
9

CHAPTER 2
2. CHAPTER 2

NETWORK & SYSTEMS MANAGEMENT: STANDARDS,
EMERGING TECHNOLOGIES AND THE SHIFT FROM
CENTRALISED TO DISTRIBUTED PARADIGM

2.1. INTRODUCTION

In recent years, the use of information resources has dramatically increased, with

organisations becoming more and more dependent upon reliable access to this information in

order to remain competitive. The explosion in the size and complexity of today’s local and

wide area networks, combined with the increasing demands placed upon them for their

resources resulted in establishing Network & Systems Management (NSM) as a factor of vital

importance. To further complicate matters, the concept of single-vendor networks has vanished

long time ago. Modern enterprise networks exhibit remarkable diversity of network and

systems equipment necessitating the transition to integrated management. The primary

objective of NSM is to maintain network and systems availability and health, aid in

configuring the network and systems, guarantee Quality of Service (QoS), enhance

performance, provide security, minimise operational overhead (execution of repetitive tasks)

and decrease the cost of running the information technology infrastructure [HEG94].

As a consequence of sharing and interconnecting resources, NSM needs to meet the

challenges of distribution, heterogeneity and transparency. A number of approaches and

architectures that aim at standardising the management process and addressing the

heterogeneity problem have, therefore, emerged. These approaches specify management

architectures, which supply frameworks for standards of relevance to NSM. Two of the most

widely used architectures are the Internet management architecture [HAR99] and the Open

Systems Interconnection Systems Management (OSI-SM) architecture [ISO91a]. Other

architectures, mainly applied on the telecommunication networks area include the

Telecommunications Management Network (TMN) [CCITT92] and the Telecommunications

10

Intelligent Network Architecture (TINA) [TINA93]. More recent efforts focus on the definition

of emerging management architectures, such as Web-Based Enterprise Management (WBEM)

[WBEM], Java-based management [JBM] and Directory Enabled Networks (DEN) [STR99].

Distributed objects technologies, exemplified by the Common Object Request Broker

Architecture (CORBA) [CORBA], represent another interesting approach which gains

increasing attention in the management world.

The Internet management architecture has been criticised for exhibiting low degree of

scalability1, flexibility and reconfigurability, mainly attributed to its centralised architecture.

The latter two weaknesses also characterise the OSI-SM framework. The emerging

management technologies have only partially addressed these problems. The need for

distribution of NSM functionality has been early recognised by researchers and developers

active in this area and several initiatives have been undertaken in this direction; in fact some of

them have already led to the specification of standards. However, there is still a long way to go

before NSM distribution-related problems are satisfactorily addressed.

The remainder of this chapter starts with a description of the management functional areas

identified by the ISO, in Section 2.2. An overview of OSI-SM and Internet management

follows in Sections 2.3 and 2.4 respectively, highlighting the similarities and the differences of

the two approaches. Special focus is then given to Internet management, describing the

architecture, versioning history and limitations of its de-facto standard, the Simple Network

Management Protocol (SNMP). Following that, several emerging technologies in the NSM

field are described, including distributed object technologies (Section 2.5), Directory Enabled

Networks (Section 2.6), Java-based management (Section 2.7) and WBEM (Section 2.8). The

problems of centralised management are detailed in Section 2.9, while Sections 2.10 and 2.11

overview the most well-known approaches in distributed management, which however, address

only certain aspects of the entire problem area; standardisation and research approaches are

separately investigated. Section 2.12 comprises a synthesis and qualitative analysis of

distribution approaches, classifies them in static and dynamic (depending on the degree of

flexibility they offer) and identifies their strong and weak points, pointing out aspects of

distributed management that could benefit by Mobile Agent (MA)-based approaches. Finally,

Section 2.13 summarises the chapter.

It is emphasised that that the reader is assumed to be reasonably familiar with NSM

concepts, SNMP, the way SNMP-based management platforms work in the IP world, how they

1 Scalability is defined as the ability to increase the size of the problem domain with a small or negligible increase
in the solution’s time and space complexity [RES97]. In the NSM context, scalability is specifically defined as the
ability to increase the number of monitored entities or the polling frequency, with a small or negligible decrease
in performance.

11

are typically structured, and the management tasks they perform (for an introduction, see Rose

[ROS96] and Stallings [STA99]). We therefore do not redefine here well-established concepts,

but only those whose definition is not consensual and those that are relevant to this work.

2.2. MANAGEMENT FUNCTIONAL AREAS

Types of management activity have been categorised by ISO into five generic functional

areas, collectively known as FCAPS from their initials [ISO91a]:

� Fault Management: the process of collecting information referring to network elements

(NE) health. Integrated fault management systems receive reports about malfunctions

(alarms), perform alarm correlation and diagnostic tests, identify faults and display various

network alarms. This process can be optimised to perform root-cause analysis and

suggest/take corrective measures.

� Configuration Management: controls the configuration state of a system/network and the

relationships between components. It also initialises, configures and shuts down network

equipment.

� Accounting Management: defines how network usage, charges and costs are to be identified

in the networking environment. It is associated with tariffing schemes that generate

charging/billing information.

� Performance Management: supports the gathering of statistical data, upon which it applies

various analysis routines to measure the system performance. That way, it provides an

accurate picture of network components and services. This process is capable of proactively

pinpointing and forecasting potential problems before they actually occur, based on

gathered information. It can predict congestion/bottlenecks and, hence, be used for network

future expansions and capacity planning. Performance management represents a central

application area for this thesis.

� Security Management: controls access to network, system, service and management

components. It can offer authentication, confidentiality, integrity, access control and also

handle cryptographic key distribution.

In the telecoms world, management platforms generally support most (if not all) of the OSI

functional areas. This is not the case in the IP world, where most platforms support only a

fraction of FCAPS. Indeed, management platforms are often simpler in the IP world than their

counterparts in the telecom world.

12

2.3. THE OSI SYSTEMS MANAGEMENT

The OSI-SM [ISO91a] defines a management architecture with well-defined

organisational, informational, communication and functional models. The organisational

model assigns special roles to the management entities: the manager and the agent. A manager

is an entity that controls the management process and makes decisions based on collected

information, whereas the agents make available the management information to managers.

Abstractions of system/network resources which need to be managed are represented by

managed objects (MO). MOs encapsulate the underlying real resources and enable their

manipulation through well-defined operations. An agent administers the MOs on its local

device and provides mechanisms for performing management operations upon them, offering

an interface to system resources. In essence, the agent acts as name server for the objects

(resolves their names to internal handles), object factory since it creates and maintains objects

and event server since it disseminates events (notifications are evaluated and forwarded as

events to managers according to criteria preset by them) [PAV01]. The communication

between the manager and the agents takes place via standardised management protocols. In

general, the manager-agent paradigm can be thought of as client/server (CS) relationship,

where the manager plays the role of the client and the agent the role of the server.

OSI-SM is based on a complex, object-oriented information model. MO classes are

specified by templates and consist of attributes, operations that can be applied to the

corresponding objects, behaviours exhibited by the objects in response to operations, and

notifications that can be emitted by the objects. The functionality of a MO is defined at design

time, i.e., it cannot change at runtime. MOs are logically grouped in Management Information

Bases (MIB). MIBs are virtual, hierarchical, object-oriented databases including interrelated

MOs in a managed environment. The basic architecture of OS-SM is depicted in Figure 2.1.

Figure 2.1. Basic OSI-SM architecture [SLO94]

The exchange of management information between managers and agents is defined by a

service, the Common Management Information Service (CMIS), and its protocol, the Common

MMaannaaggeerr
rroollee

OSI
stack

AAggeenntt
rroollee

OSI
stack

Open System Open System

Managed
objects

Operations

Notifications

Operations

Notifications

OSI
Management

protocol

13

Management Information Protocol (CMIP) [ISO91b]. The CMIS provides management

operation primitives that include M-GET to retrieve data, M-SET to modify data, M-ACTION

to request the execution of an action, M-CREATE (M-DELETE) to request the creation

(deletion) of an instance of a managed object, and M-CANCEL-GET to cancel an outstanding

M-GET request. Agents may report events about managed objects using M-EVENT-REPORT.

In addition, CMIS provides multiple-object access through scoping and filtering operations.

Scoping allows management operations to be carried out on a selection of one or more

managed objects. Filtering consists of boolean expressions with assertions on values of

attributes in an object [ISO91b].

OSI-SM also addresses some aspects of management decentralisation through the

standardised Systems Management Functions (SMF), which define a rich set of functionality

specified in terms of generic object classes. Examples include Metric Objects, which measure

resource performance, monitor thresholds and generate notifications [ISO93] and the

Summarization function [ISO92], which provides a framework for the definition, generation,

and scheduling of system information summary reports. These functions move intelligence in

proximity to the managed resources, reducing the amount of management traffic and providing

support for a sophisticated event-driven operation paradigm. Pavlou et al. proposed additional

functionality that combines the capabilities of metric monitoring and summarization objects in

a powerful fashion [PAV96].

The widespread interest in formal standards has generated considerable interest in CMIP,

even though it has not been widely used. One factor contributing to the lack of CMIP’s

popularity is the slow evolutionary process of these standards.

2.4. INTERNET MANAGEMENT

Simplicity and small implementation overhead has always been the main objective of

Internet management since the early days of its conception [CAS90, MCG91]. This seems to

be the main reason that justifies its popularity and wide use. In this context, Internet

management is characterised by a simple information model that lacks the object-orientation

(MOs are nothing more than simple variables) and sophistication of its OSI-SM counterpart,

but enables easier and faster writing and instrumentation of MIBs. The architecture depicted in

Figure 2.1 is applied in the Internet management model as well; the difference is that the

functionality of the corresponding modules is very much simplified.

The Internet management communication model relies on the Simple Network

Management Protocol (SNMP) [CAS90] as the communication protocol, which defines

connectionless services and primitives for getting and setting variable values and sending

14

notifications. SNMP has been developed with an orientation to TCP/IP networks. As it is the

case with most protocols of this kind, its development and implementation occurred with

considerable speed. A quick, easy and simple implementation was the first priority of its

designers. Hence, the following guidelines have been adhered to:

� make it work over very uncomplicated protocols;

� keep the number of protocol message types small;

� stick to a unit of information that is a single value, such as an integer or string.

Figure 2.2. The SNMP layering [SLO94]

The User Datagram Protocol (UDP) was chosen as the SNMP transport protocol (see Figure

2.2). That decision was made mainly due to the scalability reasons. Namely, being centralised,

SNMP would impose a huge demand on the manager platform system resources to be able to

accommodate many open TCP connections to the managed devices. UDP also has small

footprint on network resources compared to TCP, while being well suited for short request/

response type of operations, which is consistent with the connectionless nature of SNMP.

In general, the SNMP framework provides much poorer functionality and expressiveness

than CMIP. However, because of the overall complexity and size of CMIP, many claim that

this is a case of the cure’s being worse than the disease. These problems and most importantly

the domination of Internet over OSI have prevented CMIP from reaching the dominant market

position that was originally anticipated. On the other hand, the inherent simplicity of SNMP

has been the driving force for its wide acceptance and popularity.

Management Application

SNMP Manager

UDP

IP

Network-dependant
protocols

Management Application

SNMP Manager

UDP

IP

Network-dependant
protocols

LAN or
Internet

 MIB

Managed resources
(SNMP managed objects)

SNMP Agent

UDP

IP

Network-dependant
protocols

15

2.4.1. SNMP Protocol Data Units

SNMP uses relatively simple operations and a limited number of Packet Data Units (PDU)

to perform its functions. Figure 2.3 shows the types of messages exchanged between the

manager and the agent. Five PDUs have been defined in the first version of the standard

(SNMPv1) [CAS90]:

� Get Request: it is used to access the agent and obtain managed objects values. It includes

identifiers to distinguish it from multiple requests.

� Get-Next Request: it is similar to the Get Request and permits the retrieval of the next

logical identifier in a MIB tree.

� Set Request: it is used to change the value of a MIB object.

� Response: it responds to the Get, Get-Next and Set Request PDUs. It contains an identifier

that associates it with the PDU it responds to. It also contains identifiers to provide

information about the status of the response (error codes, error status and a list of

additional information).

� Trap: it allows SNMP agents to report events at their local NE or to change the status of

the NE.

Figure 2.3: SNMP PDU formats: (a) Get request, Get-Next request, Set request, Trap, Inform, (b)
Response, (c) GetBulk request, (d) varbind list

Management data are returned in a list structured as a sequence of <object ID: value> pairs,

termed the varbind list. As shown in Figure 2.3, SNMP request and response messages have

for simplicity reasons the same packet format. Later protocol versions (SNMPv2, SNMPv3),

define two additional operations [STA99]:

� GetBulk Request: it has been devised to minimise the number of protocol exchanges

required to retrieve large volumes of management data, although there is a maximum

PDU size limitation. It includes a field the specifies the number of variables in the varbind

list for which a single lexicographic successor is to be returned (non-repeaters) and

PDU Type request-ID error-status error-index varbind list

PDU Type request-ID 0 0 varbind list

(a)

(b)

PDU Type request-ID non-repeaters max-repetitions varbind list

(c)

name1 value1 …….

(d)

name1 value1 name1 value1

16

another field denoting the number of lexicographic successors to be returned for the

remaining variables (max-repetitions).

� Inform Request: this PDU is used for manager-to-manager communication, i.e. it is sent

by an entity acting in a manager role on behalf of an application, to another entity acting

in a manager role, to provide information to an application using the latter entity.

2.4.2. SNMP versioning history

Two of the reasons for the initial success of SNMPv1 have been its lightweight design

compared to OSI management and also the fact that it avoided the four-year standardisation

cycles of the ITU-T [MAR00]. Yet, experience has shown that SNMP evolves at an even

slower pace. The phenomenal success of the SNMPv1 architecture has also been the cause of

its decline. It proved to be good for managing relatively small networks, but could not scale to

large networks (e.g. geographically dispersed enterprises), and could not cope with large

volumes of management data [MAR99b]. The telecommunications world had already shown

how to solve this problem: by distributing the load across a hierarchy of managers. But

strangely enough, management distribution was not a priority at the Internet Engineering Task

Force (IETF) until the late 90s. Since SNMPv1 (standardised in 1990), four management

architectures have been released: SNMPv2p, SNMPv2u, SNMPv2c, and SNMPv3 [STA99].

The first three only support centralised management. SNMPv2p has been rendered obsolete

by the IETF in 1996 [PER97, STA99]. SNMPv2u had little success and “saw no significant

commercial offerings” [PER97]; it is thus no longer used. SNMPv2c is often used to manage

busy backbone routers, because it supports 64-bit counters and offers better error handling than

SNMPv1; but it brings nothing new as far as distribution is concerned. As for SNMPv3, its

main focus is on security [STA98], not scalability. In effect, it took eight years before the IETF

delivered a substantial new release, SNMPv3, and another two years before major vendors

began supporting it2. Its use is thus expected to remain marginal in production environments in

the foreseeable future. Note that the MIBs adding support for one kind of delegation in

SNMPv3 were issued only in 1999 [LEV99], so it will take even more time before they are

implemented and deployed. In short, vendors of SNMP management platforms are currently

forced to resort to proprietary extensions to support hierarchies of managers [MAR99a].

2.4.3. Strengths/Limitations of SNMP

According to the main characteristics of SNMP described in the previous section, the main

strengths and contributions of SNMP-based management are the following:

17

� interoperability;

� simplicity;

� wide support by IP-equipment vendors;

� small footprint on agents;

On the other hand, SNMP also exhibits several weaknesses:

(I) Scalability

Scalability issues can be classified into the following categories:

Network overhead: In the context of NSM, network overhead is the proportion of a link

capacity used to transfer management data, and thus unavailable for user data. The purpose of

a network is to transfer user data, not management data, so an important goal of NSM is to

keep network overhead low. SNMP is characterised by high network overhead, which is

mainly due to the polling-based nature of monitoring and data collection process (pull model)

[GOL91]. The manager repeatedly requests and retrieves specific MIB object values at each

poll cycle from remote agents. In many monitoring applications, a considerable portion of

network bandwidth is typically wasted to learn nothing other than that the network is operating

within acceptable parametrical boundary conditions.

Latency: For polling, latency is the time elapsed between the moment the manager requests the

value of a MIB variable and the time it receives it from the agent. It is important to keep

latency reasonably low, so as to quickly detect and correct operational problems. End-to-end

latency depends on networking conditions (the capacity and error rates of links, the speed of

the IP routers traversed between the agent and the manager, etc), the amount of retrieved data

and the number of protocol exchanges. When large sets of NEs need to be managed through

SNMP, latency can very be high, especially when the ‘control loop’, i.e. the network distance,

between the managing and the managed entities is large.

Manager’s processing capacity: The manager’s hardware resources (CPU, memory, etc.)

dedicated to management applications cannot be continuously increased, due to cost and

hardware constraints, setting a limit on manager processing capability [MAR98]. The

centralised structure of SNMP architecture and the lack of data filtering capability

characterising SNMP agents result in transferring vast amounts of NSM data, subsequently

processed at the manager platform. This forces manager’s processing capacity to its limits and

intensifies the need to relieve the manager from performing routine data processing tasks.

2 For instance, Cisco supports it as part of IOS 12.1.5, officially released in December 2000 [Cisco00].

18

Capacity of the manager’s local segment: The management data sent by all the agents

converge toward a single point, the network segment where the manager is connected to,

inevitably creating a bottleneck [BAL97].

Inefficient bulk management transfers: As the amount of data to transfer grows, it makes sense

to reduce the overhead by sending the data in bulk, that is, to send unlimited number of MIB

variables at a time, while keeping the number of network interactions low. However, SNMP

has not been designed for transfers of bulk management data (typically stored in SNMP

tables3). In SNMPv1, tables are retrieved through successive get-next operations. If the

table includes many rows, the manager must perform at least one get-next per row

[SPR99]. For tables with hundreds or thousands of rows, an equal number of

requests/responses will be transferred through the network increasing the network overhead

and latency. The situation improves with the get-bulk operator offered by SNMPv2c and

SNMPv3 frameworks [STA99], which allows transferring more data per SNMP message.

However, the manager should guess the length of the table to be retrieved and accordingly

choose a value for the max-repetitions parameter. Using a low value will cause more

PDU exchanges than necessary. Using a high value, however, can result in an overshoot effect

[SPR99]: the agent can return data of no interest for the manager. The problems associated

with bulk management data retrieval are elaborated in Chapter 7, which proposes MA-based

applications to address all these problems.

SNMP message maximum size: The large number of protocol exchanges required to complete

bulk management data transfers is mainly due to the maximum size limit of SNMP messages.

All SNMP agents must accept SNMP messages that are up to 484 bytes in length, but may

legally refuse longer messages [CAS96]. Yet, many open-source implementations of SNMP

have used the maximum size limit of 1472 bytes (in LAN environments), proposed in

[ROS96]. Clearly, when transferring data in the order of Mb, a large number of PDUs will be

exchanged; the exact number will depend on the maximum size limit used in the particular

SNMP implementation.

Poor efficiency of BER encoding: The SNMP protocol uses the Basic Encoding Rules (BER)

[ITU94] to encode management data prior to sending it over the network. BER encoding can

be implemented with very compact code (small footprint on agents) and causes a reasonable

overhead on the agent and manager for encoding/decoding. Yet, the amount of administrative

data (identifier and length) is large compared to the payload (content). This makes the network

3 Simple, two-dimensional tables are the only form of structuring data in the SNMP architecture [STA99].

19

overhead unnecessarily large. It also increases the end-host latency, because more data take

more time to transmit [MIT94].

OID naming scheme: This relates to the information model of SNMP-based management, i.e.

the naming conventions for MIB variables. The Object Identifiers4 (OID) transferred in SNMP

messages exhibit a high degree of redundancy. For instance, all objects stored in MIB-II5 are

prefixed with 1.3.6.1.2.1. If this prefix could be omitted, a significant proportion of the space

dedicated to the OID name would be saved. Furthermore, the prefixes of the table object OIDs

are all identical up to the column number. In this case, more than 90% of the OID name is

redundant [SPR99]. All these observations indicate a highly inefficient OID naming scheme.

No compression of management data: The first two versions of SNMP (v1 & v2c) did not

allow the transparent compression of management data in transit. This unnecessarily increases

network overhead and also network latency due to transferring larger volumes of data. As of

SNMPv3, it is possible to compress management data by adding encryption envelopes to

SNMP messages [SPR99]. Although this feature was initially intended for encrypting data, it

also allows for data compression. When large chunks of data are compressed, the overall

latency is also reduced, as the compression time is typically negligible with respect to the time

saved to transmit the uncompressed data.

II) Unreliable transport protocol

Another problem of SNMP-based management is the transport protocol used for

transferring SNMP messages, UDP. UDP operates in a connectionless fashion, which saves the

three-way-handshake overhead of TCP [TAN96], and is ideal for exchanging short messages.

However, due to the lack of acknowledgements, it is not suitable for communicating critical

notifications to the manager. By using an unreliable transport protocol, the management system

runs the risk of losing important notifications for trivial reasons such as buffer overflows in IP

routers [MAR99b].

III) Security

SNMPv1 and v2c adopt a weak security scheme. Passwords for configuring routers, hubs

and servers are passed across the network as clear text, in unprotected packets. Identification,

which is based on community strings, is so simplistic that cannot be considered as secure. The

main advancement brought by SNMPv3 is security. SNMPv3 supports identification,

4 An OID (Object IDentifier) uniquely identifies a MIB object.
5 MIB-II [McC91] is the standard MIB in the IP world, supported by virtually all SNMP-compliant network

devices and systems.

20

authentication, encryption, integrity, access control, etc [STA98]. However, the support of

SNMPv3 by major vendors takes place at a slow pace.

IV) Information model: low level of semantics

As far as semantic richness is concerned, the main shortcomings in SNMP are the absence

of high-level MIBs, the limited set of SNMP protocol primitives, and the data-oriented nature

of the SNMP information model. Due to these limitations, developing high-level management

applications is a difficult task, which partly explains why NSM applications are often limited

to little more than monitoring in the IP world [MAR00]. In particular, due to the way the

SNMP market evolved over time, SNMP MIBs offer only low-level Application Programming

Interfaces (API), often called instrumentation MIBs. SNMP frameworks provide no support for

management applications to dynamically define external data models as part of the MIBs.

Although it is possible for applications to retrieve raw MIB data and compute the appropriate

data model at the platform host, this is highly inefficient [GOL95]. In addition, SNMP

protocols support limited protocol primitives vocabulary, which allows getting/setting atomic

variable values and notifying about important events. This is extremely restrictive and is

typical of a data-oriented information model, unlike object-oriented models, which are widely

used in industry today. The absence of an object-oriented information model in SNMP is

generally regarded as one of the main limitations of SNMP [GOL96]. When the Distributed

Management Task Force (DMTF) endeavoured to define a new management architecture in the

late 90s, it came as no surprise that its first delivery was a new object-oriented information

model: the Common Information Model (CIM)6 [BUM00].

The scalability problems of SNMP are mainly attributed to its centralised model and can be

efficiently addressed through MA-based approaches. The latter enable the dynamic delegation

of NSM functionality to managed elements, where MA objects may filter/correlate

management data, adopt an event-driven (instead of polling-based) approach to notify

managers about important events and apply data compression, thereby reducing network

overhead. Chapter 7 describes MA-based monitoring applications that address these issues. In

addition, as described in Section 4.4.1.2, the administrator is given the option to use either TCP

or UDP for MA migrations, depending on the application reliability requirements. Our model

also addresses the authentication, authorisation and encryption security aspects (see Section

4.4.1.3.2). Finally, semantically rich management operations can be built using low-level

6 CIM is defined as a conceptual information model for describing management that is not bound to a particular
implementation. This allows for the interchange of management information between management systems and
applications. This can be either ‘agent to manager’ and ‘manager to manager’ communications which provides for
Distributed System Management.

21

protocol primitives as a basis and dynamically deployed to managed systems. This issue is

discussed in Chapter 7.

2.5. DISTRIBUTED OBJECTS-BASED MANAGEMENT

A new programming paradigm has emerged in the ’90s, Distributed Objects Technologies

(DOT). DOTs define an object-oriented paradigm, where objects can interact even if they do

not reside on the same system. Since OSI-SM is object-oriented and SNMP managed objects

can be mapped onto objects, it took little time for NSM researchers to start working on the

integration of DOTs with existing management architectures. Thus, DOTs enabled a paradigm

shift from the protocol-based approaches of the early 90’s, exemplified by the SNMP and OSI-

SM, to distributed object-based approaches in the mid to late 90’s. In this section, we briefly

describe two representative DOTs, the Common Object Request Broker Architecture

(CORBA) and Java Remote Method Invocation (RMI), discussing their relevance to NSM.

2.5.1. CORBA

CORBA [CORBA] is the product of a consortium of over eight hundred companies, known

as the Object Management Group (OMG). The OMG has approached the problem of handling

the interaction of distributed components by creating interface specifications, and not code.

Distributed components of the system are able to describe their interfaces using the Interface

Definition Language (IDL) and subsequently inter-operate through the underlying Object

Request Broker (ORB). Namely, the ORB provides the communication backbone through

which distributed components are able to interact. To perform requests or return replies,

objects use a generic RPC-like request/response protocol, the General Inter-ORB Protocol

(GIOP) or its TCP/IP mapping, the Internet Inter-ORB Protocol (IIOP). Distributed

components communicating via an ORB do not need to be aware of the mechanisms used in

that communication and are able to discover each other at run time. A number of CORBA

services provide basic functions, e.g. the Naming service that allows clients to locate objects

based on their names, the Trading service that enables objects location based on their

properties and the Event service which allows asynchronous messaging between objects.

The applicability of distributed objects on NSM has been a subject of intense research in the

past few years [MAZ96]. Along this line, Pavlou pointed out the suitability of DOTs in large

scale distributed environments and proposed the use of CORBA in TMN open interoperable

interfaces, replacing OSI-SM [PAV00]. However, a main direction of the research efforts has

been on the seamless integration of legacy systems into emerging distributed object

environments. In that context, Mazumdar proposed the use of a gateway, which achieves the

22

inter-operation of management applications in CORBA domain and agents in SNMP domain

[MAZ96]. The main function of the CORBA/SNMP gateway is to dynamically convert

method invocations on object references in CORBA domain to SNMP messages for MIB

entries at remote agents. Likewise, a CORBA/CMIP gateway has been proposed in [CHA97],

which hides the complexity of OSI management from developers.

2.5.2. Java RMI

Java RMI [RMI] of Sun Microsystems is an API defined for remote communication by the

Java development team. It allows method invocations between objects residing in different

address spaces in a seamless and location-transparent way. This facility requires that the

remote objects implement a specified interface and that their hosting devices run a dedicated

service (rmiregistry).

However, Java RMI technology provides a low-level communication infrastructure. The

syntax and the content of the messages are not defined (or remain in a very poor form).

Another major drawback of RMI is that unlike CORBA, it is not language-independent, but

exclusively intended for distributed Java-to-Java applications communication [MOR97]. RMI

uses the object serialisation (described in Section 3.5.2) facility of Java to marshal and

unmarshal parameters. Methods invoked at remote objects are reachable through the RMI’s

transport protocol, the Java Remote Method Protocol (JRMP), which has its own lookup

service. In the context of NSM, Java RMI has been used in the JMAPI and JMX initiatives of

Sun Microsystems (see Section 2.7.2).

A third emerging DOT is Microsoft’s proprietary solution, the Distributed Component

Object Model (DCOM) [DCOM], which has not yet found wide acceptance in NSM

applications development. This is due to its limited platform support (Microsoft platforms) and

the fact that DCOM is still an immature technology, in comparison with CORBA.

2.5.3. Limitations

Despite the undeniable suitability of DOTs for building distributed management

applications, a number of disadvantages have been identified in the literature. The first three

are specific to CORBA and RMI, while the last generally applies to all existing DOTs:

� Even though a main aim of distribution is scalability, CORBA retains a reliance on

centralised information stores for such things as the name service, the trading service and

implementation repositories. Although that has the benefit of simplicity, the centralisation

of data represents a potential performance bottleneck and a single point of failure

[McK00].

23

� The communication protocol of CORBA has been criticised for its efficiency, as it gives

rise to a high message overhead on certain operations [GOK98] and is slower than

traditional Remote Procedure Calls (RPC) [LIP00].

� Distributed applications relying entirely on Java RMI have been criticised for low

scalability due to the limitations of JRMP (low protocol speed, and out-of-control socket

creation). However, the situation improves in the latest releases of RMI that support the

IIOP transport protocol, which offers improved scalability, while allowing the inter-

operation of RMI and CORBA-enabled applications [MOR97].

� In DOT-based approaches, the functionality of the distributed objects is static and cannot

be altered, in a similar way to OSI-SM and SNMP support object facilities [BOH00b]. The

required degree of flexibility and reconfigurability can be achieved through the mobile

code paradigms described in Chapter 3, which allow the dynamic deployment of

management services at runtime.

2.6. DIRECTORY ENABLED NETWORKS

The emerging Directory Enabled Networks (DEN) [STR99] framework signifies a shifting

from DOT-based approaches back to protocol-based approaches (exemplified by the SNMP

and OSI-SM architectures). Like OSI-SM, DEN uses OSI directory technology to store

information about networks. Changes in network configuration are handled within directories,

which store information hierarchically, with each entry (object) containing a set of attributes.

DEN directories distribute management information across multiple machines through a

process known as directory replication. DEN directories are typically accessed via the

Lightweight Directory Access Protocol (LDAP), which supports three types of protocol

operations: query, update, and authentication. The purpose of DEN framework is to facilitate

the management of large and complex configurations of heterogeneous systems and deal with

dynamic networks with frequent changes in their configuration. Therefore, DEN tackles the

dynamism and scalability challenges in network management.

2.7. JAVA-BASED MANAGEMENT

Another approach that emerged in the 90’s has been based on Java [JAVA], which in the

NSM world is considered as a technology rather than as a programming language. This section

starts with an overview of Java, highlighting its generic advantages and deficiencies (especially

those with relevance to NSM applications). This overview is necessary, as it justifies the

selection of Java as the implementation platform for our MA-based management framework. A

24

state-of-the-art report on Java-enabled management technologies follows, along with an

overview of research initiatives undertaken in Java-based NSM. For further information on

research activities and commercial products related to Java-based management, the interested

reader is referred to the links given on [JBM].

2.7.1. Overview of Java

Since its first release in 1995 by Sun Microsystems, Java has become one of the most

popular development platforms within the Internet community, mainly due to its strong

connection with Web-based applications, inherent portability, simplicity and support for

Internet-oriented programming. Java is described as “a simple, object-oriented, network-savvy,

interpreted, robust, secure, architecture neutral, portable, high-performance, multithreaded,

dynamic language” [JAVA].

2.7.1.1. Generic Benefits & Deficiencies of Java

Architecture-neutral and portable: Java offers the advantages of architecture neutrality and

portability to networking application developers, which led to the Sun’s marketing phrase

“write once, run anywhere”. That allows developing applications that address the problem of

increased heterogeneity characterising modern networks, in terms of operating systems and

hardware architectures. To achieve platform-independence, the Java compiler does not

generate “machine code”, i.e. native hardware instructions, but bytecode: high-level,

interpreted, portable code. The format of this binary code is architecture-neutral. Given that the

run-time platform, i.e. the Java Virtual Machine (JVM), is available for a platform, any Java

application can execute there.

Object-orientation: Object-oriented design is a very powerful programming paradigm as it

facilitates the clean definition of interfaces and maximises software re-usability. Although

there are several object-oriented languages, Java is the only one that enforces it, i.e. the

programmer has no choice but to encapsulate all data in objects.

Multithreading: In most languages, writing programs that deal with many processes (threads)

simultaneously can be a very difficult task. Built-in multithreading support is one of the most

powerful features of Java, as it allows lightweight process concurrency. The Java Development

Kit (JDK) library provides a rich collection of methods to start, stop, suspend, resume or check

the status of a thread.

Strong networking support: Java is particularly suitable for network programming. It offers an

extensive library of classes and routines, which include TCP and UDP socket communication,

support for broadcast and unicast messaging, invocation of remote methods through RMI, etc.

25

Native methods: When developing an application, situations might arise that necessitate the

integration of code written in other languages (native code) within the Java application. The

use of native code might be required for one of the following reasons:

(i) Code re-usability: Most of existing software is not written in Java. In some occasions, it is

time consuming to translate it to Java, so the direct integration of non-Java with Java

front-end programs might be preferable.

(ii) Performance: Being an interpreted language, Java exhibits worse performance compared

to other languages that involve compiled code. Hence, native code could be more suitable

for time-sensitive applications, in order to maximise the execution speed.

(iii) Tasks that cannot be implemented in Java: In certain cases, the implementation of certain

tasks in Java might not be feasible (e.g. when low-level, platform-dependent functions

have to be used), making the need for co-operation with native code imperative.

The integration of Java programs with native code is achieved through the Java Native

Interface (JNI) [JNI]. An important feature of JNI is that it allows ‘bi-directional’

communication between Java applications and native code, i.e. Java methods may invoke

native functions and vice-versa.

Security: Java is intended for use in networked/distributed environments. Along this line,

particular emphasis has been placed on security. A built-in security mechanism is provided

with the core JDK API: the java.lang.SecurityManager class that developers may

extend to customise the access rights of individual applications on system resources [AUS00].

In addition, the Java Security API [JSAPI] is a framework for developers to easily include

security features in their applets7 and applications. The Security API includes support for

digital signatures, encryption and authentication.

Despite all its advantages, Java has been often criticised for performance-related issues. The

fact that Java is an interpreted language makes its performance substantially poorer than

compiled languages, such as C++. However, with the advent of Just-In-Time (JIT) compilers

[JIT], Java programs may be executed much faster. JITs basically compile the bytecode into

platform-dependent native code, which is subsequently executed (it is faster to read the

bytecode, compile it and run the resulting executable, than it is to interpret it).

7 Applets are Java programs that can be included in an HTML page and subsequently uploaded and executed by
Java-enabled Web browsers JVMs.

26

2.7.2. Java Technologies for Network & Systems Management

The self-evident suitability of Java for developing management applications has been

recognised since its early days, with the first commercial implementations of the SNMP stack

in Java released in 1996 [AdventNet]. Since then, AdventNet, a company that specialises in

Java-based management products, has gone much further providing a complete suite of

Internet management tools. These include a visual builder tool used to build SNMP

management Java applets and applications, an Agent Toolkit that automates the process of

creating SNMP MIBs and instrumenting agents for these MIBs, etc.

The following section summarises the technologies recently emerged in the field of Java-

based management. All these technologies represent initiatives undertaken by Sun

Microsystems and comprise toolkits (JMAPI and JMDK) or standards (JMX) expressly

oriented to building management frameworks.

JMAPI - JDMK - JMX

In 1996, shortly after the release of the JDK 1.1 that added support for RMI, Sun

Microsystems made the Java Management API (JMAPI) [JMAPI] publicly available. This API

is a set of tools and guidelines to build management applets supporting RMI. It supports the

most common SNMP MIB, MIB-II [McC91], by mapping its managed objects onto Java

objects. It also provides a rich graphics library to ease the development of sophisticated GUIs,

allowing the visual representation of management information.

Soon after, Sun released the Java Dynamic Management Kit (JDMK) [JDMK], a

component-oriented management toolkit written in Java. Like JMAPI, JDMK is publicly

available. It is based on Java Beans (JB)8 and comes with a library of core management

services. It also contains adapters to enable communication via RMI, HTTP and SNMP. Unlike

JMAPI that deals only with MIB-II, JDMK includes an SNMP-to-Java MIB compiler, which

translates the managed objects defined in any SNMP MIB into JB components (called

management beans, or MBeans). The toolkit supports push and pull from agents and offers a

powerful framework for developing management applications.

In 1999, JMAPI was superseded by the Java Management eXtensions (JMX) [JMX]. JMX

is a management framework intended for object-oriented Web-based management. It is far

more comprehensive than JMAPI and builds on the experience acquired by Sun with the

JDMK. The specification does not only focus on the agent part of the management system (as

it is the case with JDMK) but also specifies the manager part. In other words, JDMK can be

considered as an integral part of JMX. It should be noted though that being relatively new

8 A JavaBean [JB] is a reusable component that can be visually manipulated by means of a builder tool.

27

technologies, JDMK/JMX need extensive evaluations and performance studies to test their

performance and scalability.

2.7.3. Research approaches to Java-based management

In addition to commercial activities, the power of Java in building management applications

has been also signified by the profound interest of the research community. Early approaches

focused on developing centralised frameworks entirely built in Java [LUD97, PAR98]. Both

these works introduced a multi-threaded Java Agent engine, and proposed the replacement of

BER encoding by a heavyweight bytecode-based mechanism. In particular, a simple get

request involves the creation, compilation and transfer of a Java class that encloses the

requested OID string, with the receiving Agent loading the class and retrieving the OID string

before returning the requested value using the same mechanism. This method also imposes

heavy network traffic (unnecessary transfers of classes) and exhibits the drawback of delay

imposed by the time-intensive processes of compilation and class loading. These problems

were addressed by a paper describing preliminary work of the author, which introduced a

lightweight socket-based communication mechanism [GAV99].

More recent approaches to Java-based management concentrate on encompassing the Sun's

standards, described in the preceding sections, in distributed NSM frameworks. For instance,

[KEL99] described a case study for dynamic management of Internet telephony servers based

on JBs and JDMK. Lee described the design and implementation of a management platform

based on the TMN and discussed how Java technologies can support a variety of management

interfaces as service components in a distributed computing environment [LEE00]. Anerousis

introduced Marvel, a sophisticated Java-based management framework that enables the

development of scalable NSM services [ANE99]. Scalability in Marvel is achieved by

supporting computed views of low-level management information that convey high-level

network operational status statistics and distribute the view computation task to a hierarchy of

processors (servers). Information stored in Marvel objects is accessible through a Web

interface.

2.8. WEB-BASED MANAGEMENT

Java owns its popularity mainly to its strong connection with the Web through applets.

Since the Web is now ubiquitous, several proposals (see references in [Web]) have been made

to use the Web technology in NSM. Wellens and Auerbach introduced the concept of

embedded management application, where an applet is stored in the managed device and

loaded by the administrator into a Web browser; communication between the applet and its

28

origin agent later relies on HTTP instead of SNMP [WEL96]. Since the time of this proposal,

new technologies, such as Java servlets9 and RMI have appeared and been used in Web-based

management, for instance to open persistent sockets between applets and servlets, etc. Recent

approaches realised a step towards decentralisation through the transition from pull to push

management [MAR99b, ADA00]. In the push model, management data transfers are always

initiated by the agent, similarly to SNMP notifications, thereby reducing the network overhead,

and moving part of the CPU burden from managers to agents [MAR99b].

In the standardisation arena, an industrial consortium led by Microsoft launched a new

initiative in 1996: the Web-Based Enterprise Management (WBEM) [WBEM]. WBEM took a

revolutionary approach by replacing all existing protocols and object models with new ones.

The main motivation was the integration of the Desktop Management Interface (DMI), used to

manage cheap desktops, with SNMP, used to manage network equipment and expensive

workstations. In this context, a new object model, CIM, has been devised. Today, SNMP/CIM,

DMI/CMI and CMIP/CIM gateways are under development. WBEM is backed by most

vendors in the NSM industry and is likely to emerge as one of the main management

architectures of the decade [MAR00].

2.9. THE NEED FOR DISTRIBUTED MANAGEMENT

Management world today is dominated by protocol-based approaches, exemplified by the

SNMP and OSI-SM. Both the IETF and the OSI approaches are characterised by the inflexible

manager-agent paradigm. Centralisation has a serious impact on management scalability since

it imposes almost all the computational burden on the manager platform [BAL97, CHE98].

The operations available for accessing MIBs are very low-level. In SNMP, for instance, the

manager can only get and set atomic values in a MIB. This fine grained CS interaction is often

called micro-management [GOL91], and leads to the generation of intense traffic and

processing bottlenecks.

The OSI-SM supports the delegation of monitoring activities to the NEs, reporting only

QoS alarms or summarised reports to higher-level managers [OSI92, OSI93]. Nevertheless,

such generic functionality needs to be first researched, standardised, implemented and

eventually deployed to NEs; this process typically takes a long time. Furthermore, the same

research-standardisation-implementation-deployment cycle needs to be repeated whenever any

9 Servlets are server-side Java components; while applets provide a way of dynamically extending the functionality
of client-side browsers, servlets allow the application developer to dynamically extend the functionality of
network servers.

29

modification, e.g. for providing more sophisticated features that were not thought out in

advance, is to be introduced [MOU98b, BOH00b].

The scalability problem of centralised architectures becomes more profound as the

dimension of the managed network grows. The managers need to communicate with a larger

number of devices, as well as store and process an ever-increasing amount of data. This leads

to the need for high cost hardware dedicated to the manager platforms [MAR98] and poor

performance. In addition, the network area around the manager stations is saturated due to the

combination of messages sent by the management platforms with those sent by the devices.

The worst shortcomings of the centralised approach show up during periods of heavy

congestion, when management intervention is particularly important [PIC98, KIM98]. During

these periods: (i) the manager increases its interactions with the devices and possibly

downloads configuration changes, thereby increasing congestion, (ii) access to devices in the

congested area becomes difficult and slow (sometimes even impossible), and (iii) congestion,

as an abnormal status, is likely to trigger notifications to the manager, generating even more

traffic. In order to answer the problems related to centralisation, NSM functionality must be

distributed, i.e. complex diagnosing and information gathering activities must be moved from

the managers to the managed devices.

The advantages of distributed management can be found in many research papers (e.g.

[GOL91, BAL97, KAH97, CHE98, MAR99a]). In particular, management distribution:

� allows applications to efficiently exploit the increased availability of hardware resources of

modern managed systems;

� improves the autonomy and survivability of NMSs. That is, when the communication with

the managing process is lost, distributed management entities can continue to execute;

� reduces the need for intensive polling;

� reduces the computational load on manager platforms through pre-processing management

data, filtering unimportant alarms and delivering only high-level information;

� leads to significant reduction of management traffic, as most management interactions are

locally executed.

It should be emphasised though that not all management applications should be necessarily

decentralised. In fact, centralisation is the appropriate model for applications that have little

inherent need for distributed control. Such applications (a) do not require frequent polling or

high frequency computation of MIB deltas, i.e. aggregation functions, (b) have high-bandwidth

network connections between the manager and the managed devices, (c) exchange relatively

30

small amounts of data, and (d) do not need frequent, semantically rich conversations between

manager stations and managed nodes [MEY95] (see Figure 2.4).

Figure 2.4. Management centralisation or distribution metrics (adapted from [MEY95])

2.10. DECENTRALISATION INITIATIVES WITHIN THE INTERNET COMMUNITY

The disadvantages of centralised management, as outlined in the preceding section, have

first been admitted by the same organisations that introduced it. The following sections review

the decentralisation initiatives undertaken by the IETF, with focus on IP networks

management. The reader interested in extended surveys on the various approaches on

management distribution may refer to [KAH97, MAR99a].

2.10.1. Management Distribution within the SNMP Frameworks

A primitive form of decentralisation (provided in SNMPv1) is the asynchronous

notification mechanism. Namely, SNMP agents can send traps [CAS90] to the manager

platform not as a result of a request, but when an important event occurs. Still, no management

action can be performed locally as decisions are made centrally by the manager application.

The SNMPv2 introduces the concept of proxy agent [McC96], which realises a transition

from centralised to hierarchical management models (see Figure 2.5). A proxy agent can be

responsible for a set of devices; the manager sends requests to the proxy instead of interacting

directly with these devices. Traditionally, SNMP has used proxy agents in a pass-through role,

wherein a proxy passes the manager requests and agent responses through, in an essentially

transparent mode. The fact that a proxy can be used as an intermediate manager for

 CENTRALISED PARADIGM DISTRIBUTED PARADIGM

Low need for distributed processing, e.g. a
small network that can be managed by a
centralised control system.

High need for distributed processing, e.g.
localised information processing required
either due to data size or for robustness.

Low frequency for required polling, e.g. the
NMS does not require constant polling or
the network has high bandwidth availability.

High frequency for required polling, e.g.
need for constant monitoring of a large
number of managed objects.

High ratio of throughput to the amount of
management information.

Low ratio of throughput to the amount of
management information.

Low need for semantically rich/frequent
communication, e.g. networks that support
simple services.

High need for semantically rich/frequent
communication, e.g. large networks that
support complex services.

31

hierarchical management is recognised by SNMPv2, however, the framework provides no

means for managers to delegate tasks to intermediate managers or to communicate with them

during the execution of these tasks [KAL97]. SNMPv2 has also attempted to promote

management distribution through introducing the concepts of the inform PDU primitive (see

Section 2.4.1) and the Manager-to-Manager (M2M) MIB [CAS93], which however proved

unworkable in practice and have now become obsolete [MAR00].

Figure 2.5. (a) Centralised management, (b) Hierarchical management

2.10.2. Remote Monitoring

The IETF has proposed another approach, known as Remote MONitoring (RMON)

[WAD95], that introduces a higher degree of decentralisation. RMON assumes the existence of

network monitoring systems called monitors or probes, which can either be standalone devices

dedicated to link monitoring or embedded into network devices (Figure 2.6). By monitoring

packet traffic and analysing the headers, probes provide information about links, connections

among stations, traffic patterns, and status of network nodes. SNMP is used for communication

between the manager and the agents running on probes. RMON allows the delegation of

monitoring functions from the managers to the probes through the definition of suitable filters.

A probe can detect failures, misbehaviours, and identify complex relevant events even when

not in contact with the management station. In addition, the agent on the probe can perform

semantic compression of data by pre-processing the information collected, before sending it to

the management station.

However, RMON also exhibits several deficiencies:

� Typically, a stand-alone RMON compliant device (probe) is required to monitor the traffic

activity of a single network segment, leading to considerable increase of cost when the

management of multiple segments is required.

Manager

Agent

Network

MIB

Agent

MIB

Agent

MIB

Agent

MIB

(a)

Manager

Proxy Proxy

Agent

MIB

Agent

MIB

Agent

MIB

Agent

MIB

(b)

Network

32

� The control operations of a RMON probe may be set/modified only at configuration time,

i.e. runtime modifications are not supported [MOU98a].

� RMON is adequate for providing only traffic-oriented statistics since the status of the

network is determined by direct inspection of the packets flowing in it, rather than

inspection of the devices status, like in the mainstream (centralised) approaches that offer

device-oriented statistics. Hence, RMON is not adequate when management operations

should be applied in both system and network level.

Figure 2.6. The RMON approach

2.10.3. Script MIB

Management distribution support to SNMPv3 framework has been added in 1999. In

particular, the DISMAN (DIStributed MANagement) Working Group of the IETF was

chartered to define an architecture where a main manager can delegate control to several

distributed management stations. Among others, the DISMAN framework provides

mechanisms for distributing scripts, which perform arbitrary management tasks to remote

devices. This is achieved through the Script MIB [LEV99], which defines a standard MIB for

the delegation and invocation of management functions (scripts), based on the Internet

management framework (see Figure 2.7). According to the specification, the term script is very

broad, referring to some type of executable code which can be executed by any device that

implements the MIB.

In particular, Script MIB provides the following capabilities [SCH00]:

� Transfer of management scripts to a distributed manager;

� Initiating, suspending, resuming and terminating management scripts;

� Transfer of arguments for management scripts;

Agent

MIB

AgentMIB
Switch

RMON
agent

Agent

MIB

AgentMIB

Standalone
probe

Agent MIB

Manager

33

� Monitoring and control on executing management scripts;

� Transfer of the results produced by running management scripts.

Figure 2.7. The Script MIB approach

The Script MIB is limited to the operations performed on the six tables that constitute the

MIB. Before the administrator decides to delegate a script, he/she should first check the

languages supported by the Script MIB implementation and select an appropriate script from a

repository. Scripts are uploaded to the devices through client pull or server push models. The

Script MIB enables scripts to be initiated, controlled and terminated through the SNMP

management framework. For instance, the execution of a script starts with a single SNMP set

request. The manager can also obtain intermediate or final results generated and maintained at

the agent.

Although providing a powerful management distribution mechanism, the Script MIB also

exhibits a number of limitations:

� The current specification makes it difficult to update existing scripts [McM99];

� Currently, the number of Script MIB implementations (such as the Jasmin project

implementation [Jasmin]) is still limited, namely this technology has not been widely

tested/evaluated yet;

� The Script MIB approach is specific to the Internet management frameworks, similarly to

all standardisation approaches undertaken by the IETF or in the context of OSI-SM

[BOH00c]. In contrast, MAs can provide a more generic and framework-independent

mechanism for the delegation of management functionality.

It should be noted that parallel work to the script MIB has been also reported in the in the

context of OSI-SM [VAS97].

 Manager

Network

MIB

Management
scripts
Agent

MIB

Management
scripts
Agent

MIB

Management
scripts
Agent

MIB

Management
scripts
Agent

34

2.11. RESEARCH APPROACHES ON MANAGEMENT DISTRIBUTION

The advantages of distributed/hierarchical management over centralised approaches have

motivated several research works on that field, described in the following sections.

2.11.1. Management by Delegation

The full potential of large-scale distribution over managed devices was first demonstrated

by Goldszmidt et al. through the Management by Delegation (MbD) framework [GOL91],

which set a milestone in NSM research. MbD realises a distributed management architecture

that enables the execution of management tasks at the end nodes by dynamically delegating

management functions to stationary agents (“elastic” processes). The elastic processes allow

new control functionality to be uploaded in the form of scripts, using a proprietary delegation

protocol, the Remote Delegation Protocol (RDP). Scripts execution is usually initiated by

other processes that require the corresponding functional services. This is quite similar in

concept with the Script MIB approach (see Section 2.10.3); in fact, the latter follows the MbD

paradigm, while the same applies to most recent standardisation and research NSM distribution

initiatives.

Epitomising, the MbD paradigm represents a powerful management distribution approach,

which has promoted for the first time network devices from ‘dumb’ data collectors to the rank

of full-fledged managing entities. MbD can be considered a precursor of the ideas introduced

in this thesis. The fundamental difference lies on the fact that in MA-based NSM, delegation of

management functionality is achieved through the MA objects and not downloadable scripts;

the execution of MAs is not necessarily restricted on a single device, as they can autonomously

migrate from host to host.

2.11.2. Flexible Agents

The work presented in [MOU98a] builds upon the groundwork of the MbD paradigm,

introducing an intelligent agent module, termed the “flexible agent”. Unlike MbD agents,

flexible agents do not operate at the managed device level; instead, they are responsible for a

number of standard SNMP agents located within their management domain and exploit their

ability to communicate and co-operate with their peers to correlate/filter collected data. The

applicability of the flexible agents approach has been demonstrated in fault management

scenarios [MOU99].

35

2.11.3. The Spreadsheet approach

A spreadsheet scripting environment for SNMP is proposed in [KAL97]. The spreadsheet

scripting language allows a manager to prescribe computations that can be carried out by the

agent and supports arithmetic, logical and relational operators. Each cell in the spreadsheet

defines an expression that computes a value from other given data such as values in the MIB.

Expressions can be inserted, updated or deleted according to the manager needs, through

SNMP operations. Apart from computed attributes, the spreadsheet is also capable of

generating event reports by evaluating predicates containing relational expressions.

2.11.4. Hierarchical Management

A hierarchical NSM system that uses the concept of the SubManager has been presented in

[SIE96]10. A SubManager is responsible for few agents; it collects primitive data from them,

performs some calculations and produces more meaningful values that can be used by a

superior manager. This method significantly reduces the volume of NSM traffic since only

high-level information is sent to the manager. A similar approach is adopted in [KOO95] that

proposes the use of Area Agents, each performing local management to a specific network

section. Area Agents can be configured to collect and pre-process all data that was formerly

dealt with by the manager station.

The Mid-Level Manager (MLM) [MLM] of SNMP research has been another step towards

management distribution. An MLM is a dual-role entity, i.e. it acts both as an agent and a

manager. When managers request information from the MLM, it plays the role of the agent,

while acting as a manager for the agents located within its domain. When the MLM is placed

across a WAN link, remotely from the enterprise manager, it obviates to a certain degree the

necessity of performing “normal” SNMP polling. This reduces the polling traffic over the

WAN link, thereby achieving significant cost savings. Furthermore, should the WAN link “go

down”, the MLM continues to perform management tasks at the remote site despite its

separation from the central manager. Finally, MLMs can provide a prompt first-line response

to problems while leaving the manager in the position of final authority. After the first-line

response, the manager can evaluate the situation more thoroughly and decide whether further

action is required or not.

10 It should be noted that the concept of hierarchical management has been first proposed in the TMN
recommendation [CCITT92].

36

2.12. SYNTHESIS & EVALUATION OF EXISTING APPROACHES ON MANAGEMENT
DISTRIBUTION

The approaches investigated in Sections 2.10 and 2.11 certainly offer useful mechanisms

for realising management distribution. In general, they can be classified in:

(a) Static approaches (proxy agents, RMON, flexible agents and the hierarchical management

models described in Section 2.11.4), which offer distribution but very limited flexibility;

(b) Dynamic approaches (MbD, Script MIB, spreadsheet approach), which offer distribution

and increased degree of flexibility).

With the exception of RMON, static approaches achieve management distribution through

building management hierarchies, where a mid-level delegation entity is responsible for

managing a group of managed devices. That model is consistent with the hierarchical structure

of modern large-scale enterprise networks, obviates the need for remote communication

between the manager and managed elements and results in localisation of management traffic

within the individual management domains.

There are two parts on building management hierarchies: (i) assigning roles (“proxy

agents”, “flexible agents”, “area agents” “SubManager”, “Mid-Level Manager”) to the

members of the hierarchy, and (ii) assigning members to specific physical locations where they

will function under the supervision of higher-level members. This is feasible if the network is

moderately small and/or not very dynamic, and if a single manager is the only user and

specifier of the management policies. However, it is not in step with the dynamically evolving

topological and traffic characteristics of large-scale enterprise networks [LIO01]. In addition,

the distribution of aggregation and filtering computations in these approaches is manual and

static. The manager of such a system is required to know the managed network well enough to

build a hierarchy of distributed servers that will accommodate, to the best extend possible, all

desirable computations that could be performed on NSM data. In general, the concept of

management domain is not clearly defined in static approaches, nor are the criteria according

to which the boundaries of such domains are determined. Also, the MLMs, SubManagers, etc,

may suffer from overloads while executing their tasks [LOP00], either due to limited capacity

or insufficient computing power of the hosting processors.

The problem of architecture inflexibility also applies to RMON where the filters configured

by the manager are statically predefined and cannot be easily changed at runtime [KAL97,

MOU98a].

The inflexible definition of static approaches can be addressed by MAs that dynamically

migrate to remote management domains when certain conditions are satisfied and acting as

mid-level management entities. In Chapter 6, we will introduce a hierarchical MA-based

37

management framework that addresses the issue of dynamic deployment and placement of

agents, operating at an intermediary level between the manager and the managed devices.

Dynamic approaches offer increased flexibility in comparison with their static counterparts,

as they allow on-the-fly customisation of delegated functionality. However, they exhibit a

number of limitations. First, they rely on scripts as a means for distributing management

intelligence to end nodes. Such scripts are typically coded using script languages, such as Perl,

Javascript and Tcl/Tk. Script languages allow rapid coding and are ideal for implementing

programs with limited capability. On the other hand, MAs are typically programmed in high-

level programming languages (e.g. Java), which are suitable for developing more complex and

demanding decentralised management tasks [PUL00a].

In addition, the Script MIB and the spreadsheet approach both rely on SNMP for script

transfers. As a result, they suffer from disadvantages related to SNMP, that is:

a) not guaranteed delivery: SNMP relies on UDP for message transfers, which makes use of

an unreliable packet transport mechanism;

b) SNMP packet length limitation: scripts are typically downloaded line-by-line [McM99] to

minimise the risk of exceeding the packet length limit, resulting in additional traffic and

increased unreliability and latency, especially when downloading large scripts.

On the other hand, the MbD approach uses a proprietary protocol for uploading scripts

(RDP) and has been criticised because its delegation primitives have not been integrated with

the SNMP framework [KAL97]. We believe that the wide spread of SNMP should certainly be

taken into account, when designing distributed management architectures. The desired

compliance with SNMP framework does not, however, compel the use of SNMP as a

delegation protocol, neither necessarily entails suffering from the generic limitations of SNMP

frameworks highlighted in Section 2.4.3. Our MA-based management infrastructure, presented

in Chapter 4, is fully integrated with SNMP frameworks, however it relies on more efficient

and reliable protocols than SNMP for MA migrations.

A common idea shared among all dynamic approaches is to upload code down to the

managed device level, thereby performing semantic compression of management data and

reducing network overhead. This idea is also behind MA-based management approaches.

However, existing dynamic approaches focus is on the entities that enable delegation, i.e. the

delegation agents. This represents a conceptual difference with the MA paradigm, which

focuses on the mobile entities themselves and not on the entities that create, dispatch and

receive the MAs [CHE00b]. That is, the MAs can be viewed as mobile managing entities that

migrate to specific managed devices on demand, to perform arbitrarily complex management

tasks, with an increased degree of autonomy.

38

Through exploiting their mobility feature, individual MAs can also perform, if required,

decentralised NSM operations over a group of managed elements. In that sense, MAs can be

regarded as a ‘superset’ of delegation agents, as they can provide all the functionality offered

by the latter, having the additional benefit of mobility. Mobility is used only when necessary or

whenever it is more efficient in terms of management cost; should a static delegation agent is

sufficient for performing a management function, an MA can be sent to managed device and

remain there until no longer needed. In Chapters 5 and 7, we identify application scenarios

where mobility is necessary and suggest ways to minimise the impact of MA transfers on

network resources.

Another limitation of existing dynamic approaches is that they imply a device-level view of

managed resources, since delegated code executes on a single-device [LOP00]. This problem is

addressed by static hierarchical models, where mid-level entities can correlate data collected

from their management area, providing a domain-level views, which can be useful to identify

problems related to large groups of devices or aid in capacity planning. We believe that the

“best of the two worlds” can be achieved through MAs that visit a set of devices and correlate

the data collected from them to provide domain-level views of managed elements. This

approach simplifies the data correlation process, as it obviates the need for a complex co-

operation mechanism between delegation agents, as proposed in [MOU98a]. In Chapter 7, we

describe an application that addresses this issue.

Furthermore, dynamic approaches only consider a one-to-one relationship between two

entities, where one (the delegator) delegates some task to the other (the “delegee”); this task is

executed under the control of the delegator. No aspects of cascaded delegation are supported,

limiting the degree of distribution granularity11 as the delegator-delegee scheme comprises a

two-level hierarchy. This argument is also applicable to DOT-based distributed management

approaches. Quite felicitously, [MOU98b] characterises this approach as remote management

rather than distributed management. Static hierarchical management approaches address this

issue, as management functionality is distributed among a number of mid-level entities and is

not concentrated on a single manager platform. Yet, static approaches imply a rigid

configuration, which leaves a lot to be desired in terms of management flexibility.

A final point relates to the delegation trigger mode supported by both static and dynamic

distributed management. In particular, existing approaches address this issue only for the user-

driven case. That is, there is no support for delegation as a result of events. In Chapter 6, we

investigate how MAs can be used to delegate NSM functionality on an event-driven basis.

11 In the management context, granularity can be defined as the relative scale, detail, level of hierarchy or depth of
penetration that characterises management distribution.

39

2.13. SUMMARY

Existing management distribution approaches offer a number of mechanisms for delegating

NSM functionality to selected entities that perform management tasks as close to the managed

systems as possible. As discussed in the preceding section, although the mechanisms have been

defined, problems related to the delegation aspects have not been fully addressed yet.

Mechanisms only represent a piece in the puzzle of distributed management. There are still

open questions on what to delegate, where to delegate and under which circumstances and

conditions to delegate.

The ideas behind MbD will however comprise the basis and enabling mechanism for

distribution. These ideas will be driven much further by exploiting the power of the MA

paradigm that promises to enhance the flexibility of the management process, whilst

maintaining the required degree of distribution and scalability. As elucidated in the previous

section, MAs can be used to accomplish a synthesis of the strengths identified in static

hierarchical models and dynamic management approaches, serving both as a means of

functionality delegation and dynamically deployed mid-level management entities. The

following chapter discusses the issues related to the application of MA technology on NSM.

