1. Consider the circuit sketched in Figure 4.7, what is the magnitude and direction of electric current.

(Answer: 0.5A, counterclockwise)

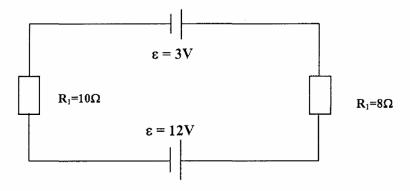
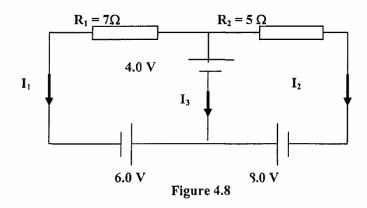



Figure 4.7

2. Find the current in the circuit shown in Figure 4.8

(Answer:
$$I_1 = 1.43A$$
, $I_2 = 2.4A$, $I_3 = -3.8A$)

- 3. From the figure 4.9 find
 - (a) I_1 , I_2 and I_3
 - (b) Potential at point F if point B was grounded.

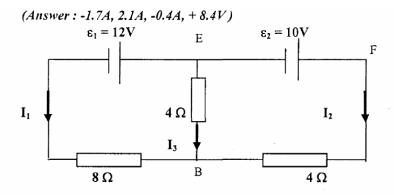


Figure 4.9

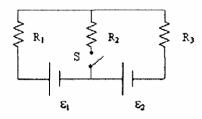


Figure 4.10

- 4 a) In the figure 4.10, if the current through R₁ is 5 A up and if the current through R₃ is 3 A up, what is the current in R₂ if the switch S is closed?
 - b) If $R_1 = 6 \Omega$, $R_2 = 8 \Omega$, $R_3 = 2 \Omega$, $\epsilon_1 = 4 V$, and $\epsilon_2 = 14 V$ and the switch S is closed i) what is the current in R_2 ?
 - ii) Find the voltage drops across the resistors in the circuit?
 - iii) what is the power supplied to the circuit by ε_1 ?
 - c) If $R_1 = 6.0 \Omega$, $R_2 = 8.0 \Omega$, $R_3 = 2.0 \Omega$, $\epsilon_1 = 4.0 V$, and $\epsilon_2 = 14 V$, what is the current flows in the circuit if S is open?

(Answer a) 8 A, b) i) 1A, ii)
$$V_1 = 12V$$
, $V_2 = 8 V$, $V_3 = 6V$ c) 28/8 A)

5. What shunt resistance should be connected in parallel with an ammeter having a resistance of 0.04Ω so that 25 percent of the total current will pass through the ammeter.

(Answer: 0.013Ω)

6. A 36Ω galvanometer is shunted by a resistor of 4.0Ω . What part of the total current will pass through the instrument?

(Answer: 1/10)

7. A relay having a resistance of 6Ω operates with a minimum current of 0.03A. It is required that the relay operate when acurrent in the line reaches 0.24A. What resistance should be used to shunt the relay?

(Answer: 0.86Ω)