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ABSTRACT

Control of pesticides in agricultural ecosystems is essential towards minimizing
environmental pollution. Lowering the use of pesticides require the
implementation of biological control wherein natural enemies and predators are
used to control the population of insects that are harmful to the agricultural
commodity. In this context, there is a need to develop methods to identify the
class of insects that populate specific agricultural ecosystems. This paper
discusses a neurofuzzy approach to insect classification. The methodologies
discussed in this paper are applied to the classification of insects in cotton farms.
A framework for automated Integrated Pest Management Systems is discussed.

KEYWORDS: neurofuzzy systems, soft computing, fuzzy clustering, insect
classification, integrated pest management.

INTRODUCTION

A study conducted by the Food and Agricultural Organization (FAO) of the United Nations
indicates that the cost of insecticides used worldwide is approximately US $12 billion [1].
Approximately 15% of this amount have been attributed to pesticide use in cotton farming. There
are many problems associated with indiscrete pesticide use, most of which have been well
documented. These include the resurgence of pest populations after decimation of the natural
enemies, development of insecticide-resistant populations, and negative impacts on non-target



organisms within and outside the agricultural ecosystem. One of the more serious problems is the
development of insecticide resistance. Several insect (pest) species develop resistance to
insecticides, and very few chemical control options exist for these pests. Insecticides more
adversely affect natural enemies than the target pests. Because predators and parasitoids must
search for their prey, they are generally very mobile and spend a considerable amount of time
moving across plant tissue. This increases the likelihood that they will be exposed to the
insecticide. When insecticides are applied, ideally only the target pests should be affected. The
objective therefore is to maximize pest mortality while minimizing harm to natural enemies.

The goal in Integrated Pest Management (IPM) systems therefore, is to implement
methodologies that can minimize pesticide use while maximizing the use of biological controls.
Achieving this goal requires carefully monitoring the populations of specific insect species and
determining the appropriate mix of pesticide and biological controls for the target agricultural
ecosystem. In the following sections, we discuss work performed in designing classifier systems
that are suitable for IPM systems.

FRAMEWORK FOR IPM SYSTEMS

Statistical approaches to classifying insects have met with limited success. This is due primarily
to the fact that spatial patterns of insects are not fixed. This problem is made even more complex
by changes in insect population with season and time. Factors such as weather, host plants, soil,
predator, parasitoid, and behavioral factors of the insect population can all contribute towards an
extremely complex problem in insect classification. Hence it is difficult, if not impossible, to
obtain satisfactory statistical models to predict or classify insect categories. In the most recent
study [2], a statistical approach was used to classify eight different insect types. While the results
are satisfactory in classifying some insect types, results for other types are marginal.

Figure 1 illustrates a framework for developing Integrated Pest Management systems.

Figure 1. Overview of an IPM system



Referring to Figure 1, the collection of insects is a random sample which is representative of the
various insect types that may be present in the agricultural setting such as a large cotton farm. As
such, statistical methods for analyzing the data could be applied. However as shown below, the
rules for pesticide application is rather linguistic in nature. It is proposed that a computer vision-
based approach be used for classifying insects into two basic classes, namely, desirable insects
and undesirable insects. By desirable, we mean insects that belong to the predator species, and
undesirable implying pests. In addition, we are also suggesting that each of the basic classes be
further divided into specific insect types that form the biological control species and pest species,
respectively. Intuitively then, a ratio of desirable to undesirable insects should provide a basis for
developing decision rules for pesticide application. It is clear that these decision rules would be
fuzzy IF-THEN rules. For example, a typical set of fuzzy rules might be of the form:

IF Ratio is Small and Pest x is High THEN apply High concentration pesticide Z
IF Ratio is Medium and Pest x is Medium THEN apply Medium concentration pesticide Z

Here Small, Medium, and High are fuzzy subsets that define the variables Ratio, Pest x, and the
concentration of Pesticide Z over their expected range of intervals. Clearly then, some form of
defuzzification would result in a decision to apply a certain concentration of Pesticide Z.

While this paper does not specifically discuss the formulation of such decision-making rules,
we are merely suggesting that it is conceivable that such rules can be generated. The significant
attributes of such decision rules is based upon the accuracy of insect classification and how well
we can actually determine the pest populations in terms of specific species. Note also that the
objective is to perform such classification in an automated manner with little or no human
intervention. The intent is to develop field deployable IPM systems where there is little or no
access to experts in entomology. As such, the IPM system is expected to provide the expertise to
the farmer directly in an agricultural setting. Classical statistical methods fail to provide the
necessary basis for such an approach to developing successful IPM systems.

Table 1 provides a list of insects that inhabit cotton and alfalfa agricultural ecosystems, and are
referred to by their common names.

Table 1. List of Insects in Cotton and Alfalfa Fields

Insect Type Good Bad Comments
Assassin Bug X Harmful to humans
Big-eyed Bug X Harmless
Green Lace-wing Adult X Harmless
Lacewing Larva X Harmless
Hippodamia Lady Beetle Adult X Harmless
Hippodamia Ladybug Larva X Harmless
Nabid Adult X Harmless
Stinkbug Adult X Harmless
Collops Beetle X Harmless
Leaf Hopper X Can be destructive
Lygus Adult X Destructive
Three-corned Alfalfa Hopper X Destructive
Cucumber beetle X Destructive

The list includes those which are pests (i.e., have a destructive effect on the crop) and others
which are harmless to cotton plants but are considered as biological predators. A few of the
insect types listed in Table 1 are shown in Figures 2(a)-(c).



                
(a) Cucumber Beetle (b) Nabid Adult (c) Hippodamia Lady Beetle

                
(d) (e) (f)

Figure 2. Scanned and edge detected images

In Figures 2(d)-(f), we illustrate the corresponding edge detected images that are suitable for the
application of image processing techniques. It is easy to observe that not all insect classes exhibit
distinct differences except the Nabid adult shown in Figures 2(b) and 2(e). The other objects
have several similarities in terms of their shapes which can create overlapping features that are
difficult, if not impossible, to separate. Note that the “bands” in the images are artifacts created
while scanning the insects using a flatbed scanner suggesting the need for a high resolution
camera and a good lighting source.

SOFT COMPUTING APPROACH

Soft computing techniques are ideally suited for problems that are far too complex to be defined
mathematically. In this context, there is a need to consider a model-free approach to insect
classification, whereby the application of neural networks, fuzzy logic, and other hybrid
neurofuzzy structures can be justified and used effectively. The primary motivation for adopting
this approach is due to the issue of class separability.

While artificial neural networks are universal approximators that are ideally suited for
applications in model-free systems, the requirement is that the patterns must be either linearly or
nonlinearly separable. Preliminary work using neural networks met with minimal success in that



only 2 insect categories could be classified correctly [3]. The small size and similarities in the
shape of insects place limitations on the ability of neural networks to produce better results.

Feature Extraction

Table 2 provides a set of typical features computed for 13 insect types.

Table 2. Typical Feature Set for Various Insect Types

Features
Insect Type AR P FF RF CF

Assassin bug 2.4773 109 2.5156 0.2549 0.5049
Big-Eyed bug 2.0556 37 4.9074 0.4972 0.7051
Collops beetle 1.7586 51 5.2493 0.5319 0.7293
Cucumber Beetle 1.7000 85 5.0970 0.5164 0.7186
G L Wing Adult 4.5000 99 1.8056 0.1829 0.4277
H Lady Beetle Adult 1.4375 69 6.4607 0.6546 0.8091
H Ladybug Larva 2.1935 68 3.6090 0.3657 0.6047
Leaf Hopper 3.1071 87 2.7873 0.2824 0.5314
Lacewing Larva 2.5000 60 3.4566 0.3502 0.5918
Lygus Adult 2.4400 61 3.6473 0.3696 0.6079
Nabid Adult 2.8000 70 3.1217 0.3163 0.5624
Stinkbug Adult 1.4028 101 6.7639 0.6853 0.8278
T-C Alfalfa Hopper 1.6136 71 5.0224 0.5089 0.7134

The features shown in Table 2 are computed using the following empirical relationships [4]:
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where, A is the Area of object in pixels
P is the Perimeter of object in pixels
Dmax and Dmin are lengths of the major and minor axes of an ellipse fitted around
an object. Note that the Aspect Ratio is 1.0 for a circular object.

Adaptive Neural Fuzzy Inference System (ANFIS) [5]

The structure of ANFIS is very similar to neural networks. In this approach, data clusters are
partitioned optimally, and a set of fuzzy IF-THEN rules is generated. These rules provide a basis
for pattern classification. ANFIS utilizes the least-squares method and the back-propagation
gradient descent for identifying linear and nonlinear parameters, respectively, in a Sugeno-type
fuzzy inference system. In ANFIS, rules are of the form:
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membership functions used by ANFIS are shown below. The features provided in Table 2 are the
inputs needed to train the ANFIS. An example of the initial and trained membership functions
for one of the input variables is illustrated in Figure 3.

(i) Input Variable AR (i) Trained Input Variable AR

Figure 3. Input and trained membership functions in ANFIS

Preliminary results of pattern classification for the insect types shown in Table 1, yield nearly
100% correct classification rates. While, this result is extremely encouraging, training and testing
the ANFIS with a large number of samples is required in order to gain the confidence for high
success rates in classification. Such high performance in classification will enable the
development of field deployable IPM systems.

CONCLUSIONS

In this paper, we have presented a framework for Integrated Pest Management Systems. The
need for and the requirements for a successful IPM are highlighted. Some preliminary results
using the Adaptive Network Fuzzy Inference System (ANFIS) are presented. These results
indicate a strong possibility that highly successful classification systems can be developed.
Results of good classification will provide a sound basis for pesticide management and
consequently lead to reliable automated Integrated Pest Management Systems.
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