
Snapshot Service Interface (SSI)
A generic snapshot assisted backup framework for Linux

Abstract� This paper presents the design and implementation
of �Snapshot Service Interface-SSI�, a standardized backup
framework for the Linux platform. Linux is a prominent
candidate for using such a backup framework because of its
ubiquitous nature on the high-end server market. Such a
backup framework is introduced in Windows 2003 under the
name of volume shadow copy service VSS [1].

SSI being a first of its kind backup solution for the

Linux platform, the main contribution of this paper is to
discuss the pros and cons of different design alternatives
available on Linux. The paper also provides a quantitative
measure on performance hits incurred due to using such
framework in lieu of using traditional backup methods.

1. Introduction

Currently backups on Linux are taken using
application agents, open file managers and other propriety
backup protocols. At present there exists no backup solution
on the Linux Platform that can guarantee snapshot assisted
consistent online backups. A consistent backup set for us is
both application as well as file system level consistent.

The current backup solutions face problems like the

infamous Backup Window phenomenon, Open files, Multiple
API problem and File-level and Application-level
inconsistencies [1]. The primary reason for all these problems
is the lack of coordination between the different actors related
to backup. Solutions like Open file Managers and Application
agents tend to eliminate the above-mentioned problems.
However, each one has some shortcomings associated with it.
In short, none of these is a complete backup solution.

As a solution, we propose SSI, a common unified

backup framework that can accommodate a myriad of backup
actors viz. business applications, snapshot providers and
backup applications. We have generalized the operations of
actors using common interfaces and the interaction between
them during a snapshot assisted backup operation. The actors
get registered with SSI by providing implementations for the
generalized interfaces. Once the actors have registered, SSI

can take automated backups by coordinating the operations of
all the actors using their registered callbacks

From empirical evidences and insights from user

acceptability of VSS, we have concluded even backup
frameworks like SSI and VSS are not free from shortcomings.
These shortcomings are also discussed at length in [2]. The
principal disadvantage of backup frameworks is that the actors
should be aware of the framework. Making the actors aware of
the backup framework requires making changes to their
existing code base. To alleviate the problem, SSI�s design
provides for ways in which the applications can be made
aware of the framework without modifications or at most
minimal alterations. Also, the alterations are such that they can
be easily incorporated in the applications. The gravity of the
disadvantage is also alleviated due to the open-source nature
of Linux and its applications. Availability of source code of all
the actors makes it easy to adapt them to the SSI framework.

 SSI is targeted at high-end enterprise servers hosting
critical services like mail servers & data base servers which
demand a 24x7 availability. In such an environment downtime
for backups or otherwise is not acceptable and this mandates
an online consistent backup.

 2. Architecture

 The architecture of SSI is as shown in figure 1. The
figure is marked with the steps explaining the snapshot
assisted backup process. The flow of operation during a
backup is as follows:

1 The operation starts with backup application requesting SSI
for a snapshot-assisted backup.

2 The main objective of SSI is to ensure application�s
consistency at the time the snapshot operation is performed.
As a result, SSI asks all the registered business applications to
get consistent and waits until all of them respond. Here, it may
happen that a business application does not reply, resulting in
SSI waiting indefinitely for the application to respond. To

Faraz Shaikh
Calsoft Private

Limited.
Baner Road, Pune- 411045, India

91-20-39852900
faraz.shaikh@gmail.com

Zoheb Shivani
Pune Institute of Computer

Technology,
Dhankavadi, Pune 411043, India

020-2437-1101
zohebshivani@yahoo.co.in

avoid the condition of SSI waiting indefinitely, a timeout
mechanism is implemented in SSI.

3 The business applications make themselves consistent by
flushing their buffers.

4 After the application is made consistent, it returns the status
to SSI. Now, the application is paused until the snapshot
operation is performed. A timeout mechanism is also
maintained within the business applications to guarantee that
the applications need not to wait forever in case SSI fails to
respond.

5 The file system is now made consistent and writes to the
disk are stopped. (Currently handled by the snapshot
providers)

6 The snapshot provider is then requested to perform the
snapshot. Since everything on the storage stack viz.
applications and the file system are consistent, a consistent
volume level snapshot takes place and a consistent backup can
be taken out of it.

7 The snapshot provider returns the status of the snapshot
operation to SSI. If the snapshot is successful, a positive status

is returned. In case the snapshot does not succeed, a negative
status is returned.

8 SSI in turn returns the status to the backup application.

9 At this point the file system writes are resumed and all the
business applications are signaled to continue.

3. Implementation

3.1 Interfaces provided by the framework

The key issue in implementing such a system is

handling the communication between the Backup Framework
and the multitude of applications. Carefully chosen
communication protocols would ensure minimum interference
to existing applications.

A common and simple approach could be to alter

each actor explicitly to support SSI. But that would hamper
the flexibility and efficiency of the backup solution. Also this
will require a considerable amount of code alteration to be
done to the existing applications, which is not feasible.

 An alternative solution could be, the backup
framework exporting an interface for each of the actor viz.
business applications, backup applications and snapshot
providers. An interface would facilitate communication
between the Backup Framework and the corresponding actor.
In SSI, the interfaces are implemented in the form of static
libraries. There are three libraries corresponding to the three
actors. An actor simply needs to compile itself with the library
and use the functions to communicate with SSI.

Each of these interfaces comprise of functions that
register and un-register an actor. Besides this, the interface
corresponding to the business application also consists of an
operation named i_am_consistent(). This function is called by
the business application when it gets consistent. The function
implements the code that makes the application to wait until
the framework responds.

Similarly, the interface related to the backup

application encompasses functions related to snapshot like
take snapshot, delete snapshot and reset snapshot. It also
provides methods to list snapshot providers and list SSI aware
business applications to the backup applications.

3.2 Making business application consistent:

 Before the snapshot is taken the business applications
have to get into a consistent state and then hold their writes
until the snapshot is taken. These applications need to be
notified when to get consistent and when to thaw writes.
Therefore the business applications need to export an interface

<7. status>

SSI Bridge <5. Make FS consistent>

Business
Applications

Storage
Disks

H/W or S/W
components
that manage
snapshots

Backup
Applications

Snapshot
Providers

<1. request
snapshot>

<2. request
consistency>

<4. status>

<6. request
snapshot>

<8. status>

<3. Flush buffers>

Figure 1: Architecture of SSI

through which the Backup Framework can control these
activities.

 The business applications can make use of sockets
for this reverse communication. Each business application
provides with a socket at the time of registration. A thread is
implemented by each business application that waits for a
message to come on that socket. This thread implements the
code related to consistency. Thus, the framework can make a
business application consistent by passing appropriate
message at the corresponding socket. Since sockets can be
implemented in any language, the mechanism becomes
language independent. But, the overhead with this approach is
implementation of an extra thread associated with each
business application.

 To conquer this deficiency signals could be used.
With this approach, each business application implements a
signal handler to make it consistent. The signal number is
notified to the framework during registration. The framework
sends a signal to the business application to make it consistent.
The only problem with using signals is that barely few
programming languages like C/C++ support signals.
Nevertheless, majority of servers are implemented in C/C++.
Thus, using signals the mechanism can be implemented easily
and efficiently. This made us choose signals in our solution.

3.3 Communication with Snapshot Provider:

The main objective of communicating with the
snapshot providers is that the Backup Framework needs the
services provided by them. Different snapshot providers
expose different interfaces. The Backup Framework should be
made aware of these interfaces.

This goal can be achieved using callbacks. Thus, the

snapshot provider at the time of registration supplies a set of
functions to the framework. The framework maintains the
structure in the database and uses the functions to perform
snapshot operations. The major drawback with using callbacks
is that, the framework needs to maintain the database.

Ideally all the snapshot providers are supposed to

export a common interface. But, this needs to be achieved
without making any changes to the snapshot providers.
Changes to the snapshot providers need to be specifically
avoided in the light of most of them being critical pieces of
code (most of them kernel mode).

 A way out of this dilemma is that the Backup
Framework would request a separate entity to export an
interface that it could use for communicating with snapshot
provider. This entity would forward the snapshot requests to
the appropriate snapshot provider. SSI requests all snapshot
providers to create this entity, which is nothing but a dynamic
linked library. This DLL written purely in user mode then
becomes the bridge between snapshot providers and SSI.

 Thus, existing snapshot providers can easily be
integrated with the Backup Framework by simply creating a
DLL that uses the services provided by snapshot providers and
registers the snapshot provider with the Backup Framework.

3.4 Timeout Mechanism:

 As mentioned in the previous section, the framework
supports a timeout mechanism. Whenever the framework
signals the business applications to get consistent, a timer is
started. If all the business applications do not respond within
the defined time, the snapshot operation is abandoned. The
timeout associated with the framework is configurable. Thus,
it is ensured that the framework will never hang. The
mechanism is implemented using alarm function available on
Linux.

The business application also has a timeout
associated with it. When a business application receives a
signal from the framework for consistency, it makes itself
consistent and starts the timer using alarm. The business
application now pauses itself until it receives the status from
the framework. If within the predefined time, the framework
does not respond, the application thaws and backup is aborted.

4. Performance Results

 The business applications tend to continuously write
data. When a snapshot operation is requested by a backup
application to the SSI framework, the SSI framework requests
all the registered business applications to flush their buffers
and temporally suspend their writes until the snapshot is taken.
This process involves some delay because of the inherent
delay in communication between the SSI framework and the
business applications and also the time taken by the business
applications to flush their buffers.

 The tests were conducted on a standard PC with a
Pentium 4 2.4 GHz processor and 256 MB of physical
memory. A typical configuration of Linux, Fedora Core 3
provided the operating environment. The sample backup
application that comes along with the SSI framework was
used. For the business applications, one instance of MySql
server and other instances of the sample business application
provided with the SSI framework were used. MySql v5.0.17
was upgraded to support SSI framework. Device Mapper, that
comes integrated with the 2.6.x Linux kernels, was used as the
snapshot provider for the system.

0
5000000000

10000000000
15000000000
20000000000
25000000000
30000000000
35000000000
40000000000

0 20 40 60 80 100 120

No. of Business Applications

R
dt

sc
 V

al
ue

s

Time to w rite 1000 records
w ithout SSI intervention
Time to w rite 1000 Records
w ith SSI intervention

Now, while writing records to a MySql table if a

snapshot is requested by a backup application there would be
some delay and the time taken to write those records would
increase. This delay as mentioned above is due to the
communication between the business applications and the SSI
framework. As the number of applications increase this delay
will increase and thus the time to write the records. As
expected this can be observed in the following table and graph
(Table 1 and Fig. 2).

The number of records chosen for the test was 1000.
Since the time taken to write 1000 arbitrary records in a
sample MySql table is very small, the timing measurements
were made using Rdtsc (read time-stamp counter)[6], a facility
provided by the Intel Pentium Processors. This time-stamp
counter is simply a register which is incremented every clock
cycle. Thus by placing the code to write the records between
two reads of this time-stamp counter it is possible to count the

number of processor cycles taken to execute that code. But,
one problem faced while using rdtsc was that it measures the
time delay inclusive of the time taken by other processes
running in the system. As, we do not have a control over the
operating system�s scheduling; the timing measurements with
dummy business applications were heavily fluctuating. The
dummy business applications did not actually do IO to become
consistent instead; they just signal that they are consistent.
Therefore, to stabilize these fluctuations a sleep of 2 seconds
was inserted as a token of time taken for real business
applications to become consistent. This caused the rdtsc values
that measured the time taken to write records, to increase
tremendously which in turn minimized the fluctuations. The 2
second constant added to all readings heavily overshadowed
the fluctuations in the rdtsc values due to number of processes
being scheduled between readings. The final effect of the 2-
second delay in the dummy business applications as a token of
time required to become consistent is that of making the
timescale coarser. The coarse timeline hides the effects of the
scheduling fluctuations. This can be seen clearly in figure 2.

 As observed above we can see that as the number of
business applications increase, the delay due to SSI
intervention increases linearly. This is logical since as more
and more business applications pour into the system, the SSI
framework would have to make sure that all those applications
are consistent before the snapshot is taken. Thus, it would
have to send every registered business application a signal to
get consistent and then wait for the responses from all of them.
Thus we can conclude that performance degradation of writes
due to intervention by the SSI framework while taking
snapshots is linearly dependent on the number of business
applications registered with the framework.

5. Comparison with VSS.

VSS is a dominant backup framework for the
windows systems and is fast gaining popularity. SSI does not
provide all of the advanced features provided by VSS. Some
of these advanced features are extremely useful and must be
included in SSI in the near future. Top of this list of useful
features are the concept of "shim writers"[7] and "snapshots
for shared folders". Shim writers are fake business
applications that run as services and assist in consistently
backing up the operating system state in accordance with VSS
framework. Shim writers would enable SSI to ensure
consistency of operating system critical data like the system
log files, service configuration files, boot configuration
information, driver configuration information etc during
backups. A shim writers� Contribution will allow backups of
operating system state using the standard VSS framework.

"Snapshots for shared folders"[8] is a feature using
which clients of file server can ask for previous version of a
file on the file server with no system administrator
intervention. Windows Server 2003 (win2k3) acting as a file

No. Of
Business
Applications

Time to write 1000
records without SSI
intervention (Rdtsc
values)

Time to write 1000
records with SSI
intervention (Rdtsc values)

1 5726900549 6364583915

3 5725800942 6594063443

7 5727397361 6990746543

15 5724200942 8488965541

25 5724984906 10955689559

50 5727548963 19435875936

100 5724156987 35574896562

Table 1: Delay introduced due to SSI as number of business
applications are added

Figure 2: Delay introduced in the business
applications due to SSI Intervention

server is configured to take periodic snapshots for volumes
hosting filer shares using the windows job scheduling
framework. The server maintains a predefined number of
snapshots per volume. The client can then ask for any of the
previous version of files on the file server, for which the
snapshots have been taken. The windows clients can then
access the pervious versions of a shared file using a modified
CIFS client which issues special SMB commands understood
by the CIFS server on the filer (win2k3). This is a neat feature
which simplifies the shared file restoration and recovery
process very simple, which would otherwise have required
system administrators intervention at the file server side.

Conclusions

In this paper, we have presented design alternatives for
implementing a Backup Framework for the Linux platform.
We also discussed the most appropriate design options as of
current picture. The performance results show that degradation
of writes due to intervention by the SSI framework while
taking snapshots is linearly dependent on the number of
business applications registered with the framework. This is
not a major concern since the hardware configuration of
servers running higher number of business applications is
usually better. The major gain of using such a framework is
that the business applications can continuously write data
while their snapshot assisted backup is taken and the time
taken for creating such a snapshot does not depend of the

amount of data to be backed up. The presence of the web is
making it mandatory for the business applications to run
continuously and such a framework is definitely a must have
for ensuring consistent and uninterrupted backups. The code
and other resources are available for download at
www.geocities.com/zohebshivani.

REFERENCES

[1] Dilip Naik, �On Backup and restore technologies�, in Inside windows
storage.

[2] Gary Stowell, �On the pros and cons of Microsoft�s Volume Shadow-
Copy Service�.

[3] Device mapper manual pages at http://sources.redhat.com/cgi-
bin/cvsweb.cgi/~checkout~/devicemapper/man/

[4] LVM2 manual pages at http://sourceware.org/lvm2/
[5] Kurt Seifried, �On various backup schemes� at

http://www.seifried.org/lasg/backups/
[6] Intel. Using the rdtsc instruction for performance monitoring. Intel,

1997.
http://www.cs.usfca.edu/~cruse/cs210/rdtscpm1-1.pdf

[7] VSS SDK 7.1 Documentation.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vss/base/vss_portal.asp

[8] �Snapshots for shared folders� � HP solutions with VSS.
http://h71028.www7.hp.com/ERC/downloads/5982-6827EN.pdf

