5biscuits
個人資料 | email |
posted 02-08-99 6:48 PM PT (US)
這只是一條普通的數學題,但是我到現在亦找不到答案, 所以請各位幫幫忙: 1/1 + 1/(1+2) + 1/(1+2+3) + 1/(1+2+3+4) + ...... + 1/(1+2+3+......+100)=? |
|
CC
個人資料 | email |
posted 02-08-99 6:57 PM PT (US)
Let S be the sum. (1+..+n) = n(n+1)/2
Hence S = 2 / [1/(1x2) + 1/(2x3) + ... + 1/(100x101)] but 1/[n(n+1)] = 1/n - 1/(n+1) So you can do the rest, can't you? |
|
Xiren
個人資料 | email |
posted 02-09-99 11:47 PM PT (US)
Hence S = 2 / [1/(1x2) + 1/(2x3) + ... + 1/(100x101)] should be: S = 2 x [1/(1x2) + 1/(2x3) + ... + 1/(100x101)] |
|
CC
個人資料 | email |
posted 02-10-99 11:28 AM PT (US)
Oops. Well, typing mathematical stuff is error-prone, always. |
|
5biscuits
個人資料 | email |
posted 02-10-99 8:21 PM PT (US)
感激不盡 |
|
【 寫信給過兒 | 超級無敵IQ題 | 超級無敵IQ題精華討論主頁】 |