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Abstract— An incremental, nonparametric probability estima-
tion procedure using the fuzzy ARTMAP (adaptive resonance
theory-supervised predictive mapping) neural network is intro-
duced. In the slow-learning mode, fuzzy ARTMAP searches for
patterns of data on which to build ever more accurate estimates.
In max-nodes mode, the network initially learns a fixed number
of categories, and weights are then adjusted gradually.

L Fuzzy ARTMAP FOR PROBABILITY ESTIMATION

MANY pattern recognition applications require an es-
timate of the probability that an input belongs to a
given class. In a medical database, for example, a set of
measurements can be used to estimate the probability that
a patient will require a long stay in the hospital. Different
groups of diagnostic factors may be associated with a single
outcome, and it is possible that no single combination of
variables forms a unique set of predictors. Fuzzy ARTMAP
(adaptive resonance theory-supervised predictive mapping),
[1], [2] discussed in Section II, is a neural network that
automatically selects complex combinations of factors on
which to build accurate predictions for application to prob-
lems such as medical prediction and handwritten character
recognition [3]-[5]. Fuzzy ARTMAP is able to create a stable
memory structure even with fast, on-line learning. With fast
learning, the network would regard each on-line training point
as potentially informative, possibly an important rare case,
and record its prediction in the set of learned categories. In
this training mode, however, noisy data can lead to category
proliferation.

A procedure that uses fuzzy ARTMAP slow learning for
probability estimation in a noisy input environment is de-
veloped here. Unlike parametric probability estimators, fuzzy
ARTMAP does not depend on a priori assumptions about the
underlying data. The network can make accurate probability
estimates even when the underlying distributions are unknown
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and when data sets arrive incrementally. Fuzzy ARTMAP on-
line computations achieve both accurate probability estimates
and good code compression by partitioning the input space
into categories. Large or small recognition categories form to
generate the best output predictions, and a variable number
of recognition categories may predict each output. Categories
evolve through a hypothesis testing process that incrementally
incorporates information about each pattern into a knowledge
base. If the system encounters a region of input space that
includes several small clusters of inputs from different classes,
it breaks those regions into subregions and makes a probability
estimate for each subregion. ARTMAP can thus make broad,
efficient generalizations, but also reduces false alarms by
identifying rare or exceptional cases. Methods that try to fit
the data to an assumed but incorrect distribution can fail to
identify these exceptions.

Simulations demonstrate that the fuzzy ARTMAP probabil-
ity estimation procedure is robust, performing well in problems
with different types of input distributions. Two variants of
this method are described, the slow-learning mode in Section
III and the max-nodes mode in Section IV. In slow-learning
mode, the system grows incrementally until it achieves a good
fit to the underlying probability density function. In max-
nodes mode, the user specifies an upper bound on network
size. After it has reached this size the network stops growing,
but additional training data can still be incorporated into
the existing network to improve its probability estimates.
Simulations of three probability estimation problems compare
performance of both modes of fuzzy ARTMAP to that of
Bayesian estimation. The three tasks requiring probability
estimation for a simple two-Gaussian distribution are discussed
in Section V, a trimodal distribution is discussed in Section
VI, and a difficult problem in which inputs to each class
form distributions that are 97-modal, with modes falling on
two intertwined spirals, is discussed in Section VII. Fuzzy
ARTMAP provides accurate estimates in both modes for all
three tasks. Finally, Section VIII includes a discussion of the
ARTMAP algorithmic variations, and the Appendix illustrates
slow learning with a computational example.

II. Fuzzy ARTMAP

Fuzzy ARTMAP (Fig. 1) includes a pair of ART modules
[6] (ART, and ART;,) that create stable recognition categories
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Fig. 1. Fuzzy ARTMAP architecture [1]. The ART, complement coding preprocessor transforms the Mg-vector a into the 2M,-vector A = (a,ac)
at the ART, field F§, where @ = 1 — a. Vector A is the input to the ART, field F*. Similarly, the input to Flb is the 2M;-vector B = (b,b°).
When a prediction by ART, is disconfirmed at ART}, inhibition of the map field Fab gactivates a match tracking process. Match tracking raises the
ART, vigilance (pa) to just above the F?-to-F§ match ratio |z2|/|A|. This triggers an ART, search that leads$ to activation of either an ART, category
that correctly predicts b or to a previously uncommitted ART, category node.

in response to arbitrary sequences of input patterns. During
supervised learning, ART, receives a stream {a(*)} of input
patterns and ART, also receives a stream {0} of patterns,
where b is the correct prediction given a(®). These modules
are linked by an associative learning network and an internal
controller that ensures autonomous system operation in real
time. The controller is designed to create the minimum number
of ART, recognition categories, or “hidden units,” needed to
meet accuracy criteria.

Parameter p, calibrates the minimum confidence that ART,
must have in a recognition category, or hypothesis, activated
by an input a‘? for ART, to accept that category, rather than
search for a better one through the automatically controlled
process of hypothesis testing. Lower values of p, enable larger
categories to form. These lower p, values lead to broader
generalization and a higher degree of code compression. A
predictive failure at ART, increases p, by the minimum
amount needed to trigger hypothesis testing at ART,, using
a mechanism called match tracking. Match tracking sacrifices
just enough generalization to correct a predictive error. Hy-

pothesis testing leads to the selection of a new ART, category,

which focuses attention on a new cluster of a(?) input features
that is better able to predict b5%). Match tracking allows a
single ARTMAP system to learn a different prediction for a
rare event than for a cloud of similar frequent events in which
it is embedded. The fuzzy ARTMAP algorithm [1] scales to
arbitrary dimensions. Low-dimensional simulation examples
illustrate the algorithmic variations introduced here.

HI. SLOW-LEARNING MODE

In the slow-learning mode, fuzzy ARTMAP slowly updates
its map field weights to estimate the probability that an input

belongs to a given output class. In particular, when an input
activates an ART, category at level F3', the size of the
weight in the pathway from the F3 category to a map field
category node (Fig. 1) provides an estimate of the probability
that the input belongs to the output class coded by the map
field node. During supervised learning, the strength of the
weight projecting from the selected ART, category to the
correct ART), category is increased, while the strengths of
the weights to other ART} categories are decreased. A map
field vigilance parameter (p,;) calibrates the degree of novelty,
or predictive mismatch, necessary to trigger the search for a
different ART, category. If the weight projecting from the
active ART, category through the map field to the active
ART;, category is smaller than p,;, the system responds to the
unexpected outcome through match tracking, which triggers
an ART, search for a new F§ recognition category.

Once an ART, category (J) is chosen whose prediction of
the correct ART,, category is strong enough, match tracking
is disengaged, and the network is said to be in a state of
resonance. Then, learning proceeds at ART, according to the
fuzzy ART [7] fast learning equation. Map field learning obeys
the equation

(1 — Bap)(w2)Ol 4 B pgh
(wgp)°Md

ifj=J

ifj#J o

(wgh)e¥ = {

where w;‘,’; is the map field weight projecting to map field node
k from the ART, node j, with wgg(o) = 1 and where map
field activity 3® = 1 when k is the correct ART; category
and zg” = 0 otherwise. The map field learning parameter (3,5
determines the rate of change of the map field weights. Small
values of ,; cause the system to base its probability estimate
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on a long-term average of its experience, while values of Bab
near one allow adaptation to a rapidly changing environment.
The Appendix includes a computational example of this slow-
learning process.

IV. MAX-NODES MODE

For large-scale applications, it may be necessary to limit
the size of the network for computational efficiency. In such
circumstances, ARTMAP can operate in a max-nodes mode,
in which the user specifies a maximum number of F3 category
nodes. This method sets map field vigilance p,p t0 One during
early training, to establish an initial categorical mapping. After
the maximum number of ART, categories has been reached,
Pab is set to zero, so match tracking never occurs in response to
a predictive mismatch. With pap initially equal to one, match
tracking will be triggered whenever a predictive error occurs.
This initial “critical period” establishes a tessellation of the
input space associating each region with one output class. After
pab is lowered to zero, map field weights slowly adjust their
estimates of the probability that a member of a given ART,
category belongs to a given ART} class. With pgp = 0 and
Bab < 1, the rapid partition established with pgp = 1 is fine
tuned via slow learning.

V. SIMULATION: TWO GAUSSIANS

In a two-Gaussian probability estimation task, inputs from
two classes are drawn from two overlapping distributions
(Fig. 2). For this task, a simple, two-Gaussian model makes
accurate probability estimates, with the task reduced to esti-
mating the parameters of the underlying distributions.

In the probability estimation task depicted in Fig. 2, the
input points in a unit square were drawn from two Gauss-
ian distributions centered at p; = (0.5,0.75) and pp =
(0.5,0.25), with covariances 0? = 0.15,013 = 0,021 = 0,
and 02 = 0.15. Fig 2(a) indicates the size of the two
Gaussians, with circles centered at y; (white) and po (black),
with radii 202 = 0.3. Approximately 95% of the class 1
patterns fall within the white circle and 95% of the class 2
patterns within the black circle. Fig. 2(b) shows the actual
training data, drawn from the two distributions with equal
probability. The 520 white points belong to class 1 and the
480 black points belong to class 2. Fig. 2(c) shows the actual
probability that a pattern falling at each point in the unit square
will belong to each of the two classes. Patterns falling in
lighter regions are more likely to belong to class 1, while
those in darker regions are more likely to belong to class
2. These probabilities represent the ideal estimate calculated
using Bayes’ rule

o) — Plale)P()
P(cla) = =005 @
where
p(a) =) p(alc)P(c)- ©)
c=1
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Fig. 2. Two overlapping Gaussians with equal a priori probabilities. (a)
Circles around Gaussian means, each with radius 202. (b) Actual training
data (1000 points). (c) Actual conditional probability P(a € class 1). Points
falling in a lighter region are more likely to belong to class 1, darker to class 2.
(d) Gaussian model estimated conditional probabilities. (€) Optimal decision
boundary. Points appearing in white area are assigned to class 1, black to
class 2. (f) Gaussian model decision boundary.

In (2) and (3), ¢ = 1,2 is the class index, P(cl|a) is the a
posteriori probability that pattern @ belongs to class ¢, p(alc)
is the probability density function of a given that the class is
¢, and P(c) is the a priori probability of class c. Fig. 2(d)
shows the probability estimate computed by assuming that
the two distributions are Gaussian and estimating their means
and covariance matrices from the training data. Since the
input set exactly meets the distributional assumptions of the
two-Gaussian model, model estimates are very close to the
ideal solution [Fig. 2(c)]. Fig. 2(e) shows the decision regions
of the ideal maximum a posteriori classifier derived from
the probability estimate of Fig. 2(c). Points in the white
region are more likely to belong to class ¢ = 1, and points
in the black region are assigned to class ¢ = 2. These
classification regions will minimize the expected number of
misclassifications. Fig. 2(f) shows the corresponding decision
regions of the two-Gaussian model. As expected, the decision
region shown in Fig. 2(f) appears to be very similar to the
ideal solution shown in Fig. 2(e). The degree of similarity can
be quantified as follows.

The performance of a two-class probability estimator can
be quantified by calculating its average Brier score. The Brier
score is a value which reflects how well a probability estimator
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Fig. 3. Fuzzy ARTMAP model estimated conditional probabilities and de-
cision boundary for the two-Gaussian problem. (a) Slow-leaming model
estimated conditional probability, averaged over nine orderings of the training
data. Map field leamning rate 8,;, = 0.02, map field matching criterion
Pab = 0.75. (b) Max-nodes = 20 model estimated conditional probability,
averaged over nine orderings of the training data: 3,5 = 0.01 and p,;, = 1
until 20 ART, nodes are committed, then p,, = 0. (c) Slow-learning
ARTMAP model decision boundary. (d) Max-nodes = 20 ARTMAP model
decision boundary.

approximates the true probability of an output. The score
u(q,p) is a function of the estimated probability (¢) and the
true probability (p) according to the equation

u(g,p) = 1— (g~ p)?. @)

This function is maximized at u(g, p) = 1, when the estimated
probability is equal to the true probability, and minimized
at u(q,p) = 0, when the estimated probability differs from
the true probability by one. The average Brier score of the
two-Gaussian model was calculated for 10000 points evenly
spaced on a grid covering the unit square. This average score
was very high (0.999), indicating that the two-Gaussian model
provides a good estimate of the distribution of the training data.

Fuzzy ARTMAP was also able to estimate probabilities for
the two-Gaussian problem (Fig. 3), although not as efficiently
as a system that is ideally suited to the task via a priori
knowledge of probability distributions. Fig. 3(a) shows fuzzy
ARTMAP probability estimates with slow learning, computed
as the strength of the weight w‘}’; projecting from the winning
- ART, node to ART, node ¢ (¢ = 1, 2), divided by the
sum of the weights projecting from the winning ART, node

(w% + w) where

ab
Wye

P(cla) = ——I=—.
O

)

Performance was robust for a broad range of parameter
choices. In simulations, the learning rate parameter Bap in
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(1) was set to 0.02. On each pattern presentation, map field
weights were then moved 2% of the way to zero or one,
depending on which node was selected at ART}. Map field
vigilance p,; was set to 0.75, so match tracking was engaged
whenever the size of the weight projecting from the winning
ART, node J to the winning ART;, node ¢ was less than 0.75.
The results were averaged over nine independent orderings of
the training data. Since ARTMAP i a fast incremental learning
algorithm, the trained network weights vary with the order of
the input presentation. By averaging estimates over several
different orderings of a single data set, order dependence is
reduced. On average, the system created eight nodes, for a data
compression ratio of 125 : 1 and Brier score of 0.984. Fig. 3(b)
shows the average probability estimate of an ARTMAP max-
nodes system, with B, = 0.01. The map field vigilance,
Pab, equals one until 20 nodes are created, after which Pab
equals zero. This method achieves a data compression ratio of
50:1 and Brier score of 0.979. Twenty nodes were sufficient
because the task was very simple. More complicated tasks
tend to require a larger upper bound on the number of nodes.
Even though it did not incorporate any knowledge of the
underlying probability distribution, fuzzy ARTMAP achieves
a good probability estimate.

VI. SIMULATION: MULTIMODAL DISTRIBUTIONS

A multimodal distribution problem with two output classes
violates the a priori assumptions of the two-Gaussian model.
For example, in the task shown in Fig. 4, inputs were drawn
from each of six Gaussian distributions arranged in a ring
[Fig. 4(a)]. White circles correspond to the Gaussians whose
patterns belong to class 1, and black circles correspond to class
2. Fig. 4(b) shows the training inputs, which were drawn from
the six distributions with equal probability. The 510 white
points belong to class 1, and the 490 black points belong to
class 2. Fig. 4(c) shows the actual probability that a pattern
falling at each point in the unit square will belong to each of
the two classes, calculated using Bayes’ rule. As in Fig. 2(c),
patterns falling in lighter regions are more likely to belong
to class 1, while those in darker regions are more likely to
belong to class 2. Fig. 4(d) shows the estimate of the simple
two-Gaussian model, which assigns a probability of about 0.5
to each point. Fig. 4(e) and (f) compare the ideal classification
with that of the two-Gaussian model.

Fuzzy ARTMAP (Fig. 5) identified the six regions corre-
sponding to each of the six Gaussians in Fig. 4 and accurately
estimated the class probabilities in each. The probability esti-
mates of the system, averaged over nine orderings of the same
data, are shown for the slow-learning mode [Fig. 5(a)] and
the max-nodes mode [Fig. 5(b)]. The same ARTMAP system
parameters were used as in Fig. 3. Estimated probabilities
appear as three lighter and three darker areas, corresponding
to classes 1 and 2. The a posteriori decision regions produced
by each system [Fig. 5(c) and (d)) correctly identified large
regions corresponding to the six ideal regions [Fig. 4(e)].
Differences were concentrated near the borders of the regions,
where actual probabilities are near chance. On average, 26
ART, nodes were created in slow-learning mode, for a data-
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Fig. 4. Six overlapping Gaussians with equal a priori probabilities. (a)
Circles around Gaussian means, with radius 2¢2. (b) Actual training data
(1000 points). (c) Actual conditional probability P(a € class 1). Points falling
in a lighter region are more likely to belong to class 1, darker to class 2.
(d) Gaussian model estimated conditional probabilities. (¢) Optimal decision
boundary. Points appearing in white area are assigned to class 1, black to
class 2. (f) Gaussian model decision boundary.

compression ratio of over 38:1. In max-nodes mode, the
maximum number of categories was set to 20, for a data
compression ratio of 50:1. Although this problem is more
difficult than the two-Gaussian problem, fuzzy ARTMAP
performed robustly, achieving Brier scores of 0.906 in slow-
learning mode and 0.914 in max-nodes mode.

VII. SIMULATION: NOISY NESTED SPIRALS

The probability estimation task presented in Fig. 6 is a
variation of the nested spiral benchmark classification task
described by Lang and Witbrock [8]. In their task, 97 input
points belonging to class 1 fell along one spiral, and 97
points belonging to class 2 fell along a second, nested spiral.
The noisy nested spiral task generates an input set from 194
Gaussian clusters, each centered at a point on one of the
spirals. The white circles in Fig. 6(a) are centered at the means
of the 97 -Gaussians which make up class 1, and the black
circles are centered at the means of the 97 Gaussians that make
up class 2. Twenty patterns were drawn from each Gaussian,
for a total of 1940 patterns belonging to each class [Fig. 6(b)].
Fig. 6(c) shows the actual probability that a pattern falling
at each point in the unit square will belong to each of the
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Fig. 5. Fuzzy ARTMAP model estimated conditional probabilities and deci-
sion boundary for six-Gaussians problem. (a) Slow-leaming model estimated
conditional probability, averaged over nine orderings of the training data. Map
field learning rate 3,5 = 0.02, map field matching criterion pap = 0.75. (b)
Max-nodes = 20 model estimated conditional probability, averaged over nine
orderings of the training data. 8,5 = 0.01, pop = 1 until 20 ART, nodes
are committed, then pop = 0. (c) Slow-leaming ARTMAP model decision
boundary. (d) Max-nodes = 20 ARTMAP model decision boundary.

two classes, as calculated using Bayes’ rule. Fig. 6(d) shows
the probability estimate of the two-Gaussian model. Fig. 6(e)
and (f) compare the ideal classification and the two-Gaussian
model classification, respectively.

Fig. 7(a) and (b) show the average probability estimate of
the ARTMAP model in slow-learning mode and max-nodes
mode, averaged over nine independent orderings of the training
data. In max-nodes mode, the maximum number of nodes was
set to 75, for a data compression ratio of over 50:1. The
slow-learning mode created an average of 88 nodes, for a data
compression ratio of almost 45: 1. In both modes, ARTMAP
correctly extracted the shape of the underlying spirals and
assigned darker color to the upper left region and lighter color
to the lower right. Fig. 7(c) shows the slow-learning decision
boundary that results from assigning regions to the class with
the higher estimated a posteriori probability. Fig. 7(d) shows
the corresponding decision boundary for max-nodes mode.
Note that in this example, the Brier score is an underestimate of
fuzzy ARTMAP performance because it calculates pointwise
errors that do not reflect the network’s capacity to capture the
fine structure and geometry of the nested spirals.

VIII. DISCUSSION

In summary, the map field learning algorithms developed
here expand the range of fuzzy ARTMAP applications by
allowing the network to operate either as a classifier (in
fast-learn mode) or as a probability estimator (in slow-learn
or max-nodes mode). In each mode the system achieves a
high degree of data compression and predictive accuracy.
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Fig. 6. Noisy nested spirals problem. (a) Circles around Gaussian means,
with radius 202. (b) Actual training data (3880 points). (c) Actual conditional
probability P(a € class 1). Points falling in a lighter region are more likely to
belong to class 1, darker to class 2. (d) Gaussian model estimated conditional
probabilities. (¢) Optimal decision boundary. Points appearing in white area
are assigned to class 1, black to class 2. (f) Gaussian model decision boundary.

It is robust and is applicable to problems whose training
input structures vary significantly in complexity. In all three
simulation tasks (Sections V-VII), fuzzy ARTMAP correctly
mapped the geometry of major regions of the input space that
could be assigned, with high probability, to one of the output
classes and achieved a high degree of data compression.

Fuzzy ARTMAP with slow learning offers solutions to
problems inherent in many probability estimation applica-
tions. One such problem is the “curse of dimensionality.”
Fuzzy ARTMAP automatically selects input features needed
to separate categories and thus can reduce the computational
problems of high-dimensional input vectors. Another common
problem is identifying how many data points are needed to
yield an accurate probability estimate. In general, this is a
difficult problem which depends on the particular application.
Fuzzy ARTMAP can continue on-line learning after it has
incorporated an initial training set. Thus, if the first data
set is insufficient to generate an accurate enough probability
estimate, additional data can be presented to the system for
incremental learning, without having to retrain with the entire
input set. Finally, because it does not depend on a priori
knowledge of the data, fuzzy ARTMAP is especially useful
when underlying input distributions are unknown or do not fit
standard distribution patterns.
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Fig. 7. Fuzzy ARTMAP model estimated conditional probabilities and deci-
sion boundary for the noisy nested spirals problem. (a) Slow-learning model
estimated conditional probability, averaged over nine orderings of the training
data. Map field leamning rate 3,; = 0.02, map field matching criterion
Pab = 0.75. (b) Max-nodes = 75 model estimated conditional probability,
averaged over nine orderings of the training data. 8,4 = 0.01, pop = 1 until
75 ART, nodes are committed, then p,p, = 0. (c) Slow-learning ARTMAP
model decision boundary. (d) Max-nodes = 75 ARTMAP model decision
boundary.

APPENDIX
SLOW-LEARNING EXAMPLE

The following example illustrates the steps of a slow learn-
ing simulation. Suppose input vectors a® and b initially
activate ART,, category J and ART} category K, respectively.
If the map field weight w%%, projecting from ART, category
J to ART,, category K is smaller than the map field vigilance
parameter, p,p, then match tracking (Fig. 1) will cause an
ART, search, leading to a different active ART, category.
This reset-search-choice sequence will repeat until the map
field weight w?% from an active ART, category j to the
correct ART, category K is larger than p,s. If no learned
ART, category is found to satisfy this condition, a previously
uncommitted ART,, category is established. Then, weight w;}’(
remains at its initial value of one, while all other weights
w;‘,'; (k # K) decay by an amount determined by the size of
Bab, by (1). The map field matching criterion is most easily
satisfied when pg; is small. Thus, setting p,; to a low value
will result in fewer ART, nodes and greater code compression.

As soon as the weight w;‘}’{ from the active ART, category
j to the correct ART, category K is found to be greater than
Pab, all map field weights w2 are adjusted according to (1).
One weight, w5, from the active ART, category node j to
the chosen ART,, category node K, increases toward 1.0, while
all other weights from the active ART, node to the inactive
ART;, nodes (k # K) decay toward 0.0. Until w?} falls below
Pab, Over multiple activations of the ART, category j, the
category’s weight vector converges to a time-weighted average
proportional to a degree of confidence in the prediction that
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the corresponding ART; category & will be correct given that
the ART, category j is chosen.
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