Orion File System :

File-level Host-based Virtuali zation

Amruta Joshi Faraz Shaikh Sapna Todwal
Pune Ingtitute of Computer Pune Ingitute of Computer Pune Ingitute of Computer
Tedhnology, Tedhnology, Tedhnology,
Dhankavadi, Pune 411043, India Dhankavadi, Pune 411043, India Dhankavadi, Pune 411043, India
02024371101 02024371101 02024371101

amruta_pict@yahoo.com

Abstract— The aim of Orion isto implement a solution that
provides file-level host-based virtualization that provides for
better aggregation of content/information based on
semantics and properties. File-system organization today
very closdy mirrors dorage paradigms rather than user-
access paradigms and semantic grouping. All file-system
hierarchies are containers that are expressed based on their
physical presence (a separate drive letter on Windows, or a
particular mount point based on the volume in Unix).

We have implemented a solution that will allow
users to arganize their fil es based on their convenience We
define this conveniencein the foll owing forms:

* The ability to arganize the namespace based on certain
attribute properties (fil e-system metadata virtualization)

* The ahility to de-link position of a file in the hierarchy
from itsactual storage (fil e metadata virtualization)

* The ability to create and manipulate namespaces using
well-known metaphors (XML schema descriptions and
schema dditors)

* The ability to continue using the standard metaphors for
manipulation and access to information (fil e-system kernel
API' s), thus maintaining current large body of applications
unbroken)

Currently, no aher solution alows users to
organize their files usng convenient semantic groupings
while @ntinuing to use standard applications. This lution
is unique in the sense that it alows flexible namespace
construction using XML.

1. INTRODUCTION

ORION is a semantic file system capable of
providing file level aggregation acoording to the semantics
of the file aad povide for the diredory structure
virtualization of an existing file syssem. A semantic file
system is an information storage system that provides a
flexible associative access to the system's contents by
automaticdly extracting attributes from file with the help of
type spedfic transducers[5]

Asxciative access is provided by extension to
exiging treestructured file system protocols, and by
protocols that are designed spedfically for content-based
access Compatibility with existing file system protocols is
provided by introducing the concept of a virtual diredory.
Virtual diredory names are interpreted as queries, and thus
provide a flexible assciative accessto files and diredories
in a manner compatible with existing software. Rapid
attribute-based accessto system contents is implemented by
automatic extraction and indexing o key properties of files.

faraz_irulz@yahoo.co.in

sapnatodwal @yahoo.co.in

The automatic indexing o files and diredories is called
"semantic" because user programmable transducers use
information about these semantics of files to extract the
properties for indexing. The extracted properties are then
stored in a relational database so that queries can be run
against them. Experimental results from our semantic file
system implementation ORION show that semantic file
systems present amore dfedive storage abstraction than the
traditional tree structured file systems for information
sharing, storage and retrieval.

2. MOTIVATION

When you have a large number of items, it is
important to have aflexible ad efficient mechanism to
search for particular items based on their properties and
content.[4] Thisis exactly what Orion amsto achieve.

Storage Paradigm to User Access Paradigm

Orion takes a fil e system from storage paradigm to
user accessparadigm and semantic grouping.[2] Thus Orion
takes an FS closer to the way people think about files. We
do not think of files acoording to where it is stored. Rather
we observe that people think about files based on their
content or properties. Hence, search for file should ke based
on these rather than their storage location in the diredory
hierarchy.

Orion uses grouping instead o ordering to locate
files. A grouping is interpreted by performing a set
intersedion of those lists for every object named in the
grouping.[3]

Platform rather than an application

Orion is a platform and not just an application.
Being a platform, al file system kerne API's remain
unchanged. Also existing applications automatically start
working with the new platform and can explait its features
without any changes to the applications themselves. Also,
Orion is not targeted a any particular file type and can
support any fil e types that may come up in the future.

Multiple Views of the same et of files

Orion aggregates information based on its
semantics. It restructures the logicd layout of the file
system and gives you the ahility to have different logical
views of the same set of physical files. All files are stored
physicaly in the central object store. Atop this, we have a
define and mount multiple views, based on property of the

filelikeitstype or some extended attribute of the file like its
owner, movie of an mp3, etc.

3. APPROACH

We have developed an approach for information
storage that bath permits users to share information more
effedively, and provides reductions in programming effort
and program complexity. To be dfedive, this new approach
neals a transition path from existing file systems. To
achieve this goal we will develop a file system, which will
provide for file aggregation according to semantics and
virtualization of the file system’ s diredory structure.

Asciative accessis designed to make it easier for
users to share information by helping them discover and
|locate programs, documents, and ather relevant objects. For
example, files can be located based upon transducer-
generated attributes such as author, exported or imported
procedures, words contained, type and title. ORION as a
semantic fil e system implementation is totally transparent to
the legacy applicaions which access the files on our file
system via the normal Linux file syssem API's. Another
approach can be making a cmmplete user level program,
which provides a new interface altogether. Though this
approach isthe easest, it would require all new programsto
adhereto the newly introduced interface and neverthelessdll
the eisting legacy appli cations would fail .

ORION thus integrates associative access into a

database to give the user a solution in the form afile system
with database like extension.[1]

The battom line is ORION is an implementation
prototype for further semantic file systems. ORION's
interface is grictly backward compatible to traditional tree
structured file system as we understand the “people don't
like abrupt paradigm changes’ spedally when it comes to
storing their critical data.

4. ARCHITECTURE

ORION consists of 3 mgjor parts viz. Objed Store, Orion
View Core and Database Module. The object store and
orion view core operate below the Linux VFS layer while
the database is in user space The object store is a flat file
system stacked atop a disk file system. Every file aeated in
the object store has to have a corresponding record in the
database. Hence an updating thread is activated to log in
detail s of the newly created file. It communicates with the
update daemon which actualy updates the database. The
Orion view core is responsible for creaing virtual
diredories and listing files in them. Every diredory has a
query asociated with it. To find aut which files stisfy the
query, Orion view core uses the recordset cache. If the entry
is not found in this cache, the record is sached for in the
database by using the cache fault handler.

ORION provides the user with two different types
of attributes viz. Normal attributes and Extended attributes.

[MySdl Database ORION FS scheme

“ext=mp3>

] <DIR nam=mp3 sql=
<DIR nam=prj

[Database Update Daemon] [

Cache Fault Handler XML DOV files

] sql="prj=0OFS">

[mount svscall]

[Linux 2.4 Virtual File System (VFS) Interface)
Updqhng Ob] ect Store ORION view core User-Kerne|\
Interaction
IPC

Thread - -
{ Underlying Filesystem J

{ Reoordset Cache J

mechanism \)

Fig 1: ORION Architecture

tree structured file system through the @ncept of a virtual
diredory. Virtua diredory names are interpreted as queries
and thus provide flexible associative access to files and
diredories in a manner compatible with existing software.
For indexing the semantic atributes of the files ORION
uses arelational database with an extensible schema. So the
search power of areational engineis used when spedfying
the queries to be assciated the virtua diredories. The
projed thus merges the advantages from the two most
prominent storage tednologies the file system and the

Thenormal attributes are the attributes like fil ename, owner,
size, uid, gid etc which are provided to us by the underlying
file system. The extended attributes, on the other hand, are
provided by the user in the form of name value pairs. The
main power of Orion liesin these extended attributes.

Orion uses an extensible schema for storing o
normal as well as extended attributes, catagorised in four
major datatypes viz. text, date time, number and bodean.
Orion has five tables in the database. The attribute record
table, containing filename, inode number and file type, is
the base table with exactly one entry for each file in the

objed store. This table has one to many relationship with
the four other tables in the database. These child tables gore
the normal and extended attributes of the fil es based on their
datatype. The child tables contain inode number as the
foreign key referring to the inode number in the
arrtibute record table, the attribute name and the attribute
value. Thus the dtribute names are not made as column
names as in case of regular method of storing attributes but
extensible schema is used. So the structure is essentially
vertical than horizontal.

then the contral initially passes down to the VFSlayer in the
function vfs getdents(). Then the @ntrol trickles down to
the fil esystem spedfic readdir i.e ofs _readdir.

In step 1 ofs readdir() asks for the recordset
corresponding to Cfiles in the recordset cache. If thereis a
cache hit then the pointer to the recordset is returned.

Else as sown in step 2, in case of cache fault the query for
the diredory and the pid of the processwaiting for listing is
sent to the user space deamon cdled cache fault handler.
Corresponding to this request a thread is exeauted in the

=
CFiles
AND Text TypelikeC

create_query Z-Z—i 2.3

DR Exec Olierv

[Root]# Is CFiles

Cache Fault Handler

2.1
2\ R| User Mode
Q S| Kernel Mode
(V' FS getdents() | L +
ORLON CORE + P
| ofs lookup() ofs readdir() | P !
3 = | D
3.1 3,3 Lenry Cach N7

/mnt/ohiSiore
[ooxso0 [T ooaws01 | | | .
[ooxs05 | [002506 |

0024513 00245614

getrecordset(iNo)

Fig 2 Content Based Directory Listing

5. IMPLEMENTATION

Astheinitia setup the object storeis present on an
partition and the meta-data about the fil es in the olject store
is gored in the database. After this the mntent-based access
is stupin threephases.

e Credingthevirtua diredory structure.

e Content based Listing for thevirtua diredories.

e Logging the activities on the ohed store in the
relational database.

Creating the virtual diredories

The information about the diredory structure to be mounted

on top of the ohed store is dored in file. This file is in
XML format and is called data organization view file or the
DOV file. The user the issues the mount(2) system call with
two extra options, the path of the objed store and the name
of the DOV file, to mount the diredory structure spedfied
in the DOV file. The virual diredory is of the form
“diredory name and its associated query”. For eg: if we
neal a virtual diredory containing al the c files we will

name the diredory as “Cfiles’ and will associate it with the
query “And Text typelike ¢'.

Content Based Diredory Listing (Refer fig 2)

Suppose there is a virtud diredory called Cfiles with the
asociated query “And Text type like ¢. Now when an
application like Istries to do listing o Cfiles as “Is Cfiles’

deamon in step 21. As see in gep 2.2 this query is
converted to a SQL query . In step 23 this query is exeauted
and the duplicates are resolved.Finally in step 2.4 the
recrdet cache is populated with the recordset of the form
“inode-no. filename” and the process waiting for the
recrdset iswoken up.

Now when ofs_|lookup actually does lodkup in step
3.1 snthe diredory Cfil es, the inodes are etracted from the
objedstore with the inode numbers in the recordset cache
using function iget(sh,inode-no). Then finally in step 3.2 the
dentry cache is populated with the names attached using
function d_add().

Logging Activitieson the Object Store (Refer Fig 3)

Now whenever a new file is created o edited on
the views in the Orion file system, the appropriate upcates
have to be donein the database &isting in the user space i.e
the activites happening in the object store have to be logged
on into the database.

Lets take an example. Suppose an application like
touch creates anew file alled newfilexyz , then the cntrol
initidly passs down to the function vfs create() . It then
passs the antrol to the fil e system spedfic areate function
ofs create(). In stepl the ofs create() function makes the
vhodes i.e the dentry and the inode cmpatible with the
underlying file system. After this when the contral actually
goes down to the create function of the underlying file
system, the cdl is trapped. In the precl of create (step 2),

[[root#] touch ./view/newFilexyz | Update Database
H 4B User Mode
S Kernel Mode
[VFS create(dentry,inode)]
[
[ofscreate) | “1
(ORION Store Filter PreCalls Create() 2~)
| 0024500 | | 0024501 | | 0024500 |
3] 0024505 | | 0024506 | | 0024505 |
[newFilexyz |[_oozse14a] [ooz513 |
4 Post Call's Create()

Fig 3 Loggng Of Activities on the object store

the Orion store filter updates the database to refled the
changes in the object store. Smilarly even other system
calls like unlink, set_attr and rename ae trapped to make
appropriate updatesin the database.

Now in this example, in the actud create cdl in
step 3the file is actually created with its original name i.e
newfile.xyz. In the postcall of createi.e in step 4, the name
newfile.xyz isrenamed by itsinode number in the flat object
store so that the new file aeated becomes a part of the
objed store. Along with this the process (here “touch”)
which invoked the aede operation is woken up which
otherwise is deeguing through out the process Thus the
created new fil e isregistered into the database.

Thus Orion is a filesystem empowered with
querying abilities on files extended attributes and
virtualization of diredory structure.

6. CONCLUSION

Thus after the completion of the “ORION Filesystem” we
have successfully implemented a semantic file system. All
the requirements given in the scope of the projed were met.
Initid performance results show that adding a semantic
access protocol over a traditional file system doesn’'t add
much overhead. The major gain of using such afile system
is organization of data is a cleaner and easier way. With
hard disk sizes reaching upto 100 GB and people storing
more and more semantic rich data on their file system, a

semantic file system capable of organizing its contents
automaticdly is definitdy a must have. No wonder
Microsoft is gpending a lot of money in the research and
development of their own semantic Filesystem WINFS,

ACKNOWLEDGEMENT

We would like to expressour heatfet gratitude our guide,
Mr. Anandamoy Roy Chowdhary, Calsoft Inc. Pvt. Ltd,
Pune for his excdlent guidance and diredion. We would
also like to thank our internal guide, Dr. C.V.K. Rao, PICT,
Pune for the mnstant encouragement and assstance he
provided us at every stage of the projed.

REFERENCES

[1] "Practical File System Design with the Be File System",
1% Edition By Dominic Giampaolo, Morgan Kaufmann
Publi cations.

[2] "File System and Storage Advancement in Windows
Longhorn" by Q. Clark

[3] "The Naming System Venture", Hans Reiser (Jan 2001)
[4] "Revolutionary File Storage System Lets Users Seach
and Manage Files Based on Content”, Richard Grimes.

[5] "Semantic File Systems', David K. Gifford, Piere
Jouvelot, Mark A. Sheldon, James W. O'Tode, Operating
Systems Review, v25n5 1991

