Introducción a la teoría de juegos

Los psicólogos destacan la importancia del juego en la infancia como medio de formar la personalidad y de aprender de forma experimental a relacionarse en sociedad, a resolver problemas y situaciones conflictivas. Todos los juegos, de niños y de adultos, juegos de mesa o juegos deportivos, son modelos de situaciones conflictivas y cooperativas en las que podemos reconocer situaciones y pautas que se repiten con frecuencia en el mundo real. 

El estudio de los juegos ha inspirado a científicos de todos los tiempos para el desarrollo de teorías y modelos matemáticos. La estadística es una rama de las matemáticas que surgió precisamente de los cálculos para diseñar estrategias vencedoras en juegos de azar. Conceptos tales como probabilidad, media ponderada y distribución o desviación estándar, son términos acuñados por la estadística matemática y que tienen aplicación en el análisis de juegos de azar o en las frecuentes situaciones sociales y económicas en las que hay que adoptar decisiones y asumir riesgos ante componentes aleatorios.

                                                                                                                                            

Pero la teoría de juegos tiene una relación muy lejana con la estadística. Su objetivo no es el análisis del azar o de los elementos aleatorios sino de los comportamientos estratégicos de los jugadores. En el mundo real, tanto en las relaciones económicas como en las políticas o sociales, son muy frecuentes las situaciones en las que, al igual que en los juegos, su resultado depende de la conjunción de decisiones de diferentes agentes o jugadores. Se dice de un comportamiento que es estratégico cuando se adopta teniendo en cuenta la influencia conjunta sobre el resultado propio y ajeno de las decisiones propias y ajenas.

La técnica para el análisis de estas situaciones fue puesta a  punto por un matemático, John von Neumann. A comienzos de la década de  1940 trabajó con el economista Oskar Morgenstern en las aplicaciones económicas de esa teoría. El  libro  que publicaron en 1944, "Theory of Games and Economic Behavior", abrió un insospechadamente amplio campo de estudio en el que actualmente trabajan miles de especialistas de todo el mundo.

 Otros artículos sobre Teoría de Juegos incluidos en este CD-ROM o sitio web:

·         Introducción a la Teoría de Juegos

·         La estrategia maximín

·         El dilema del prisionero

·         El modelo Halcón-Paloma

·         La guerra de los sexos

·         Juegos con transferencia de utilidad

·         Estrategias reactivas

Aplicaciones

·         El duopolio en la teoría de juegos

·         Las especies en peligro
y los recursos naturales

·         La tragedia de los comunes y el origen del derecho

La Teoría de Juegos ha alcanzado un alto grado de sofisticación matemática y ha mostrado una gran versatilidad en la resolución de problemas. Muchos campos de la Economía —Equilibrio General, distribución de costes, etc.— se han visto beneficiados por las aportaciones  de este método de análisis. En el medio siglo transcurrido desde su primera formulación el número de científicos dedicados a su desarrollo no ha cesado de crecer. Y no son sólo economistas y matemáticos sino sociólogos, politólogos, biólogos o psicólogos. Existen también aplicaciones jurídicas: asignación de responsabilidades, adopción de decisiones de pleitear o conciliación, etc.

Hay dos clases de juegos que plantean una problemática muy diferente y requieren una forma de análisis distinta. Si los jugadores pueden comunicarse entre  ellos y negociar los resultados se tratará de juegos con transferencia de utilidad (también llamados juegos cooperativos), en los que la problemática se concentra en el análisis de las posibles coaliciones y su estabilidad. En los juegos sin transferencia de utilidad, (también llamados juegos no cooperativos) los jugadores no pueden llegar a acuerdos previos; es el caso de los juegos conocidos como "la guerra de los sexos", el "dilema del prisionero" o el modelo "halcón-paloma".