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Introduction

Every second of every minute of every day there is a collision happening
somewhere. Whether it is two billiard balls colliding on a pool table, or two
cars hitting each other on a highway, collisions happen all the time. The
basis of collisions is simple, a transfer of energy and momentum from one
object to another. In ideal conditions all of the energy from the first object
would be transfered directly to the second object. This would comply with
Newtons Law of Conservation of Momentum, which states ”If the net force
acting on a system of interacting objects is zero, then the linear momentum of
the system before the interaction equals the linear momentum of the system
after the interaction” (Physics 12, 239). In many situtations, this is not the
case. In most collisions a non-trivial amount of energy is lost to friction, heat,
sound, and other error causing factors. This study will focus on determining
a pattern in the relationship between initial momentum and the amount of
energy lost to extraneous factors. It will be very interesting to see what type
of mathematical relationship there is between them, and what effects this
could have on the way that collisions are studied.

The method chosen to study this problem is very simple in theory. A
ramp will be set up with the angle between it and level set to be constant. A
mass is then pushed down this ramp from a height of h along the hypotonus
of the triangle the ramp creates. The velocity at which this mass is travelling
(v) is then recorded with a motion detector when it reaches a distance of d
from the base of the ramp. It is then assumed that if h remains constant
than so will this velocity. The distance that the mass slides from the ramp
is recorded. Another, identical mass is then placed at distance d from the
ramp and the first mass is released, and let slide down the ramp again. This
setup can be seen in figure 1.0 below
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When the first mass collides with the second mass a large percentage of
its energy is transferred to it, a smaller amount is lost to heat, sound, etc. If
the collision was perfectly elastic then the second mass would travel exactly
the same distance as the first mass did when there was no collision. But
this is not an ideal collision. The distance which the second mass travelled
after the collision is also recorded. Because the distance the mass travelled
when there was no collision represents the experiment under ideal conditions,
the amount of energy required to push mass m equals the difference of the
two distances represents the energy lost due to extraneous variables in the
experiment. This is then repeated while varying h and thus varying v. This
method will allow for a very simple setup, however a side effect of this is
that it will also introduce a number of extraneous variables, and error which
cannot be controlled.

Hypothesis

If the amount of energy lost during the collision changes with varying amounts
of total energy in the system, then equation will become more efficient as
more energy is added to the system.

Materials

• 1 Ramp - A long flat sheet of wood works admirably

• 2 Identical Masses - In this study the two masses used were equal, a
different result may be obtained for different masses

• 1 Motion Detector

• 1 Meter Stick

• 1 Newton Meter

Method

1. Set up the ramp on an incline with an angle of approximately 30 de-
grees between horizontal and the ramp. It does not matter what the
angle is, the ramps only purpose is to propel the mass to a velocity
which is reproducable an arbitrary number of times. In this particular
experiment θ equaled 27 degrees
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2. Set up the motion detecter 1.4 meters away from the end of the ramp.
Again 1.4 meters is not vital to obtain proper results, it just must
remain constant during the entire experiment.

3. Place the mass 2.44 meters along the hypotonuse of the triange which
the ramp makes with horizontal. Release this, and use the motion
detector to calculate the velocity of the mass when it is .4 meters from
where the ramp contacts the ground. This can be done by analysing
a position-time graph, noting when the mass was 1 meter away from
the motion detector (since the mass is travelling towards the motion
detector and the motion detector is 1.4 meters away from the ramp,
the mass is at .4 meters from the ramp when the mass is 1 meter from
the motion detector), and comparing this time to the same time on the
velocity-time graph. Record this

4. Place the second mass .4 meters from the place where the ramp meets
the horizontal.

5. Place the first mass in the same place and release it. When the first
mass is .4 meters from the ramp, it is at the same velocity as the first
run.

6. Measure how far the second mass travelled from the base of the ramp
and subtract .4 meters from this. Try to ensure that the collision is
linear, that is that neither mass moves along the y axis during the
collision. There are many ways which this can be accomplished but it
depends on the masses which are being used and the type of ramp. In
the original lab a meterstick was taped to the ramp to act as a guide
rail. This minimized the mass’s tendency to move along the y axis
during its acceleration.

7. Record these results

8. Repeat steps 3 through 7 changing the distance which the mass is
placed up the ramp to 2 meters, 1.56 meters, 1.12 meters and however
many more trials it is deemed necessary.

9. With a newton meter, measure the force of kinetic friction acting upon
the mass as it travels along the horizontal surface.
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Observations

Run Distance Released Distance With 2 Masses Distance With 1 Mass v1

1 2.44m .74m 1.26m 1.8ms−1

2 2.0m .56m .70m 1.45ms−1

3 1.56m .48 .51 1.05ms−1

4 1.12m .365m .39m .67ms−1

Table 1: How far the mass travelled with and without the second mass, with
respect to the point it was released from, and its initial velocity

Force of Kinetic Friction (Ff )

3N

Table 2: The force of kinetic friction on the horizontal surface

Data Analysis

In an ideal experiment all of the momentum from the initial object would
be transferred directly into the second object according to the following for-
mula

m1v1 + m2v2 = m1v
′
1 + m1v

′
2

In this study, all the masses are equal, thus cancelling out. Also v2 on the
left side and v1 on the right side are both equal to 0, thus cancelling out their
entire term. Once all the cancelling is done the formula for this equation is

v1 = v2

If this is to be expressed in terms of energy . . .

Eth = Ek

1

2
mv2 = Fk∆d
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This equation will give exactly how far the mass would have gone had no
energy been lost to extraeneous variables in this experiment. If the numbers
are plugged in . . .

1
2
1.82

3
=

3d

3
d = .54m

Ideally, if there had been no energy lost during the collision, the mass
would have travelled .54 meters. According to Table 1, the object actually
travelled .52 meters (1.26m - .74m). If the difference is found .54m - .52m
=.02m or 2cm. Therefore the energy required to push the object 2 cm is the
energy that was lost during the collision.

If this is extrapolated this for all of the initial velocities then a table can
be obtained

Run v1 (ms−1) Ideal Distance (m) Actual Distance (m)

1 1.8 ms−1 .54m .52m
2 1.45 ms−1 .35m .14m
3 1.05 ms−1 .184m .03m
4 .67 ms−1 .075m 025m

Table 3: How much distance the second mass lost due to extraeneous vari-
ables in the collision

The exact amount of energy which is lost because of the inelastic collision
can be found.

Assuming no energy is lost during the collision:

d = .54m

Fk = 3N

Eth = Fkd

Eth = 3 ∗ .54

Eth = 1.62J

The actual results obtained emperically
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d = .52m

Fk = 3N

Eth = Fkd

Eth = 3 ∗ .52

Eth = 1.56J

The difference between these is then found

∆E = 1.62− 1.56

∆E = .06J

If this method is extrapolated for all of the velocities listed in Table 1,
this can be added to another table (Table 4). A graph of this can be seen in
Graph 1.

Run v1 (ms−1) Ideal Energy (J) Actual Energy (J) ∆E(J)

1 1.8 ms−1 1.62 J 1.56 J .06J
2 1.45 1.05J .42J .63J
3 1.05 .552J .09J .462J
4 .67 .225J .075J .15J

Table 4: The amount of energy in the second object after the collision: cal-
culated vs actual

A formula can be derived through the use of a number of analytical re-
gressions, when preformed, the best possible fit for the ideal model is

Energy Lost = ∆E = −.0161x3 + .5739x2 − .1088x + .05009

R2 = 1

While the best possible fit for the measured data is
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Energy Lost = ∆E = 1.979x3 − 5.265x2 + 4.634x− 1.26

R2 = 1

Another theory is that the measurement taken from run 1 represents an
outlier, this would make the graph a linear one. However the data must
be given the benefit of the doubt and it will be assumed that the data is
accurate.

Evaluation

As expected a significant amount of energy was lost due to extraneous
variables in the collision. This complies with outside research which states
”After an inelastic collision . . . the total final kinetic energy of the system is
not equal to the initial kinetic energy of the system”(Physics 12, 247). The
fact that a cubic regression yielded the best possible mathematical model for
this particular study was extremely surprising. This means that as magni-
tude of the velocity of the objects which are colliding increases, the collision
becomes much less efficiant. One reason for this could be because as the en-
ergy in the system increases, so to does the amount of energy lost to sound,
and heat increase. This makes for a much less efficiant collision however
a collision model which fit a cubic regression in its inefficiancy was never
expected.

In this lab there were a number of errors which could have drastically
affected the lab. First the velocity of the initial object was only measured
once. It was then assumed that since the distance the object travelled while
accelerating was the same, that the velocity would be too. However this
may not have been the case. As mentioned in the procedure a meterstick
was taped to the ramp to ensure that the object left the ramp with the
correct direction in order to collide with the stationary mass directly. While
the mass was sliding down the ramp it was noted that the mass hit the
meterstick periodically, theoretically slowing the mass down. A solution to
this is to have a ball in the place of the mass. This way, a groove could be
made by joining 2 pieces of wood at a 90 degree angle. This would create a
track for the ball to roll down, there would be no catching of the sides, and
the direction the ball takes could be very easily controlled.

Also the boarder between the incline of the ramp and the horizontal was
not smooth. The mass hit the floor almost airborne causing it to pitch
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slightly and wobble along the ground. This could have the effect of either
slowing down or speeding up the mass depending on how much of its surface
area was in contact with the floor at any given time. An improvment to
this method would be to have either a rolling cylinder, or a ball, instead of
a sliding mass. This would cause no pitching if it ever got slightly airborne,
and produce more predictable results.

Conclusion

The hypothesis in this study was partially right. As expected a significant
amount of energy was lost during the collision, however it varied in the
opposite direction that it should have. The efficiancy decreased as the energy
in the system increased.
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