL Plugin

v v

Pr I
Sesame Adapter OMOUAF: - Protéga QLI
ey el
v 8
i
o8
Storage

Fig. 5. The OWL plugin and Protege2Sesame tab architecture.

4.2. The Access Layer

The access layer relies on the OS Interface and the Query Engine,
both built on top of the persistency layer.

The OS Interface consists of a set of software components that imple-
ment functionalities for walking through the ontology graph and the asso-
ciated attributes. The OS Interface can be queried about the ontology class
hierarchy and/or the class properties, giving back an RDF document that
could be transformed into HTML forms. To create, for example, an user
interface to browse an ontology model it is necessary to create a set of
dynamic forms, according to a classification schema, extracted from the
corresponding ontology. Figure 6 shows an example of an ontology access
session.

The Query Engine (QF) allows a generic user to query the OS without
requiring any knowledge on the user’s side about the Sesame querying lan-
guage (SeRQL).(Y In order to achieve that we created a set of predefined
query patterns, stored into a configuration file and we also built a Query
Composer Wizard to assist the user in creating query patterns. A typical
query scenario is: once a user has chosen an individual, through a free
text search or by browsing the ontology, the QE proposes some predefined
query patterns to the user. Patterns are modeled according to the consid-
ered class and/or property and to the effective presence into the repository.

4.3. The Ontology Server Middleware

The Ontology Middleware implements the minimal functionalities to
manage the ontology lifecycle, such as the extraction of the ontological

500 Aiello et al.

Questo sito & conts aiseguentistandard:
| (v I (W I [O ([

Fig. 6. An ontology access session example.

model knowledge (the ontology classes, and properties hierarchy), indi-
viduals insertion and extraction, reasoning on and about the ontology,
querying the ontology model, etc. These functionalities are implemented
through the following components:

Ontology Directory provides the metalevel knowledge about the available
ontologies. By default, the ontology directory contains references to
the top-level definitions of RDF, RDFSchema, XML-Schema, and
similar knowledge. In addition, the ontology directory may contain
deployment knowledge, giving additional information about the ontol-
ogy knowledge sources. For example, for each ontology source the
directory will need to store the URI, but may additionally store
knowledge about the contents of the ontology source to aid the query
optimization modules.

Ontology Server for an Information Grid Environment 501

Inference Engine provides a mechanism for interpreting the semantics of
an ontology language, represented as a set of language-specific rules.
The rules are used to answer queries, when the requested fact is not
immediately available and must be inferred from available facts. For
example, if the application requests the childrenOf an individual,
but the knowledge database only contains parentOf relations, the
inference engine can use the inverse property of the parentof rela-
tions to identify the correct response.

Query Optimizer Used when developing applications that connect large
ontologies, since it would not be feasible to load the entire set of
available knowledge into the knowledge database. In these cases, the
system will query the ontology source for the appropriate knowledge
on an as-needed basis. In addition, the query optimizer may be used
to coordinate queries that span multiple sources.

Ontology Source Connectors provide a mechanism for reading, querying
and writing ontology knowledge to persistent storage. The simplest
connector is the file connector used to make persistent the knowledge
into the local file system. There is also a connector for storing onto-
logical knowledge into a database and remote servers.

4.4. The Persistency Layer

The Persistency Ontology layer is built on top of the Sesame(® repos-
itory package, that in turn abstracts from the used database.

For the OWL/RDF data persistent storage, we choose the Sesame
package. It is an open source, platform-independent, RDF Schema-based
repository, provided with querying facility written in Java. The low-
level persistent storage is achieved using Postgresql,?® one of the most
widely used public domain database environments. The Sesame environ-
ment offers three different levels of programming interfaces: the client
API, for client-server programming, the server API and the lower level
Storage and Inference Layer (SAIL) API, for the RDF repositories.

We also developed a buffered storage schema to account for the
ontology workflow management. The first state of the workflow is asso-
ciated with the ontology individuals insertion into the buffer, the second
state is associated with the ontology validation process and the third state
is associated with the storing process into the ontology repository. The
buffer entry structure represents one or more classIndividuals, that in turn
hold one or more class properties. Each individual is associated with the
identifier of the user that inserted it and with the insertion date, which
makes it possible to implement data consistency mechanisms.

502 Aiello et al.

5. THE MUSEO VIRTUALE DI NAPOLI TESTBED

In the context of the research project “Museo Virtuale di Napoli:
Rete dei Musei Napoletani” (REMuUNA) 2 we built a community of seman-
tic web-oriented Content Management System (CMS) for cultural heri-
tage. One of the most interesting technological aspects that we investigated
was how to design the ontology server component for the semantic web
and knowledge grid applications. We used the ontology tools and server
previously described to implement and exploit a CMS grid, where each
system is used as a document repository that allows the museum manager
to organize, as a whole, the cultural heritage and heterogeneous knowledge
space spread in many autonomous organizations.

One of the most important constraints that we took into account
was the fact that the aim of any ordinary museum visitor is something
quite different from just trying to find certain objects in the web document
space. In fact, in physical exhibitions the cognitive museum experience is
often based on the thematic combination of exhibits and their contextual
knowledge.

Furthermore, from the museum managers’ perspective, each CMS
should make available the managed artifacts’ knowledge through the REM-
UNaA environment right after registering this information into the system.
Knowledge is encapsulated into a digital object and no assumption about
fixed attributes names’ schemata is made, so that the application builder
can create new attributes as needed, by just modifying the associated
ontology without changing the internal database schemata.

Using the system that we developed, the knowledge provider 3 could
also organize a set of related documents in document collections, accord-
ing to some relationships defined on top of the associated ontology. The
notion of “collection” is a recursive one, in the sense that a collec-
tion could contain other collections. Each digital document is allowed to
belong to multiple collections and may have multiple relationships with
other documents. These nesting features allowed us to deliver more than
one logical view of a given digital documents asset.

Clearly, the deployment of the notion of collection strongly depends
on the knowledge domain. Thus, it is necessary to guarantee an opera-
tional autonomy to the knowledge provider, without reducing the opportu-
nities of cooperating with other knowledge providers. In other words, each

2This research project is supported by Ministero dell’Universita, Ricerca e Tecnologia,
under contract C29/P12/M03, from here on denoted withREMUNA, was carried out at the

Istituto di Cibernetica “E. Caianiello”.)
3In this paper, we assume that museum manager means the people in charge of the cultural

heritage knowledge about the goods, inside themuseum organization.

Ontology Server for an Information Grid Environment 503

content provider will publish a set of ontologies to collect metadata infor-
mation organized and published through a contents knowledge authority.

Summarizing, we have that, from a contents point of view, the distrib-
uted system is built as a collection of documents repository nodes glued
together by an OS, where the document plays the role of elementary infor-
mation and basic building block. The documents are represented as digital
objects, together with the associated metadata information. The metadata
is organized according to the associated domain ontologies where it takes
values.

These methodologies were deployed and tested by setting up a pro-
totype to connect about 20 museums in the city of Naples (Italy). Muse-
ums are equipped with multimedia knowledge systems and communication
infrastructures. Those systems have different conceptual schemas and are
physically located in different districts of Naples.

From the technological point of view, we adopted the multi-tiers web
architecture, with the application server playing the central role of business
logic driver. All the systems communicate among themselves by exchang-
ing XML-encoded messages over http, according to well-defined proto-
cols that represent the XML communication bus core (see Fig. 7). The
user will interact with the community of the CMS through a conventional
browser.

Each CMS grid node was designed around the following components:

— Document Repository System (DRS): which stores and organizes
the documents together with the associated metadata, appearing
and behaving like a traditional web site;

— Document Access System (DAS): which creates friendly and flex-
ible user interfaces to discover and access the contents;

— Contents Authority Management System (CAMS): which stores
and manages the ontologies used by each participating node to
facilitate the DRS semantic interoperability.

The last software component is built on top of the Ontology Server
described in Section 4.

To cope with the semantic interoperability issues, we designed a cul-
tural heritage ontology that is empirical and descriptive. It formalizes the
semantics necessary to express observations about the world in the domain
of museum documentation, whose hierarchy is sketched in Fig. 8. It is
composed of a hierarchy of classes, interlinked by named properties. It fol-
lows object-oriented design principle: the classes in the subsumption rela-
tion hierarchy inherit properties from their parents. Property inheritance
means that both classes and properties can be optionally sub-typed for a

504

HTML

Appbration
Server

Fig. 7.

WL Communication Laver

V

XSLT

Wl

RDFS

RDF

owL

XML

OWL

ASLT

Aiello et al.

B LT

o Do s
1 - cumen
Scripts e —

Style Sheet Processar
Maodule

Liser Intertace Module

Document Access System

Ontetogy Documents
Server Irstances

Ontalogy
Ontology Intertace R
Server —
~
Diata Store Server

Ducument Reposstory System

Protége 2000

XSLT
Documents

—————

Admunsstrabion
Module

Ontology
Development Module

Contents Authorithy System

Distributed contents management architecture.

specific domain, making the ontology highly extensible without reducing
the overall semantic coherence and integrity.

The ontology is expressed according to the OWL semantic model.
This choice yields a number of significant benefits; for example, the class
hierarchy enables us to coherently integrate related knowledge from differ-
ent sources at varying levels of detail. The developed domain ontology has
many features in common with the CRM/CIDOC,!? but it also covers
the cultural heritage taxonomy aspects and the specific issues of an upper

ontology.

Ontology Server for an Information Grid Environment 505

alala <new> Protégé 3.0
File Edit Project Window Help Tools
£ ; 7
O E B0 & B ® - H X
[® Classes | m 8lots | = Forms | # Instances | & Queries |
CLASS BROWSER » CLASS EDITOR
For Project: @ For Class: © THING (instance of :STANDARD-CLASS)
Class Hierarchy AN e X ~ Name Docume
o THING THING
> ‘SYSTEM-CLASS
vye NclerO Aok
i es_auro <o Abstract © v
» @ Indici_Semplici =
® Registrazioni
@ Note_Bibliografiche 1GNHANE HOtY
® Aclors Name | Cardinality |

¥ @ Beni_Culturali
¥ @ Beni_permanenti
¥ @ Beni_Materiali
» @ Beni_Mobili
» @ Beni_lmmobili
@ Beni_Concettuali
® Beni_temporanei
v @ Relazioni
@ Frammenti_di_Storia
@ Ambienti_Storici
@ Elementi_d_arredo
> @ Arrays

Superclasses L)

Fig. 8. Cultural heritage ontology - protégé screenshot

6. CONCLUSIONS

As the Semantic Web begins to fully take shape, the grid CMS
implementation will enable agents to understand what is actually being
processed, since all contents are modeled in machine understandable
OWL/RDF. Our work successfully showed that an OWL/RDF data stor-
age could be used as document repository backend for a grid CMS, where
the ontology is used to cope with the semantic interoperability issues.

To a certain degree, our content metadata usage extends that of
the CIMI project,(” since we allow metadata to assume values into a

506 Aiello et al.

specialized ontology and we do not consider metadata as syntactic entities.
In fact, it has become increasingly evident that simple application-specific
standards, such as Dublin Core (DC),® cannot satisfy the requirements of
communities such as BIBLINK® and OAL®) As such, they are used to
combine metadata standards for simple resource discovery process.

The exchange protocol used in our setting is similar to the Dienst(?)
collection service, with the main difference lying in the fact that in our
case the collections are entities built on top of a domain ontology describ-
ing the domain of the documents content and not predefined ones.

Starting from these encouraging results we are planning to actively
pursue some of the goals foreseen by the Semantic Web Initiative.-13:19)

ACKNOWLEDGEMENTS

Acknowledgments are expressed to all the people of Istituto di
Cibernetica E. Caianiello involved in the ReMuNa project, for their help,
and fruitful discussions, and also to all the staff members of: Soprinten-
denza ai Beni Archeologici delle Province di Napoli e Caserta, Soprinten-
denza ai Beni Artistici, Storici ¢ Demo Antropologici della Provincia di
Napoli, Soprintendenza ai Beni Architettonici ed Ambientali della Provin-
cia di Napoli, Archivio di Stato di Napoli, Direzione Musei of Comune di
Napoli, and the Assessorato alla Cultura of Comune di Napoli. Without
their assistance the REMUNA project and activities would not exist.

REFERENCES

1. J. C. Arpirez, O. Corcho, A. Fernandez-Lopez, WebODE a Scalable Ontological
Engineering Workbench, in First International Conference on Knowledge Capture
(K—CAP 2001), Victoria, Canada, October (2001).

2. S. Bechhofer, 1. Horrocks, C. Goble , R. Stevens, OilEd: Reason-able Ontology Editor
for the Semantic Web, in Proceeding of KI2001, Joint Germanl/Austrian Conference on
Artificial Intelligence, Vol. 2174, Vienna, Springer Verlag, Berlin LNAI, pp. 396-408
(2001).

. T. Berners-Lee, WWW: Past, Present, and Future, IEEE Comput., 29 (1996).

4. The BIBLINK Core Application Profile, http://www.schemas-forum.org/registry/
biblink/BC-schema.html

5. D. Brickley, L. Miller, The Friend of a Friend (FOAF) Vocabulary Specification:
http://xmlns.com/foaf/0.1/.

6. J. Broekstra, A. Kampman, F. van Harmelen, Sesame: A generic architecture for
storing a querying rdf and rdf Schema, in The Semantic Web — ISWC 2002, volume
2342 of Lecture Notes in Computer Science, pp. 54-68 (2002).

7. CIMI: Consortium of Museum Intelligence, http://www.cimi.org/

8. The Dublin Core Metadata Initiative, http://www.purl.org/dc/

5]

Ontology Server for an Information Grid Environment 507

9.
10.
11.

12.

20.

21.

22.

23.

24.

25.
26.

27.

28.
29.
30.
31.

J. Davis, C. Lagoze, The Networked Computer Science Technical Report Library,
Cornell CS TR96-1595.

Extensible Style Language for Transformation, http://www.w3c.org/Style/XSLT

A. Farquilar, R. Fikes, I. Rice, Ontolingua Server: A Tool for Collaborative Ontol-
ogy Construction, in 10th Knowledge Acquisition for Knowledge—Based System Work-
shop, Banff, Canada (1996).

I. Foster, C. Kesselman, S. Tuecke, The Open Grid Service Architecture, in The
GRID 2: Blueprint for a New Computing Infrastructure, 1. Foster, C. Kesselman, (ed.),
Morgan Kauffman, Los Altos, CA (2004).

. The Gene Ontology Consortium. Creating the Gene Ontology Resource: Design and

Implementation, Genome Res., 11, 1425-1433 (2001).

. J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, B. Parsia, J. Oberthaler, The National

Cancer Institue’s Thesaurus and Ontology, J Web Semantics, 1(1) (2003).

. T. R. Gruber, Toward Principles for the Design of Ontologies Used for Knowledge

Sharing, Presented at the Padua workshop on Formal Ontology (March 1993).

. Lassila O., Swick R., Resource Description Framework (RDF) Model and Syntax,

World Wide Consortium Working Draft.

. ICOM/CIDOC Documentation Standard Group, Revised Definition of the CIDOC

Conceptual Reference Model, (1999). http://cidoc.ics.forth.gr/

. HP Labs Semantic Web Research, Jena-A Semantic Web Framework for Java, (2004).

http://www.hpl.hp.com/semweb/

. I. Horrocks, S. Tessaris, Querying the Semantic Web: a Formal Approach. in the Ist

International Semantic Web Conference (ISWC2002), Sardinia, Italy, (2002).

C. Lagoze, E. Shaw, JR. Davis, D.B. Krafft, Dienst: Implementation Reference Man-
ual, May 35, (1995).

D. B. Lenat, Cyc: A large-Scale Investment in Knowledge Infrastructure, Commun.
ACM 38, (11), (1995).

M. ango Furnari, A. Aiello, V. Caputo, V. Barone, Ontology Server Protocol Specifi-
cation, ICIB TR-12/03.

M. Mango Furnari, A. Aiello, A. Massarotti, ezXML4OWL: an easy XML for OWL,
ICIB TR-06/04.

D. McGuinness, F. van Harmelen, (eds)., OWL Web Ontology Language Overview,
(2003). http://www.w3.0rg/TR/2003/WD-owl-features-20030331/

Open Archives Initiative, http://www.openarchives.org.

OWL Web Ontology Language Overview, http://www.w3.org/TR/2003/PR-owl-
features-20031215/.

A. Pease, 1. Niles, J. Li, Suggested Upper Merged Ontology: A Large Ontology for the
Semantic Web and its Applications, in the Working Notes of the AAAI-2002 Workshop
on Ontologies and the Semantic Web, Edmonton, Canada (2002).
http://www.postgresql.org/

http://protege.stanford.edu

http://www.openrdf.org/doc/sesame/users/ch06.html

A. L. Rector, A. Gangemi, E. Galeazzi, A. J. Glowinski, A. Rossi-Mori, The GALEN
Model Schemata for Anatomy: Twoards a re—usable Application—Independent model of
Medical concepts, in Published in P. Barahona, M. Veloso, J. Bryant (eds), Proceedings
of Medical Informatics in Europe MIE 94, pp. 229-233, (1994).

508 Aiello et al.

32. http://www.openrdf.org/documentation.jsp.

33. Y. Sure, M. Erdmann, 1. Angele, S. Staab, R. Studer, D. Wenke, OntoEdit: Collab-
orative Ontology Development for the Semantic Web, in International Semantic Web
Conference (ISWC02), Sardinia, Italy, LNCS 2342, pp. 221-235 (2002).

Copyright of International Journal of Parallel Programming is the property of Springer Science &
Business Media B.Y. and its content may not be copied or emailed to multiple sites or posted to a

listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

