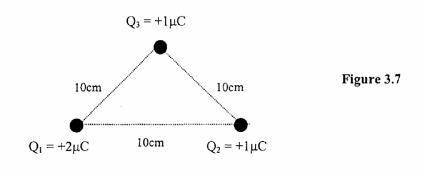
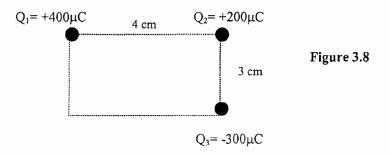

- How many electron must be removed from an electrically neutral silver ball to give it a charge of +2.4μC ? (Ans : 1.5 x 10¹³ electrons)
- 2. Excess electrons are placed on a small lead sphere with mass 8.00g so that the net charge is -3.20×10^{-9} C. Find the number of excess electrons on the sphere (Ans : 2.0 X 10¹⁰ numbers of electron)
- Two isolated small objects have charges of 1.0 μC and -2.0μ C and are 50cm apart as Figure 3.5. What will be the magnitude of electrostatic force acting on each object? Write the electrostatic force vector component for each object.

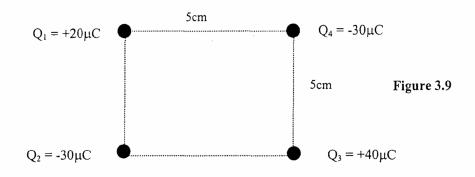


 $(Ans: 0.072N, \ \vec{F}_{12} = +0.072 \hat{i} \ , \ \vec{F}_{21} = -0.072 \hat{i} \)$

4. Three point charges are arranged as Figure 3.6. Find the resultant electric force vector component on the charge q_3 due to charge q_2 and q_1 .



- 5. Three point charges Q_1 , Q_2 and Q_3 are arranged as shown in Figure 3.7
 - (i) Write the vector component for resultant force on charge Q_3 due to other charges
 - (ii) Calculate the resultant force on charge Q₃.


 $[Ans: i. \vec{F}_3 = 0.45\hat{i} + 2.34\hat{j}, ii. 2.38N, 79.1^0 (1^{st} quarter)]$

- 6. Three point charges Q_1 , Q_2 and Q_3 are arranged as shown in Figure 3.8.
 - (i) Find the vector component for resultant force on charge $Q_2 = +200\mu$ C due to other two charges.
 - (ii) Calculate the resultant force on charge Q_2 .

(Ans: i. 4.5 x 10^5 N i - 6 x 10^5 N j, ii. 7.5 x 10^5 N, 53⁰, 4th quarter)

- 7. Two point charges Q_1 and Q_2 are 3m apart and repel each other with a force 0.075N. If $Q_1 + Q_2 = 20\mu$ C, what is the charge on Q_1 and Q_2 . (Ans: 5μ C, 15μ C)
- 8. Four point charges Q_1 , Q_2 , Q_3 and Q_4 are arranged as shown in Figure 3.9,
 - (a) find the vector component for the force acting on Q_2 due to Q_1 .
 - (b) find the vector component for the force acting on Q_2 due to Q_3 .
 - (c) find the vector component for the force acting on Q_2 due to Q_4
 - (d) find the force acting on Q_2

(Ans: a. +2160N j, b. +4320N i, c -1145.5 i - 1145.5 j, d. 3332.21 N, $\theta = 17.72^{\circ}$ (1st quarter) @ 17.72 above posite x axis.)