
40

CHAPTER 3

3. CHAPTER 3

MOBILE AGENTS AND THEIR APPLICATIONS ON

NETWORK MANAGEMENT

3.1. INTRODUCTION

Code mobility is not a new concept. In the recent past, several mechanisms have been

designed and implemented in order to move code among the nodes of a network (e.g. remote

batch job submission [BOG73]). A more structured approach has been followed in distributed

operating systems research. New approaches to application design have been developed

embodying the notion of code mobility, i.e., the capability of dynamically moving the

components of a distributed application among the nodes of a computer network [CAR97].

The key idea behind code mobility is to provide an alternative to the traditional Client/Server

(CS) structure of distributed applications, thus enabling a better use of bandwidth resources

and a higher degree of flexibility and reconfigurability. In particular, mobile code-based

approaches give rise to significant network load savings through replacing remote CS network

communication by local interactions (see Figure 3.1).

Figure 3.1. CS vs. Mobile Code-based approaches

CS-based approach

Application Service

Host A Host B

Mobile Code-based
approach

Application Service

Chapter 3: Mobile Agents and Their Application on Network Management

41

Furthermore, embedding migration capabilities into the mobile code provides an extra level

of autonomy and brings forth the concept of the Mobile Agent (MA). In general, a software

agent can be defined as a computational entity, which acts on behalf of others, is autonomous,

proactive and reactive, and exhibits capabilities to learn and co-operate [NWA96]. Software

agents can be classified as stationary (static) or mobile. An MA is a software agent with the

ability of autonomously moving form host to host.

Given the definition of mobile code, it is clear that this paradigm can provide the

technology needed to achieve management distribution. Mobile code can be linked

dynamically on network devices either proactively by the manager or reactively by the network

device [FUG98]. This way, the management primitives embedded within mobile code become

available on the device only when requested by management operations, thus consuming

device resources only when this is really needed. Furthermore, MAs add a new dimension in

distributed management due to their ability to autonomously migrate to different network

devices and perform complex management tasks without the manager’s intervention [PIC98].

As a result, mobile code and MAs in particular represent a hot trend in distributed

management arena, reflected to numerous research activities [CHE98, BIE98b]. Similarly to

other application domains, a lot of hype surrounds MAs in network management and has given

rise to high expectations. Yet, until present, there has been very limited interest from industry

to support MA-based management, and there are no clear signs of a near-term take-off of this

technology. This is mainly due to several open issues still not sufficiently addressed by the

agent community (e.g. security concerns), while it is still unclear whether the use of MAs in

management applications may actually offer performance gain. This chapter first introduces

the reader to mobile code and MA technologies, surveys research initiatives in MA-based

management and attempts to identify suitable models that enable the effective use of this

technology in the management domain.

The remainder of this chapter is organised as follows: Section 3.2 provides an overview of

code mobility paradigms, with Section 3.3 listing their advantages when used in distributed

applications. Section 3.4 highlights the differences between MAs and the other mobile code

paradigms, suggesting application scenarios where the former can offer performance or

flexibility benefits over he latter. Section 3.5 focuses on agent mobility describing aspects that

affect the design of MA platforms. It also reviews mobile agent languages and standardisation

approaches, classifies mobility schemes, briefly describes commercial Mobile Agent Platforms

(MAP), lists application fields utilising MAs and discusses performance issues related to their

practical use. Section 3.6 concentrates on MA-based management: it describes several MAPs

tailored to Network & Systems Management (NSM), provides a survey of research activity on

the field, discusses performance aspects related to these applications, and suggests ways to

Chapter 3: Mobile Agents and Their Application on Network Management

42

effectively utilise MAs in terms of organisation and mobility models to optimise the

performance of management applications. Finally, Section 3.7 summarises the chapter.

3.2. CODE MOBILITY PARADIGMS

Mobile code paradigms encompass different technologies, all sharing a single idea: to

enhance flexibility by dynamically transferring programs to distributed devices and have these

programs executed by the devices. The program transfer and execution can be triggered by the

device itself, or by an external entity. Fuggetta et al. [FUG98] made a detailed review of

mobile code, where they clearly define the boundaries between technologies, paradigms and

applications. In particular, they identified three different types of mobile code paradigms: (a)

Remote Evaluation, (b) Code on Demand, and (c) Mobile Agents (see Table 3.1).

Table 3.1. Design paradigms for mobility (the boldfaced typesetting indicates where the
interaction takes place).

3.2.1. Remote Evaluation

In the Remote EValuation (REV) paradigm [STA90], a client (initiator) has the know-how

necessary to perform a service but it lacks the required resources, which are located at a remote

server (co-operator). Consequently, the client sends the service know-how to the remote site

that executes the code using the resources available there. This is a form of push. The

information transferred includes the agent code plus a set of parameters (arguments). After

executing the operation, the remote site returns the results back to the initiator of the remote

evaluation [ROT97].

Given the above definition of REV, it is clear that several standardisation and research

approaches on distributed management, exemplified by the Management by Delegation

paradigm (e.g. Script MIB, MbD, flexible agents, spreadsheet approach, etc), can be

considered as direct application of REV on the NSM area, as they all share the idea of moving

NSM functionality from the managers (initiators) to the management agents (co-operators).

Initiator (A) Co-operator (B)

Client-Server –
Code
Data

Processor

Remote Evaluation Code Data
Processor

Code on Demand Data
Processor Code

Mobile Agent Code Data
Processor

Chapter 3: Mobile Agents and Their Application on Network Management

43

3.2.2. Code On Demand

In the Code On Demand (COD) paradigm, the initiator A is already able to access the

resources it needs, which are co-located within the same device. However, it lacks the

information on how to process such resources. Thus, A interacts with its co-operator B,

requesting the service know-how. A second interaction takes place when B delivers the know-

how to A, which can subsequently execute it. This is a form of pull [FUG98].

A widely used technology based on COD are the Java applets: applets are programs written

in the Java programming language; when a Java-enabled browser is used to view a web page

that contains an applet, the applet’s code is transferred to the end system and executed by the

browser’s Java Virtual Machine (JVM).

3.2.3. Mobile Agents

In the MA paradigm, the service know-how is owned by the client, but some of the required

resources and data are located at a remote server. Hence, component A migrates to the server

carrying the know-how and possibly some intermediate results. After its arrival, A completes

the service using the resources available there [FUG98]. The MA paradigm differs from other

mobile code paradigms on that the associated interactions involve the mobility of a

computational component. In other words, while in REV and COD the focus is on the transfer

of code between components, in the MA paradigm a whole computational component is moved

to a remote site, along with its state, the code it needs, and some data required to perform the

task. In that sense, MAs can be regarded as a ‘superset’ of REV/COD paradigms, as they can

offer all the functionality provided by the latter, with the additional ability of autonomous

migration.

3.3. MOBILE CODE - ADVANTAGES

Mobile code technologies represent a powerful programming paradigm, which is useful

when designing distributed applications. The commonly agreed benefits of mobile code have

been discussed in many research papers [HAR95, GRE97, BAL97, PIC98] and summarised in

the following:

� Enhanced Flexibility. Clients typically access the resources hosted by a server through a

set of services, whose interface is typically predefined and commonly agreed among the

client and the server. Mobile code can be used to extend and update dynamically

capabilities of applications, thereby enhancing systems flexibility.

Chapter 3: Mobile Agents and Their Application on Network Management

44

� Exploitation of increased resources availability: Managed devices resources are

characterised by continuously increasing availability in terms of processing power, disk

and memory capacity. Mobile code takes advantage of that feature to achieve processing

load distribution. In NSM field, this advantage can be exploited to perform collection and

filtering of management data locally, in a distributed fashion. That way, expensive

platforms (managers) dedicated to issuing management requests, collecting, analysing

and presenting data are not any longer necessary.

� Reduction of network traffic: The transfer of mobile code to the source of data creates less

traffic than transferring the data, as mobile code can perform semantic compression of

data, delivering pre-processed, high-level information.

� Asynchronous interaction: Once downloaded, mobile code can perform distributed tasks,

even if the delegating entity does not remain active.

� Interaction with real-time systems: Installing mobile code close to a real-time system may

prevent delays caused by network congestion. In NSM, this problem arises when a

number of successive interrelated Management Information Base (MIB) values need to

be retrieved to present a snapshot of the system's state, e.g. on Simple Network

Management Protocol (SNMP) table retrievals [PIC01].

� Support for heterogeneous environments: Mobile code is separated from the hosts by an

environment able to receive and instantiate the received code. If the framework is in

place, mobile code can target any system, especially when the framework is implemented

by a platform-independent language, e.g. Java. The cost of running a JVM on a device is

decreasing. Java chips will probably dominate in the future, but the underlying

technology is also evolving in the direction of ever-smaller footprints (e.g., picoJava1).

3.4. MAS VS. REV AND COD

Since all the mobile code design paradigms allow the dynamic relocation of the components

of a distributed application, a legitimate question to ask is whether one should choose the

purest MA paradigm or just an approach exploiting COD or REV. Several researchers have

tackled the problem of finding out what are the potential assets of MAs (see for instance

[HAR95, FUG98, LAN99]). According to [MIL99], the application domains in which MAs

have potential deployment are: (a) data-intensive applications where the data are remotely

1 The picoJava [picoJava] core is a small, flexible microprocessor core that directly executes Java bytecode
instructions; picoJava can be used to run applications in small electronic appliances such as organisers, pagers,
and cell phones.

Chapter 3: Mobile Agents and Their Application on Network Management

45

located; (b) extensible servers; (c) applications in which agents are launched by an appliance

(e.g. a cellular phone) to a remote server, where the user does not necessarily have to stay

connected waiting for the MA’s return. However, as it has been shown in the preceding

section, the use of REV/COD suffices in the first two application domains.

Certainly, every MA-based application could be alternatively designed using existing

established technologies [CHE95]. As with every design choice, the answer is given by

application requirements and engineering tradeoffs. Detailed comparative analysis of the three

mobile code paradigms can be found in [PUL99], with [BAL98] focusing on their quantitative

evaluation, using NSM applications as a case study. In addition, [MAG96, BIE98b, CHE98]

discuss the potential of MAs in management applications and [HAY99] explores their assets in

the wider field of telecommunications. In this section, we identify some aspects related to

distributed applications design where MAs can offer more efficient or flexible solutions

compared to REV/COD, with special focus given on distributed NSM applications. Given that

the distributed NSM approaches reviewed in Sections 2.9 & 2.10 apply the REV paradigm

concepts in the NSM area (see Section 3.2.1), the advantages of MAs over REV/COD are, in

effect, valid also when comparing MA-based solutions against existing distributed

management approaches.

� New programming paradigm: MAs provide a subjective advantage because of the

metaphor they embody. Agents that are able to dynamically and autonomously relocate

themselves according to the application needs may provide, for certain applications, the

building block of a uniform and elegant design where every active component is able to

spontaneously relocate itself. This characteristic of MAs is probably at the core of their

popularity, and provides also a link to other disciplines, like artificial intelligence, that

brought this concept to the extreme by proposing agent-oriented programming [JEN00] as

a new way to create distributed applications.

� Decreased dependency on a master process: Approaches based on REV or COD have

increased dependency on a master process (delegator) that communicates with one or more

mobile code components for controlling and co-ordinating their tasks. Conversely, MAs

carry out these tasks in a programmable and autonomous fashion that obviates the need for

co-operation with the master process [KAW00]. In this sense, the interaction between the

MA and the delegator is limited to the stages of transmission and return of data [PUL99].

� Space savings: Resource usage is limited, because an MA resides only on one node at a

time. In contrast, static extensible servers require duplication of functionality at every

location. MAs carry the functionality with them, so it does not have to be duplicated

[BIE98b].

Chapter 3: Mobile Agents and Their Application on Network Management

46

� Easier update of decentralised tasks: REV and COD paradigms are not suitable in cases

that mobile code needs to be frequently updated, since every update involves broadcasting

the updated code to all devices, resulting in excess usage of network resources. In the MA

paradigm, such updates are easier and more efficient as the MA code is updated at a central

location (code repository) and does not involve network interactions.

� Traffic around the manager station: A main priority in NSM is to reduce the traffic around

the manager platform [BAL98]. REV and COD imply a pairwise interaction between the

manager and each managed device, where mobile code has been installed [PIC01]. Should

the manager-managed systems communication is relatively frequent or the size of the

managed network is fairly large, the associated traffic will affect the manager’s network

neighbourhood, although it is very much reduced in comparison with SNMP traffic. On the

other hand, MAs once unleashed can visit the devices autonomously, without requiring any

communication with the manager until all the results have been collected. Thus, no matter

how many devices are visited by the MA, the manager is involved only in the initial

dispatching of the agent and in the final collection of results, while the remaining traffic is

steered by the MA away from the manager.

� Management of remote subnets: Considering the management of remote subnets,

connected to the manager site through low-bandwidth links, when using REV or COD the

traffic over interconnecting links increases with the number of devices residing in the

remote subnets and the frequency of communication required with the manager station,

due to the pairwise interaction between the manager and each managed NE. MAs offer a

more efficient solution as they need to traverse the interconnecting links only twice (to

visit the remote subnets and return the results), regardless of the number of visited devices.

Even if the state of the MA increases during this operation, bandwidth is assumed to be

‘cheaper’ within the LAN than on the low-bandwidth link.

� Short-term distributed tasks: When distributed tasks are intended to run over a set of

devices for a relatively short period, it is more efficient to use a MA-based approach,

where a MA object sequentially visits the devices rather than broadcasting mobile code

and obtain the results from every NE. That also reduces the deployment time, especially

when the management of multiple NEs is involved (only one MA is issued by the

manager) [BOH00b].

� Reduced deployment cost and delay: MAs can be used to dynamically increase

availability of certain services. For example, the density of fault detecting or repairing

agents can be increased upon detecting malfunctions, through creating clones of existing

MAs and dispatching them to areas of concern. Hence, the traffic and latency involved in

Chapter 3: Mobile Agents and Their Application on Network Management

47

the deployment procedure can be significantly reduced, as it is carried out autonomously

and not initiated from a central location [LIO99].

� Local vs. global semantic compression of data: By visiting a number of devices, MAs can

also extend the concept of semantic compression enabled by REV and COD. These

paradigms can provide only a form of compression that is limited to a single device, and

local to it. The MA paradigm, in contrast, enables global semantic compression of data

across all the network devices visited.

� Device vs. Domain-level view: In parallel to the previous argument, approaches based on

REV or COD imply a local view of the device where the distributed code statically resides.

Should domain-level information incorporating data collected from a set of devices is

required, data correlation process should be performed at the manager station [LOP00].

Alternatively, a collaboration scheme between static agents could be applied in order to

exchange and correlate information [MOU98a], however that would imply a more

complex system design. MAs offer a more simple solution to this problem as they can

perform data correlation through sequentially visiting the entire set of devices.

Some of the aforementioned arguments are also valid when comparing the MA paradigm

against static approaches based on distributed objects, with the additional advantage of

enhanced flexibility and reconfigurability of the former over the latter, as MAs allow the

dynamically augment management services at runtime, which is not possible when these

services are realised through rigidly configured static objects.

Conversely, in many cases a naive use of MAs may lead quickly to a highly inefficient

design. In network monitoring applications for instance, the use of a MA that roams the

network and collects information may actually lead to a design that performs worse than the

conventional one, especially when large amounts of data are accumulated within the MA state

at each host [BAL98]. Yet, this problem can be partially addressed by launching MAs able to

perform semantic compression of data, thereby keeping their size practically constant.

Increased security concerns is another argument that can be used against MA paradigm, as

MAs typically visit a large set of potentially malicious hosts and face the risk of tampering.

Concluding, MA technology cannot be considered as panacea in distributed applications

design; if the motivation for using MAs is to optimise system performance, e.g., in terms of

traffic or latency, attention should be paid to the choice between MAs and alternative mobile

code technologies. In certain cases, a synergy of the two approaches may be preferable. In

addition, there are several open issues related with MAs that must be addressed by MA

community to help the wide spread of this technology:

� Reducing migration overhead: the MA code should be as lightweight as possible [PIC01];

Chapter 3: Mobile Agents and Their Application on Network Management

48

� Migration delays: MAs have been criticised for being associated with migration delays of

the order of seconds or even tens of seconds, depending on the agent configuration and

functionality [KNI99, BOH00a];

� Security: Network devices should be protected from malicious agents (and agents from

malicious machines) [VIG98];

� Fault tolerance: agents should be able to survive network and machine failures [NWA96];

� Performance issues: what would be the effect of having hundreds, thousands or millions of

MAs roaming on a network? [NWA96]

� MAs composition: it is essential to ease and automate the composition of service-

specialised MAs even by novice users, with no programming experience [MIL99].

3.5. AGENT MOBILITY

The field of MAs and mobile code has lately become a hot research topic covered by many

networking and software engineering conferences. As it has been shown throughout the

preceding sections, MA technology represents a promising programming paradigm, which can

enhance the flexibility and scalability of contemporary NMSs. However, its merits and

weaknesses should be carefully evaluated to ensure its effective use in NSM applications. This

section focuses on aspects related to agent mobility and MA platforms.

3.5.1. Elements of a Mobile Agent Platform

A basic component of a Mobile Agent Platform (MAP) is the MA Server (MAS),

equivalent to an ORB in CORBA, that runs on each host where MAs can execute. The main

purpose of the MAS is to provide an efficient execution environment able to receive,

instantiate and dispatch agents, serve as an interface between incoming MAs and the

underlying system resources and offer a set of services required by the MAs to perform their

distributed tasks.

Focusing on MAs, according to the definition given in Section 1.1, they comprise three

parts:

� the code part which defines the MAs’ functionality;

� the data part (persistent state), including the values of the variables declared within the

MA class;

� the execution thread (with an execution stack).

MAs state is dynamically updated as a result of their visits and interaction with distributed

servers where information is collected. MAPs that provide strong mobility (see Section 3.5.5.1)

Chapter 3: Mobile Agents and Their Application on Network Management

49

enable the transfer of all three parts on every MA migration. Most platforms involve the

transfer of only the code and state information (weak mobility).

An agent migration may be initiated either from the MA itself or the hosting MAS server by

invoking a move primitive, which allows an MA to move to the next server included into its

itinerary2, through an agent transfer protocol (ATP). At the time that the move method is

called, the MA’s state is saved and transferred through the network. At the destination site, the

MA state is recovered and the agent instantiated, typically provided with its own thread of

execution. ATPs are used to transfer agents between MASs and can be based on several

protocols such as sockets, HTTP, Java RMI, etc. In addition, MAPs also provide agent

development and deployment facilities, defined in APIs. A set of classes and interfaces are

supplied and should be integrated in the agent code in order to enable mobility.

Besides these basic functions, a MAP may include additional services and facilities. Fault

tolerance features insure that agents are reliably transferred and are not lost due to a system or

network failure. Many available MAPs include directory and location services [LAZ98]. These

services allow the agents to be aware of the existence of other agents and to track their

locations. Another important service is security, which deals with both the protection of hosts

from malicious MAs, and the protection of MAs against malicious hosts. Security mechanisms

have to ensure authentication, integrity, confidentiality and access control [FAR96]. Generally,

MAPs also provide primitives allowing MAs to communicate with each other and with the

servers on the visited machines. Inter-agent communication can be enabled by standardised

Agent Communication Languages (ACL), such as the Knowledge Query and Manipulation

Language (KQML) [KQML] and the FIPA ACL [ACL], developed by the Foundation for

Intelligent Physical Agents. These languages have been designed mainly for intelligent agents3.

In addition, a number of proprietary communication models have also been reported in the

literature (a detailed description of these models may be found in [INCO]), including direct

communication, blackboard, mailbox, meetings and method invocations.

3.5.2. Mobile Agent Languages

MA-based applications can, in principle, be developed in any programming language.

However, there are practical issues that render certain kinds of languages potentially more

2 The term itinerary refers to the list of devices to be visited by the MA. Itineraries may be pre-specified or
determined on-the-fly (see Section 3.5.5.3).

3 The term intelligent agent derives from Distributed Artificial Intelligence (extension of Artificial Intelligence) and
refers to a software component involved in a cooperative effort to resolve a problem. Intelligent agents are
typically composed of a communication mechanism, a rule base, a solution base and an inference engine
[MUL98].

Chapter 3: Mobile Agents and Their Application on Network Management

50

suitable for programming MAs. Given the heterogeneous nature of modern network devices,

portability is a first requirement (guaranteed by interpreted languages), while additional

features that enable easy development of mobility characteristics are also of major importance.

Other factors include object orientation, performance, etc.

Telescript [WHI96] was an early interpreted programming language for MAs developed by

General Magic Inc. The Telescript interpreter included a built-in mechanism for transparent

migration. Unfortunately, General Magic does not support Telescript anymore. Agent Tcl

[GRA95] is another MA language developed in the early period of MA technology. Agent Tcl

also supports transparent migration and can be useful for running existing Tcl scripts.

The popularity of Java has greatly influenced MA-based application developers. As a

result, all the MA platforms presented in Sections 3.5.6 and 3.6.1 are implemented in Java. In

addition to the generic benefits of Java highlighted in Section 2.6.1.1, its suitability for MA

programming is enhanced due to its inherent support for dynamic class loading, serialisation,

remote cloning and distributed objects communication. These features are discussed below:

Dynamic class loading: Java architecture enables the developer to write programs that

dynamically extend themselves by choosing at runtime classes and interfaces to load and use.

In fact, some of those classes and interfaces may not even exist when the program is compiled

[VEN98]. To enable a Java program to dynamically load classes not included within the local

name space, a customised ClassLoader (CL) object must be provided to obtain the classes

implementations (bytecode) and load them at runtime. A CL is defined by extending the

abstract java.lang.ClassLoader class and implementing its loadClass() method.

For instance, customised CLs may dynamically load classes received through the network.

This feature makes Java particularly attractive for mobile code-based applications. More

sophisticated CLs may even allow to reload classes that have been already loaded, in case their

implementations have been modified at runtime (see Section 4.4.3).

Serialisation: Java also provides the serialisation feature [OSS97], which allows object

instances to be exchanged between different JVMs. Serialisation provides a means for

translating a graph of objects into a stream of bytes which can be sent as a message over the

network or written in a file. Each instance of a class implementing the

java.io.Serializable interface is eligible for serialisation. The writeObject()

method of the java.io.ObjectOutputStream class defines the default behaviour for

serialising an object, i.e. converting the object’s state to a stream of bytes. By default, all the

objects referenced by a serialised object are serialised (they must implement the

Serializable interface); only the fields declared as transient or static [ARN96] are

excluded from the serialisation process. The symmetric process of recreating the object from

Chapter 3: Mobile Agents and Their Application on Network Management

51

its serialised representation is termed de-serialisation. De-serialisation is achieved by the

readObject() method of the java.io.ObjectInputStream class. The serialisation/

de-serialisation feature of Java is extremely useful when developing MA-based applications.

As discussed in Section 3.2.3, a fundamental aspect of agent mobility is the ability of MAs to

maintain their state information while migrating from one host to another. State can easily be

obtained upon migration through serialisation and subsequently recovered on the destination

host through de-serialisation. In Appendix B, we propose several ideas for reducing an MA’s

state size and therefore minimising the migration overhead. Appendix C presents the results of

experiments that provide a better understanding of the serialisation process.

Remote Cloning: Java provides inherent support for objects cloning (i.e. creating identical

copies of Java objects) through the clone() method of the java.lang.Object class

[ARN96]. Cloning is inspired by the fork process mechanism adopted in UNIX. Although

support for cloning has not been implemented with mobility in mind, it can greatly benefit MA

programming, as it enables the autonomous creation of MA clones at remote sites given that

specific conditions are satisfied. Remote cloning can reduce the latency and traffic involved in

MAs deployment, thereby enhancing the scalability and flexibility of MAPs [LIO99].

Remote Method Invocation (RMI): Java RMI [RMI] facility provides mechanisms for objects

communication in a location-transparent way (see Section 2.5.2). That can be very useful for

implementing a communication scheme between agents or agents and other Java applications.

On the other hand, two problems associated with MA programming in Java have been

identified:

� It is not possible to implement strong mobility through Java, i.e. to carry MAs execution

stack along with their code and state. However, the majority of distributed applications

employing MAs can be implemented utilising weak mobility [CAB00].

� Another limitation of Java is that it does not allow the serialisation of classes not

implementing the java.io.Serialisable interface, e.g. threads (instances of the

java.lang.Thread class). In Section 6.3.4, we propose a way to get around this

problem.

As a result of the aforementioned advantages, we have chosen Java for the development of

our MA-based management framework, described in Chapter 4.

3.5.3. Security in Mobile Agent Systems

Security issues related to MA systems are of major concern and have prevented to a large

extend the adoption of agent technology by commercial management platforms. Generally,

Chapter 3: Mobile Agents and Their Application on Network Management

52

network operators are worried about the capabilities of having self-replicated MAs roaming

into communication networks. This behaviour closely mirrors that of a computer virus. A

slight change in the agent’s executable code is enough to turn an MA to a vicious virus.

The security problem is, in fact, twofold: hosts should be secured from malicious agents

[SAN98] and agents from malicious hosts [KAR98b]. The first problem has been more

extensively addressed, yet both need to be solved before we can use MAs in real distributed

system environments. These security problems have proved harder to solve than people

initially expected. As a result, MA security is one of the hottest topics within the agent research

community. For a good introduction to the whole range of security issues, the interested reader

is referred to [VIG98]. In our MA framework, we have addressed the problem of malicious

agents, through a security component that provides authentication, and access control services,

whilst offering data encryption to protect sensitive management information from malicious

hosts (see Section 4.4.1.3.2).

3.5.4. Standardisation Approaches

The well-known advantages of standards also apply in the agent mobility field, as they

allow MAPs inter-operation. In order to establish a common basis for future developments and

enable the interoperability of agent platforms developed by different manufacturers, two bodies

promote MA standardisation. OMG has defined basic interoperation capabilities between

heterogeneous MAPs in its Mobile Agent System Interoperability Facility (MASIF) [MASIF].

MASIF proposes the standardisation of agents, agent system names, agent system types and

location syntax; it defines two interfaces (MAFAgentSystem and MAFFinder) which

should be implemented to provide agent management and agent tracking, respectively,

functionality. In parallel, FIPA [FIPA] is focusing on the standardisation of basic capabilities

of intelligent agents. Although the scopes of the two standards are quite different, an

interworking or even integration of MASIF and FIPA may be possible in the medium-term

time frame [ZHA98a]. Examples of MASIF and FIPA-compliant MAPs will be given in

Sections 3.5.6 and 3.6.1.

3.5.5. Taxonomies of Mobility Patterns

This section attempts a classification of the mobility patterns in terms of several

characteristics: their support to retaining MAs execution state, their migration strategy (the

number of hops realised by MA objects) and their itinerary control (predefined or dynamically

configured itineraries).

Chapter 3: Mobile Agents and Their Application on Network Management

53

3.5.5.1. Weak vs. Strong Mobility

Existing mobile code languages provide support for at least one of the following [CAR97]:

� Strong mobility: the ability of processes to move their code and execution state to a

different site. Processes are suspended, transmitted to the destination site, and resumed

there. For instance, Telescript provides mechanisms to implement strong mobility.

� Weak mobility: the ability to transfer code across different execution environments; code is

accompanied by its persistent state, but no migration of execution state is involved (see

Figure 3.2). For instance, Java supports only weak mobility.

Sun’s JVM does not allow capturing of processes’ execution states and, as a result, very

few Java-based MA systems provide strong mobility. Those that do, fall into three categories:

systems using a modified JVM [ACH97, PEI97], a custom JVM [SUR00] and systems using a

pre-processor [FUN98] approach. Clearly, the implementation of frameworks supporting

strong mobility is not a trivial task, whilst introducing performance penalties in agent transfers

[FUN98]. In addition, management tasks of configuration, maintenance and control typically

involve the execution of repetitive tasks on every node. That means that the requirements of

MA-based NSM can be comfortably met by frameworks that only support weak mobility

[CAB00, CHE00b]. This statement is also proved by the remarkable precedence of Java over

other programming languages that support strong mobility. Our MA platform, described in

Chapter 4, supports only weak mobility.

Figure 3.2. Classification of code mobility and agent mobility paradigms

3.5.5.2. Single-hop vs. Multi-Hop Mobile Agents

A second classification of MAs is based upon their migration plan, i.e. on whether MAs

visit one or more hosts. Single-hop agents travel to a target host, start their execution and

remain there until they terminate. This type of agents do not need any data when migrating to

the target host (except maybe initialisation data) nor any methods for itinerary control.

Therefore, single-hop MAs compare to downloadable code, i.e. they represent a direct

application of REV paradigm. Bohoris et al. [BOH00b] use the term constrained mobility for

single-hop agents.

Transport
of code

Migration of
code + data

Migration of
code + data + state

mobility
Remote Evaluation

Code On Demand

Weak Mobility

Strong Mobility

Code Mobility

Agent Mobility

Chapter 3: Mobile Agents and Their Application on Network Management

54

In contrast, multi-hop or itinerant agents can travel to several sites during their lifetime.

Multi-hop MAs are suitable for performing repetitive tasks over a set of devices. They can also

perform different tasks, and can adapt their behaviour depending on the tasks achieved in the

previously visited hosts. In [BOH00b], multi-hop MAs are further categorised in weak and

strong MAs, with the former referring to the migration of an MA without preserving

information gathered from previous visits and the latter involving the migration of MAs that

preserve their state formed during previous visits (standard use of MAs). Weak MAs are

termed memoryless4 agents in [CHE00b]. To avoid confusion with the well-established

definition of weak and strong mobility given in the preceding section, we adopt the term

memoryless (multi-hop) MAs to refer to agents that cannot (can) preserve their persistent state

when migrating. As shown in Chapter 5, the choice between single-hop and multi-hop MAs is

application-dependent.

3.5.5.3. Itinerary Control

A last classification of MAs is in terms of the control mobile objects maintain on their

itinerary. Thus, MAs can either have fixed or dynamic itinerary [CHE98]. When the itinerary is

fixed, the agent migration path is known at the MA’s creation time and it does not change

during the agent’s execution. For instance, fixed itinerary agents are suitable for visiting a pre-

determined list of devices to collect data, where the itinerary is typically supplied by the user.

In contrast, agents with dynamic itinerary may change their migration path during their

execution. The support for dynamic itinerary is achieved though at the expense of increased

complexity and size on the MA’s code. A discovery agent that is sent to discover new

components in a network is an example of agent with dynamic itinerary, since its migration

path is specified depending on the detection of new components or subnets. The migration

schemes incorporating MAs with fixed and dynamic itineraries are termed passive and active

migration, respectively.

It is noted that migration decisions are either made by the MAs themselves or other entities

co-located at the same execution environment. Our MA framework, presented in Chapter 4,

supports only fixed itineraries (in performance management applications, the list of monitored

devices is known in advance), while migration decisions can be made by both the MAs and the

local MASs.

4 Both single-hop and memoryless mobility involve the transfer of agents code but not their persistent state.
However, this is inconsistent with the definition of mobile agents, according to which an MA is a computational
entity that carries both code and state information. In other words, the term Mobile Agent is used abusively
herein.

Chapter 3: Mobile Agents and Their Application on Network Management

55

3.5.6. Commercial Mobile Agent Platforms

The phenomenal popularity of MAs is reflected on several industrial initiatives that led to

the development of numerous MAPs [MAL]. State-of-the-art reports on general-purpose

MAPs can be found in [KRA98, COR98b, INCO], with interesting comparative performance,

robustness and scalability tests reported in [SIL00, MARINE, MIAMI98]. In this section, we

briefly review four representative and popular general-purpose MAPs, all implemented in Java:

Aglets, Concordia, Voyager and Grasshopper.

Aglets [Aglets]: The oldest and most well-known platform, developed at the IBM Research

Laboratory in Japan. The first version was released in 1996. The migration of Aglets is based

on a proprietary Aglets Transfer Protocol. The Aglets Software Development Kit (ASDK)

runtime consists of the Aglets server and a visual agent manager, called Tahiti. The ASDK

provides a modular structure and an easy-to-use API for Aglets programming and also

extensive support for security and synchronous/asynchronous agent communication.

Concordia [Concordia]: It has been developed by Mitsubishi Electric. This platform provides a

rich set of features, like support for security, reliable transmission of agents, access to legacy

applications, inter-agent communication, support for disconnected computing, remote

administration and agent debugging.

Voyager [Voyager]: It is probably the most popular MAP, in terms of number of users. It has

been developed by ObjectSpace. Voyager is an object request broker with support for MAs.

The agent transport and communication is based on a proprietary ORB on top of TCP/IP.

Voyager has a comprehensive set of features, including support for agent communication and

agent security and also provides support for CORBA and RMI.

Grasshopper [Grasshopper]: Grasshopper has been developed by IKV++, with its main power

lying on its compliance with FIPA and MASIF standards. MASs in Grasshopper comprise a

core agency and a set of one or more places (runtime environments where agents run). The

core agency offers a set of services to support agent migration and execution. The

communication service that supports agent communication and migration may use a variety of

protocols: CORBA IIOP, Java RMI and plain sockets. Grasshopper also offers registration

services to keep track of running places and the agents running at each place. Security in

Grasshopper allows protecting both MAS-region interactions and agent-MAS interactions.

Fault tolerance mechanisms are also integrated, ensuring that agents and MASs can recover in

case of crashes or faults [BAU99].

The advantages of using one of the MAPs presented above, are that (a) they are relatively

easy to use and typically well-documented, providing attractive frameworks for the rapid

development of MA-based distributed applications; (b) most of them are robust, reliable and

Chapter 3: Mobile Agents and Their Application on Network Management

56

well-tested. Experiments, however, have demonstrated that these MAPs do not satisfy all

performance requirements, as they either involve increased migration latency (Aglets,

Voyager, Grasshopper) or poor scalability and robustness under stressing conditions

(Concordia) [SIL00]. In fact, Grasshopper has shown to perform worse than others MAPs

[MARINE], however its rich functionality, security features and compliance with well-

established standards have been the main factors that contributed to its recommendation as the

appropriate development platform for several MA-related EU projects [MIAMI, MARINE].

From the management viewpoint though, there are several weaknesses shared between

commercial MAPs:

� Rich, but unnecessary functionality: Being general-purpose frameworks, most available

MAPs incorporate rich functionality, yet, usually unnecessary for management

applications. Some of these features are ‘hard-coded’ within an ‘Agent superclass’ that has

to be extended in order to implement application-specific MAs and result in large MA

sizes that affect the usage of system and network resources. A subset of the provided

features would suffice for the majority of management tasks, however the exclusion of the

non-desired features is not feasible;

� Lack of essential features: Some features considered as essential when designing a flexible

management system are not supported by most general-purpose MAPs. For instance, the

ability of MASs to distinguish between different versions of the same MA class, which

may reflect the update/modification of an existing management task;

� Heavyweight migration schemes: The minimisation of MAs migration overhead is of major

importance for large-scale monitoring applications that involve frequent polling of a large

set of NEs. Existing MAPs incorporate complex and heavyweight migration protocols that

result in increased network overhead, which typically exceeds that of static distributed

objects communication mechanisms [KNI99, BOH00a];

� No open-source MAPs: At the time this research commenced, there was no open-source

MAP that would allow the author to modify the code and perform application-specific

optimisations;

� Questionable support: Companies shipping commercial MAPs, often suspend their

support, e.g. General Magic has discontinued the Odyssey project, while that also seems to

be the case with IBM’s Aglets [INCA].

All these weaknesses make difficult the selection of a general-purpose commercial MAP as

implementation platform and led to the development of numerous application-oriented MAPs,

many of which are tailored to management applications (see Section 3.6.1).

Chapter 3: Mobile Agents and Their Application on Network Management

57

3.5.7. Applications of Mobile Agents

MAs can be useful in several application fields, although none of them necessitates their

use; in fact, each application can be designed based on existing technologies [HAR95,

MAG96]. However, the use of MAs can contribute to build these distributed applications in a

more simplified and effective way. In the following, we identify some areas in which MA

technology can actually give a positive contribution. NSM applications are not mentioned

herein as they will be elaborated later.

� Information retrieval: MAs can be an effective tool for retrieving information within a

distributed system; in fact, an agent encapsulating the user’s query can migrate to the

place(s) where the information is actually stored; therein, the agent can obtain and filter

data, and return the user only the useful information [ISM99]. This idea has been used in

[PAP99] to reduce the latency involved in remote database interactions.

� Electronic commerce: E-commerce is an increasingly expanding area in the Internet; MAs

can help users to search the products that meet their requirements, find the most cost-

effective offers, etc. [DAS99].

� Mobile computing: Users want to access network resources from any position,

notwithstanding the band limits of current wireless technologies. Thus, users can submit

their requests through an agent, which runs their request within the network and returns the

results later (so the user does not need to remain connected, waiting for the results)

[CHE95, MIL99].

� Distributed Computation: MAs represent new paradigm for parallel execution of

computation-demanding tasks on a distributed network of workstations [SIL99b, GHA99].

3.5.8. Performance Evaluation of Mobile Agents

It is often argued that the advantage of agent migration lies in the reduction of (expensive)

communication costs by moving the code to the data rather than the data to the code [HAR95].

Although this argument is understandable from an intuitive point of view, not much research

has yet been conducted to evaluate the cost of agent migration on a quantitative basis.

Performance models regarding network load and execution time are needed to identify

situations on which agent migration is advantageous compared to RPCs and help to decide

which interaction model to be used.

A performance model for MA systems is introduced in [STR97]. The conclusion drawn

from this model is that an alternating sequence of RPCs and agent migrations may perform

better than a pure sequence of RPCs or a sequence of agent migrations. In particular, it is

Chapter 3: Mobile Agents and Their Application on Network Management

58

argued that agent mobility reduces both the overall latency and network load in cases that MAs

visit devices where the amount of data to be processed is large compared to the size of the

agent and the selectivity of the agent, i.e. its ability to reduce the size of the returned data by

remote processing, is high. This conclusion was validated by experimental measurements in a

realistic Internet-scale network scenario, using a prototype MA system implementation (Mole

[STR96]). Along the same line, Chia et al. proposed strategic mobility [CHI97], whereby

agents may choose to migrate to selective resources or instead to communicate with the needed

resource over the network, depending on the problem’s characteristics and the underlying

computing and network infrastructure.

NSM-oriented performance evaluations of MA platforms have been reported in several

research papers [BAL98, PIC98, RUB99, BOH00a], reviewed in Section 3.6.3.

3.5.9. Discussion

It should have already become evident that MA technology cannot be considered as an ideal

solution for structuring every distributed application. A major problem that has prevented the

wide spread of MA technology is the difficulty to identify ‘killer applications’ [MIL99,

KOT99], i.e. applications that would strongly enforce the use of MA technology and become

the driving force towards its further spread, adoption and exploitation.

That is a rather controversial issue which reminds of the object-oriented versus procedural

programming debate5. Although killer applications probably do not exist, there is a number of

application scenarios where MAs may improve the performance or efficiently complement

REV/COD paradigms (see Section 3.4). In that sense, MAs should be considered only as

another tool in the arsenal of distributed application designers [PIC01]. Concluding, we believe

that the decision on whether to use MAs or alternative mobile code technologies should follow

an unbiased quantitative and qualitative evaluation and depend on the specific characteristics

and requirements of the examined applications.

3.6. MOBILE AGENT-BASED NETWORK MANAGEMENT

The potential of MAs in structuring distributed application has been early recognised by the

management community, triggering intense research activity on MA-based distributed

management. In the field of Network and Services Management, Magedanz [MAG96] was the

5 At the time that object-oriented (O-O) programming was at its infancy, several developers often claimed that the
O-O approach did not have a killer application either, still, it is now well accepted and widely used. While this
claim is questionable, it is true that O-O applications can also be implemented in more traditional ways
(procedural programming).

Chapter 3: Mobile Agents and Their Application on Network Management

59

first to signal the potential of MAs, describing several scenarios in which their use can offer

important benefits. MAs can encapsulate management scripts and be dispatched on-demand

where needed. An MA can be sent to a network domain and travel among its elements

collecting management data, and return with the data filtered and processed. Sending an MA

for this task is a substitute to performing low-level monitoring operations and processing them

centrally. Through semantic compression of collected data, the agent size can remain small and

save bandwidth usage.

In an interesting study on code mobility, Baldi et al. [BAL97] presented another advantage

of using MAs; when the network administrator is connected via an unreliable, costly or lossy

link, he/she can create MAs off-line, connect to the network to dispatch the agents, close the

connection and then reconnect later to get his agent back with the results. This principle is

actually implemented in Astrolog [SAH97].

This section starts with a description of several MAPs tailored to NSM, overviews several

MA-based management applications classified in terms of the mobility scheme they utilise,

discusses performance aspects related to these applications, surveys the research activity on the

field of active networks which is relevant to the scope of this thesis, and finally discusses

efficient organisation and mobility models for MA-based NSM frameworks.

3.6.1. Mobile Agent Frameworks for Network Management

The limitations of general-purpose MAPs, as highlighted in Section 3.5.6, have led to the

development of numerous management-oriented MAPs, aiming at optimising flexibility and

performance aspects. Simply viewed, these MAPs consist of two components: The MAs

themselves and the nodes where they can migrate and execute. There are several names

synonymous to nodes where MAs execute, such as Mobile Code Daemon [SUS98], agency

[SIL99a], place [ZAP97, BEL99], lieu [SAH97], etc. We adopt the term Mobile Agent Server

(MAS) for the remainder of this section. In the following sections, we present the most

representative platforms explicitly tailored to NSM applications.

3.6.1.1. IMA

The Intelligent Mobile Agents (IMA) framework [KU97], developed in Arizona State

University (USA), has been the first MAP intended for building decentralised NSM

applications. As such, IMA provides minimal functionality and poor integration with

management standards. IMA consists of three major components: the MA launcher or

managing entity, the MA code and the agent host. The managing entity is responsible for

launching the MAs and processing the data collected by them. The MA is a software program,

Chapter 3: Mobile Agents and Their Application on Network Management

60

which migrates among managed entities to collect information based on the policies defined by

the managing entity. The agent host is capable of receiving MAs and providing them access to

local resources. The agent host runs as a daemon process at each managed entity able to

receive and authenticate MAs.

3.6.1.2. MCT

The Mobile Code Toolkit (MCT) has been developed as part of the Perpetuum Mobile

Procura project [PMP] in a pursuit of the ultimate goal, a plug-and-play network [BIE97],

offering the basic functionality required to deploy NSM MAs. Every node to which MAs can

migrate has to run a Mobile Code Daemon (MCD) that includes a Migration Facility and a

Mobile Code Manager. The Migration Facility provides transport facilities to the agents. The

Mobile Code Manager manages the lifecycle of the agents present on the MCD. The access to

managed resources is handled by Virtual Managed Components, which provide a uniform

interface for the MAs to monitor and control the visited NE [SUS98]. In [WHI99], an MA

injection client is also introduced in order to create, deploy and manage MAs in the network.

Also, authentication and data integrity features have been incorporated in the MCT framework.

Several kinds of MAs are defined [BIE98a]. Applets, servlets and extlets are single-hop

downloadable components where applets are used for COD and servlets and extlets are used

for REV. Deglets are multi-hop agents with limited persistence, that terminate as soon as their

task is completed. Finally, netlets are persistent multi-hop MAs.

3.6.1.3. INCA

INCA (Intelligent Network Control Architecture) [NIC98] is an open architecture for the

distributed management of multi-service networks. It supports three code transfer schemes:

Push code distribution is used when the itinerary of the agent is known at creation time, where

the code of the agent can be pushed to the end nodes before the agent is launched. In the pull

code distribution, a station that receives a new MA has first to fetch its code. Finally, in the

migration code distribution, the code travels along with the MA state. Another original feature

in INCA is that the network administrator can assign priorities to MAs, depending on the

urgency of their task. Other interesting features include reliable and fault-tolerant

communications between stations, monitoring of the agent population deployed in the network

and facilities to launch and control MAs execution. In addition, INCA includes a location

service and a naming service, used for inter-agent communication. It is noted though, that

INCA architecture has not been implemented.

Chapter 3: Mobile Agents and Their Application on Network Management

61

3.6.1.4. MAGENTA

MAGENTA (Mobile AGENT environment for distributed Applications) [SAH97],

developed in the Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA,

France), targets mobile user applications where users are connected to the network with

unreliable and expensive connections. Hence, MAGENTA assists the administrators to

remotely control their managed network (possibly through portable computers), through

launching MAs to carry out distributed management tasks. Places where MAs can travel

(MASs) are called lieus. The heavier part of the management functionality is integrated into a

static management server. The framework is enriched with features such as fault tolerance,

adaptability of MAs to changes in the environment (they are capable of detecting the

disappearance of a lieu), etc [SAH98]. MAGENTA also offers a limited support of security

based on access control.

3.6.1.5. AMETAS

The Asynchronous MEssage Transfer Agent System [AMETAS] developed in University

of Frankfurt (Germany), uses the concept of a place as a MAS. Each place offers a mailbox

system that allows agents to communicate asynchronously. A place can extend its capabilities

by installing services that can be accessed through a control interface. MAs can therefore

access managed resources after installing appropriate services. Another feature of AMETAS is

that it defines human-agent interfaces through the definition of user adapters. Finally,

AMETAS uses a complex security mechanism including authorisation, access control and

encryption [ZAP97].

3.6.1.6. SOMA

The Secure and Open Mobile Agent (SOMA) architecture [SOMA], developed in the

University of Bologna (Italy), concentrates on security and interoperability as its two main

design objectives. SOMA has been developed on the top of an MA environment used for

NSM, MAMAS (Mobile Agents for the Management of Applications and Systems) [COR98a].

It enforces a strict security model with authorisation, authentication, integrity and secrecy

features. Interoperability with other MAPs is achieved through the support of the OMG

MASIF specifications [MASIF]. Moreover, a software add-on ensures interoperability with

CORBA-compliant distributed applications and allows inter-operation with legacy systems

through CORBA gateways [BEL99]. Several abstractions are defined within the MAMAS

architecture: The place abstraction where agents can execute (i.e. the MAS); the domain

abstraction which encloses a set of places; domains typically represent LANs and include a

Chapter 3: Mobile Agents and Their Application on Network Management

62

default place that embeds the gateway abstraction responsible for interconnecting different

domains.

3.6.1.7. JAMES

JAMES [JAMES] is a MAP designed for the management of telecommunications networks,

developed as part of a collaborative project between University of Coimbra (Portugal) and

Siemens. MASs in JAMES are called agencies. The JAMES manager allows the network

administrator to control active agents and agencies. A code server provides a central repository

where MA codes are stored [SIL99a]. Moreover, JAMES agents have a passive migration

strategy according to which the itinerary of each agent is known at launch time. Agencies make

use of this property to pre-fetch the agent code from the code server [SOA99]. This leads to

improving MA migration performance. JAMES also uses a checkpoint mechanism to provide

fault-tolerance. Agencies states are periodically saved on a persistent medium so that they can

be recovered after a crash and restarted from the last saved checkpoint. Moreover, MAs are

saved and maintained until they reach the next checkpoint.

3.6.1.8. MAP

The Mobile Agent Platform [MAP] has been developed as part of a collaborative project in

Universities of Catania and Messina (Italy). MAP architecture includes the following

components [PUL00a]: the Server (MAS), able to accept and activate MAs; the Daemon,

listening on a specific port for visiting MAs; the Context, that maintains a list of locally

executing MAs and manages inter-agent communication; the NetworkClassLoader that enables

MAs to run on a Server, even when their class is not present therein; the CodeServer,

integrated within the Context, which stores the classes available at the Server. Additional

features allow for synchronous/asynchronous inter-agent communication, to remotely retrieve

information about MAs and change their execution state, etc. A key feature of this platform is

its compliance with the MASIF standard, ensuring interoperability with other MAPs.

3.6.1.9. CodeShell

CodeShell [BOH00c], developed in University of Surrey (UK), is an optimised mobile code

platform supporting the constrained mobility paradigm (see Section 3.5.5.2). As such,

CodeShell cannot strictly be classified as MAP, as it does not provide migration facilities to

launch MAs. The motivation that led to the development of this platform has been to address

the performance limitations (mainly large migration delays) of general-purpose MAPs (see

[BOH00a]). The basic components of the CodeShell architecture are a communication service

(using Java-RMI) which provides a mechanism for delegating management logic along with

Chapter 3: Mobile Agents and Their Application on Network Management

63

initial parameters to remote machines and a naming service that distinguishes between objects

and also binds one object to another.

3.6.1.10. Discussion

In this section, we described a number of MAPs designed and implemented for NSM

applications, which address some of the limitations of general-purpose platforms, discussed in

Section 3.5.6. All the presented MAPs support multi-hop agent applications, with the

exception of CodeShell, which exclusively supports constrained mobility, however none

supports memoryless or strong mobility. Interestingly, only SOMA and MAP comply with the

OMG MASIF standard (see Section 3.5.4), while Java is the implementation platform in all

cases. However, a number of limitations have been identified on these MAPs:

� Heavyweight migration scheme: With the exception of few (e.g. [PUL00a]), existing

MAPs involve the transfer of both state and code at each MA migration. The transfer of

code though is unnecessary, unless the MA visits a device for a first time, as the Java CL

stores every loaded class on a local code table. That inefficient scheme may result in

serious scalability problems both in terms of latency and migration overhead. This problem

is partially addressed through the migration strategy proposed in [SOA99] and [PUL00a],

where only the MA state is transferred and should the corresponding code is not present at

a visited device, the device's CL contacts and downloads the code from a remote code

server. This approach is very efficient in terms of network traffic (MA code is transferred

only when necessary), however it increases the latency (the MA’s execution cannot start

until its code is downloaded). In addition, it involves more complex migration

mechanisms, which are not necessary when MAs itinerary is known in advance. Instead,

we have chosen to adopt the ‘push’ scheme (defined in [NIC98]), whereby bytecode is

distributed at the MA’s construction time with only the persistent state transferred

thereafter, resulting in minimal usage of network resources (bytecode size is typically

much larger than state size [BAL98]) and faster class loading. This migration scheme is

described in Section 4.4.1.4.1 with a more refined design detailed in Section 6.3.5.

� MA services customisation: The development and customisation of MA-enabled NSM

tasks is not effortless with available MAPs, as it requires programming skills and detailed

knowledge of the MAPs’ design. In Section 4.4.1.4, we introduce a tool that automates the

generation of service-oriented MAs in a user-friendly manner, according to specified

operational requirements.

� Class loading: Most MAPs include a CL component, able to receive and load at runtime

visiting MAs bytecode. Yet, to the best of our knowledge, there is not any MAP which

Chapter 3: Mobile Agents and Their Application on Network Management

64

allows to modify (overwrite) the bytecode, i.e. to dynamically upgrade MA-enabled

management tasks. This problem is related to a limitation of Java class loading mechanism,

which we address through a customised CL, described in Section 4.4.3.

� Security: Not all management-oriented MAPs sufficiently address security issues related to

MAs. Examples of platforms without any support of security mechanisms or adopting

weak security schemes, include IMA, INCA, JAMES, CodeShell. In Section 4.4.1.3.2, we

describe a security component, which is integrated within our MAP and provides

authentication, authorisation and encryption services.

� Fault tolerance: MAPs should be able to survive situations where link or node failures

disrupt the normal migration process of roaming MA objects or the communication with

the manager station. However, only few platforms (MAGENTA and JAMES) have

addressed fault tolerance issues. In Sections 4.4.2 and 6.3.9, we discuss how network or

node failures are dealt within our platform.

� MA organisation models: The reviewed MAPs define architectures comprising two

hierarchical levels, corresponding to the manager and the NE ends, with the MAs used to

delegate NSM functionality from the manager to the NEs. This organisation model is

suitable for the management of small or medium-sized LANs but not adequate for large-

scale, geographically dispersed enterprise networks, typically structured in logical

hierarchies. This problem is discussed in Section 3.6.5.1.

3.6.2. Mobile Agent Applications in Network Management

MA-based distributed management has been a very hot research topic in the past few years,

with a large number of proposed applications reported in the literature. This section provides

an overview of MA-based approaches in a broad spectrum of applications, including network,

systems, fault, configuration and service management. In order to provide a more structured

overview, we follow the classification of Section 3.5.5.2, grouping these applications

according to the mobility scheme used (single vs. multi-hop agent applications) and the control

on agents’ itinerary (passive vs. active migration). Most of the applications described below

use the MAPs described in the preceding section as underlying platforms, whereas others have

chosen general-purpose platforms such as Voyager [FER01] or Aglets [PIN99, CHI99].

3.6.2.1. Single-hop Agents in Network Management

As a general rule, single-hop migration is useful to encapsulate a function or a service into

an MA and to deploy it to a remote location. A number of applications make use of this idea.

White et al. [WHI99] suggest that a Virtual Managed Component (VMC) resides at each NE,

Chapter 3: Mobile Agents and Their Application on Network Management

65

providing incoming MAs an interface to managed resources. The manager side of the NMS

requires a similar interface called the Virtual Managed Resource (VMR), which can be viewed

as a remote wrapper of the VMC. The VMR can be supplied as a single-hop MA that travels to

the remote NE, thereby, seamlessly enabling the management of newly installed NEs. In

addition, this allows network component suppliers to transparently use any NSM protocol

(even a proprietary protocol) for the management of NEs.

In [PUL00b], four types of MAs (programmed on the top of MAP platform, described in

Section 3.6.1.8) are identified to perform management functions. Among them, the daemon

agent is a single-hop agent sent to a network node to locally compute a health function (a

linear aggregation function of several MIB values) and automatically notify the manager

station when certain thresholds are exceeded. This scenario provides the advantage of saving

bandwidth when compared to a remote polling-based scenario. Single-hop agents are also

supported by the CodeShell platform (see Section 3.6.1.9), mainly applied to performance

management applications: the aim is to provide traffic rates, QoS alarms and periodic

summarisation reports by observing raw information such as traffic counters on NEs

[BOH00c].

Other possibilities of applying single-hop agents are suggested in [MAG96]. A service or a

network provider can send single-hop MAs to user end-points in order to adapt his equipment

to new services. These agents can also achieve other tasks such as user accounting and

capturing user requirements.

3.6.2.2. Multi-hop Agents in Network Management

Fixed Itinerary (Passive Migration)

The most typical and widely-used scenario of applying multi-hop agents is to deploy an

agent to a list of hosts to locally perform management tasks and return to the manager

processed management information. In this context, mobility allows the agent to perform

semantic compression [BAL98], take decisions based on the past visited nodes and bring back

a report result to the management station. This scenario is proposed in many works for

different management activities.

Several research works on MA-based network monitoring involved rather simplistic

applications, whereby a single MA object sequentially visits a predefined set of hosts,

collecting a number of MIB values from each one without performing any processing upon

them. This approach, used in [KU97, SAH98, CHI99] fails to solve the scalability problems of

SNMP management as the state of travelling MAs grows rapidly (due to the unprocessed data

accumulated into the MA state) resulting in increased network overhead and response time, in

Chapter 3: Mobile Agents and Their Application on Network Management

66

addition to imposing computational burden to the manager station where data processing takes

place [BAL98]. The same principle is used in [COR98a], where MAs return system resources

utilisation reports from a group of devices. Simulation results have shown that using MAs as

management data collectors can be more efficient than SNMP-based management only when

the management of remote domains (separated from the manager station by bottleneck links) is

considered [RUB99].

The ability of MAs to return high-level information is exploited in [PUL00b], which

defines a verifier agent that returns a list of nodes verifying a certain condition, e.g. overloaded

CPU. In [SIL99a], MAs are used in a TMN environment to collect and process performance

data from a set of NEs in order to produce global reports about the performance of the

network. More advanced applications are proposed in [ZAP99] that presents NetDoctor, an

application built on top of the AMETAS platform (see Section 3.6.1.5). NetDoctor addresses

scalability issues by delegating NSM tasks to MAs that migrate to remote domains where they

act as local managers, performing SNMP operations. Several interesting applications are

proposed, including evaluation of health functions, termination of mis-behaving processes to

free-up system resources, etc. Similar applications have been proposed by Pinheiro et al.

[PIN99] that defined discovery agents to discover the existence of specific MIB variables on

given hosts, and aggregator agents to perform computations on MIB variables (several

aggregation levels may be defined). An interesting aspect is the dynamic adaptation of the

proposed architecture to changing network conditions, so that MAs move closer management

data to minimise their intrusiveness, in terms of the NSM-related traffic. This application has

been developed using Aglets as underlying mobility framework.

El-Darieby et al. proposed a fault management application, using intelligent MAs endowed

with a rule-based engine that allows to infer and diagnose possible faults on visited nodes

[ELD99]. Another interesting application is described in [KNI99] that uses MAs for

monitoring the conformance of Service Level Agreements (SLA) in enterprise networks. The

paper suggests to use MAs that periodically roam the network to collect SLA monitoring

results produced by other agents standing close to locations where user applications execute.

Both the applications described in [ELD99] and [KNI99] are developed on the top of the MCT

platform, described in Section 3.6.1.2.

Feridun et al. [FER01] presented the Distributed Management Framework (DMF), an

architecture built on the top of the Voyager platform. The execution environments for

incoming MAs are provided by the Distributed Management Nodes (DMN), characterised by a

highly modular and lightweight design. The DMF has been tested on an application scenario

where an enterprise manager, running on a DMN, analyses IP traffic characteristics of remote

subnets. Upon receiving an event reporting that a performance threshold has been exceeded,

Chapter 3: Mobile Agents and Their Application on Network Management

67

the enterprise manager dispatches an MA to the remote subnet where the event originated

from. On arrival, the MA starts monitoring the traffic activity on the subnet using a packet

sniffer. When the specified monitoring period ends, the MA returns back to the enterprise

manager to deliver its collected data.

The Mobile Disman architecture described in [OLI99] goes one step further, integrating the

IETF’s Distributed Management (Disman) framework [Disman] with a MA-based NSM

framework. Disman defines an architecture where a main manager can delegate control above

several distributed managers (DM), thereby improving the scalability, robustness and

flexibility of centralised approaches. In Mobile Disman architecture, MAs can by used to

implement DMs; providing mobility support to DMs allows them to adapt to dynamic

environment conditions, offers location transparency and simplifies tasks such as data

correlation and tasks distribution. However, Mobile Disman architecture is heavyweight, i.e. it

comprises many resource-demanding components that would certainly increase the

requirements on system resources; the fact that Disman is still only an Internet draft should

also be considered. In addition, Mobile Disman architecture is not supplemented by a

prototype implementation.

Dynamic Itinerary (Active Migration)

In their pioneer work, Appleby and Steward demonstrated the feasibility of employing

multi-hop actively migrating MAs to control traffic congestion in circuit-switched networks

[APP94]. A first class of MAs, called parent agents, randomly navigate among the network

nodes and collect utilisation information. By keeping track of this information, they gather an

approximate utilisation average of the network nodes. Therefore, they are able to identify

congested nodes, relatively to this average. When a congested node is found, a load-balancing

MA is created to update the routing tables of the neighbouring nodes so as to reduce the traffic

routed through the congested node. This application inspired other researchers to further

develop its ideas by using biologically inspired agents. The work of Minar et al. [MIN99]

covers this ground, using MAs to configure routing tables in a highly-dynamic radio frequency

network where nodes are low-power transceivers, moving from one location to another in a

two-dimensional space.

Shoonderwoerd et al. [SCH97] proposed to use ant-like MAs to achieve load balancing in

telecommunications networks. MAs randomly roam the network and put pheromones

depending on the distance from the source and the congestion of the followed route. Deploying

a sufficiently large number of such ant-like agents allows to route calls according to the

distribution of pheromones. Simulations show that such MAs significantly decrease call

rejections compared to other approaches. An improvement to this work is proposed in

Chapter 3: Mobile Agents and Their Application on Network Management

68

[BON98], where MAs no longer roam the network in a completely random manner, but follow

those places where the strength of pheromones is higher.

White et al. [WHI98] applied a similar approach in a network fault location application,

using multiple interacting swarms of MAs. Four types of agents are defined. Service

monitoring agents monitor the compliance of service instances to the required QoS. When

significant changes are detected, a service change agent is sent to mark the resources on which

the service depends (increase the pheromone intensity when the QoS has downgraded).

Condition sensor agents continuously roam the network and evaluate specific conditions on

the visited nodes, with the tendency to visit more frequently those nodes where problems have

been detected. Nodes with strong pheromone attract a fourth type of agents called problem

identification agents, with the capability to diagnose and repair certain patterns of problems.

As a general comment, it should be stated that the applicability of ant-based solutions in the

field of telecommunications is questionable; so far it has only been demonstrated in simulated

environments.

Active migration has been also applied in network discovery and dynamic configuration of

networks and services. In [SCH98] and [WHI99], the authors proposed a scenario, where MAs

(netlets) continuously roam the network to discover new devices and detect removed

components. Netlets are suitable for dynamic networks with frequently changing topologies

and supported services. An MA-based network discovery application is also described in

[FER01].

In another work, Pagurek et al. [PAG98] developed a simulation testbed for the

configuration of Permanent Virtual Channels (PVC) in heterogeneous ATM networks. The

idea is to dispatch an MA that travels across the network switches, and progressively

configures the PVC fragments on each switch. After configuring the PVC route on a switch,

the MA travels to the next switch where it uses configuration information of the past switches

to correctly configure the current one. Cheikhrouhou et al. proposed a similar application

[CHE00a], based on static intelligent agents with dynamically extended capabilities.

It is essential to notice that in the above applications, MAs provided a very interesting tool

to model either lightweight moving entities or biologically inspired entities used for

management tasks. The MA metaphor allows to model a self-contained entity that evolves in

its environment to accomplish simple tasks according to its own view of the network.

3.6.3. Performance of Mobile Agents in Network Management

While the main focus of MA-related research activity on distributed management has been

on developing NSM-oriented frameworks and using them on specific applications, some

Chapter 3: Mobile Agents and Their Application on Network Management

69

researchers concentrated on evaluating the performance of MA-based management. The

purpose of such performance studies is twofold. First, they suggest ways to efficiently use

MAs so as to outperform centralised NSM approaches. Second, they allow to determine how

MAs are best deployed for particular types of NSM operations.

Pioneer work on this direction has been presented in [BAL97] and [PIC98]. A management

task carried out on a set of NEs, involving multiple CS interactions with each NE has been

examined. Models of the overall traffic and the traffic around the management station are

computed for CS, CoD, REV and MAs approaches. The impact of semantic compression is

also studied for mobile code approaches. The purpose of these models is to provide the

network administrator with an objective quantitative criterion to choose the right approach,

given the management task and the managed network topology.

Liotta et al. [LIO99] presented an evaluation of MA-based monitoring systems, providing

quantifiable metrics based on performance and scalability. MAs are used to perform

monitoring tasks in place of traditional centralised polling. Performance is measured using the

generated monitoring traffic and the monitoring delay. These parameters are evaluated for a

combination of schemes based on monitoring models, MAs organisation and MA deployment

patterns. Possible monitoring models consider MAs performing periodic polling. In the first

model, each MA polls and analyses a set of managed objects (MO); this MA is subsequently

polled by other MAs or the monitoring station. In the second model, each MA periodically

polls the MOs, analyses the results, and notifies other MAs or the monitoring station. The third

model differs from the previous on that MAs generate data (alarms) only if specific events are

detected. The MA organisation can either be flat or hierarchical, and the deployment scheme

can either be cloning-based or without cloning. This leads to four possible deployment

patterns: flat broadcast with no cloning, flat broadcast with cloning, hierarchical broadcast with

no cloning and hierarchical broadcast with cloning.

In a more recent work [LIO01], the authors investigated the problem of optimal placement

of MAs acting as remote monitoring stations, so as to minimise data collection latency and the

network traffic incurred due to (localised) polling. To address this problem, a distributed

algorithm is proposed that relies on agents learning about the network topology through

standard management interfaces and subsequent deployment of MAs to remote domains

through a ‘clone and send’ process. Deployed MAs can possibly adapt to network changes and

move again in order to maintain optimality.

The latency aspects of MA migrations, with respect to management applications, have been

investigated by Lipperts [LIP00]. The results of time measurements indicate that MA

migrations can be more time efficient than remote communications, especially when class

Chapter 3: Mobile Agents and Their Application on Network Management

70

loading is not necessary (the code of the MA is already at the destination host) and the

operations are performed over slow media. However, the decision concerning the replacement

of a remote communication scheme by MA migrations should take into account several

parameters, such as the number of remote communications to be replaced, the size of the

parameters involved in the remote communication, the size of the agent and the networking

environment. Lipperts proposed a solution based on utility theory to aid on deciding whether

MAs deployment is justified or not.

[ELD99] and [ZAP99] included brief quantitative evaluations of their proposed applications

demonstrating improved scalability compared to SNMP management. Similarly, [BOH00c]

compared the performance of CodeShell against that of Grasshopper, RMI and CORBA-based

approaches in terms of response time, generated traffic and memory requirements. The

experimental results indicated that CodeShell offers the management flexibility benefits of general-

purpose MAPs, whilst achieving performance characteristics comparable to static DOT-based

approaches.

3.6.4. Active Networks

Active Networks (AN), which originated at MIT’s Software Devices and Systems Group,

advocate the use of active packets or capsules [TEN96]. Active packets contain user data and

programs, which are executed on every node along the route of the packet through the AN.

Such packets require a software layer on top of the hardware and communication protocols,

which can provide dynamic configuration, improved security, interoperability, extendable

protocols, etc. AN research is relevant to the context of this thesis, as programs carried by

active packets, resemble the functionality of MAs: an active packet can be thought of as a

multi-hop MA, which executes on every node along its path through the network; likewise, a

travelling MA can be mapped to an active packet, containing both data and a program, sent

from one active node to another, in an AN. Since the motivations for proposing the MA and

AN concepts are on the same direction, MA and AN technologies start to converge and

overlap, specifically in the management domain [KAW00]. Nevertheless, only recently have

AN concepts been applied to distributed management [GRE99, RAZ00, KAW00].

Greenwood and Gavalas [GRE99] described a modular framework that exploits the ability

of active mobile processes or agents to interact with one another in order to realise active

network architectures. The process execution environment is integrated into the network

devices. The process kernel houses both pre-loaded and visiting agent processes. The proposed

framework is compared against traditional SNMP-based with the former outperforming the

latter both in terms of response time and network overhead when the calculation of health

functions combining large numbers of MIB objects is considered.

Chapter 3: Mobile Agents and Their Application on Network Management

71

Raz et al. [RAZ00] described a prototype system where legacy routers are enhanced with an

active engine, which enables the rapid deployment of new distributed management

applications. In particular, the active engine comprises an environment in which code

encapsulated in active packets can be executed. Physically, the routers forwarding mechanism

and the active engine may either reside on different machines or co-reside in the same box.

This prototype has been tested on a simple bottleneck detection application and offers the

functionality of the well-known traceroute program, in a more efficient way.

The convergence of MAs and ANs is more clearly portrayed in [KAW00] that introduces

the Active Distributed Management architecture. This architecture is characterised by a

programmable middleware platform (organised in different layers of abstraction), whose active

properties are drawn from the AN and MA paradigms. A number of applications are proposed

including variables monitor/control, bottleneck detection, topology detection, etc.

3.6.5. Synthesis and Discussion on Mobile Agents-Based Management Applications

This section attempts to highlight the benefits and shortcomings related to the application of

MA technology on NSM. The discussion is twofold: first, the effect of MA organisation

models is investigated with respect to the scalability and flexibility of MA-based approaches

on the management of large-scale networks; second, the effect of mobility schemes on

management applications is discussed and ways to effectively exploit the mobility feature of

MAs are suggested.

3.6.5.1. Organisation Models

As mentioned in Section 3.6.1.10, a common attributed shared between the MAPs

developed for management applications is their structuring in two levels, corresponding to the

manager and the managed devices, with the MAs used to delegate functionality from the

former to the later. This simple organisation model implies a ‘flat’ network topology where a

single MA is launched and visits the entire set of managed systems, causing scalability

problems both in terms of latency and network overhead. Flat models are not suitable for the

management of large-scale, hierarchically structured networks, which can be more efficiently

managed by MA platforms organised in hierarchical fashion [LIO01].

The hierarchical organisation of agents is not an entirely new idea. For instance, hierarchies

of static co-operating agents have been proposed in [QUE97] to support the resource-control

part of a signalling system. In the management domain, this problem is partially addressed by

the hierarchical framework described in [LIO98] and also MAGENTA, AMETAS and Mobile

Disman architectures. In particular, Liotta et al. [LIO98] proposed an MA-based management

Chapter 3: Mobile Agents and Their Application on Network Management

72

architecture adopting a multi-level approach enabled by static Middle Managers able to launch

MAs. The same principle is used in MAGENTA platform. A second approach has been

reported in [ZAP99] and [OLI99] that proposed the use of MAs as mobile mid-level managers,

performing distributed management tasks. The first approach [SAH97, LIO98] does not

adequately address the flexibility limitations of static hierarchical management frameworks

(see Section 2.11), Still, even the latter approach [ZAP99, OLI99] is not suitable for managing

networks with dynamically changing topologies and traffic patterns, as they lack mechanisms

to change the location where mid-level managers execute. This approach also involves the

deployment of a new MA for each introduced monitoring task, which complicates the

management of mid-level managers. In addition, critical issues such as criteria for segmenting

the network into management domains, explicit determination of the domain boundaries or

strategies for assigning mid-level managers to these domains, are not addressed. Furthermore,

the architectures described in [LIO98] and [OLI99] are not supplemented by prototype

implementations.

In Chapter 6, we introduce a hierarchical MA-based management framework that deploys at

runtime mobile mid-level managers (when specific criteria are satisfied), with the ability to

dynamically adapt to the managed network dynamics.

3.6.5.2. Mobility Schemes

The usage of MAs covers many aspects in NSM. Single-hop MAs are suitable for the easy

deployment of software, functionality and services [MAG96]. In particular, single-hop MAs

have been used to deploy adaptable instrumentation facilities, compute health functions

[PUL00b], provide on-the-fly adaptors for newly installed NEs and services [WHI99]; also to

return QoS alarms and periodic summarisation reports by processing raw management data

[BOH00c]. In that context, single-hop mobility can be considered as successor of the MbD

paradigm.

Multi-hop MAs go one step further, allowing the execution of management tasks on a set of

NEs in a sequential manner. Multi-hop mobility may be preferable in several application

scenarios (see Section 3.4), for instance when short-term tasks are to be executed over multiple

NEs; in such case the code deployment time is reduced, the manager station is not overloaded

and the network area around it is not saturated by the simultaneous generation and transmission

of agents [BOH00b]. This mobility scheme is, therefore, suitable for collecting on-line data

and performing simple monitoring and configuration tasks on several NEs.

Hence, multi-hop MAs have been used to compute health functions [ZAP99, PIN99], return

reports related to a set of NEs [SIL99a], discover nodes verifying specific conditions

Chapter 3: Mobile Agents and Their Application on Network Management

73

[PUL00b], perform traffic analysis on remote subnets [FER01], etc. Additional applications

include fault diagnosis [ELD99], or collection of data pre-processed by other agents [KNI99,

LIO99]. It should be emphasised though that applications using multi-hop agents for collection

of data, later processed by the manager station [KU97, SAH98, CHI99, COR98a] do not scale,

as not only processing bottlenecks are created at the manager platform, but also the network

overhead is increased. Hence, it is essential to benefit from the semantic compression that

multi-hop MAs can perform while moving from one host to another, thereby preventing the

rapid growth of their state size and minimising the migration overhead [BAL98].

An aspect of management scalability not sufficiently addressed by existing applications

relates with the management of large sets of NEs. In such case, launching a single multi-hop

MA with the task to collect data from all the managed devices can lead to large round-trip

delays and also to increased network overhead, even when performing semantic compression

of data. In Chapter 5, we address this issue by launching several MA objects, travelling in

parallel, with each visiting a relatively small group of devices.

Interestingly, although the potential of using multi-hop agents to perform correlation of data

collected along their itinerary has been recognised by researchers [FUG98, LOP00], none of

the existing applications implements this principle. MAs can be used to realise a simple data

correlation model, providing more even distribution of processing load and returning high-

level information to the manager station with no need for further processing. In Chapter 7, we

describe an application scenario where MAs can be efficiently used to perform correlation of

management data.

Active migration is often combined with a society of MAs imitating ant-like behaviour

[APP94, MIN99, SCH97, BON98, WHI98]. Although such kind of MA systems is particularly

difficult to manage, they are very suitable for dynamic networks, where random mobility

combined with a large number of MAs allows to easily detect changes related to performance,

faults or configuration and react accordingly. However, active migration is not necessary for

network performance management applications, which represent the main focus of this thesis,

as the list of managed devices involved in the monitoring process is typically known in

advance. Should new devices are installed, the latter can advertise themselves directly to the

manager, without requiring to be discovered by continuously roaming MAs (see Section

4.4.1.3.8). Besides, the use of active migration would imply increased complexity (extra code

needed for itinerary control), hence, increased MA size and migration overhead.

Concluding, management applications can benefit either by single-hop or multi-hop MAs

(see Section 3.6.3). The selection of the appropriate migration scheme should depend on the

type of the application, the managed network size, the duration of the management task’s

Chapter 3: Mobile Agents and Their Application on Network Management

74

execution, etc. As a result, NSM-oriented MAPs should support both single-hop and multi-hop

agents. The design of our MA framework, introduced in Chapter 4, satisfies this requirement.

Last, but not least, the choice of MA-based solutions instead of alternative approaches

management distribution approaches should necessarily be justified through analytical

evaluations. The performance of our framework and the applications developed on the top of it,

is assessed through extensive quantitative evaluations, validated by experimental results.

3.7. SUMMARY

The advent of MA technology has signalled many potential benefits in the network

management arena and attracted the attention of several researchers working on the field. In

particular, MAs promise to overcome the limitations of traditional centralised architectures and

address the weaknesses of distributed management approaches reviewed in the previous

chapter. As a result, MA-based management applications have largely increased in number.

The intensity of research activity on that field is strongly related with the proliferation of

MAPs expressly developed with management applications orientation. These platforms have

demonstrated improved security, fault tolerance, MA control, inter-agent communication and

interoperability features, while some also aimed at optimising the performance of MA

migrations through sophisticated code distribution mechanisms. All these facts signify that MA

community is about to reach the state of maturity.

However, there are a number of issues related to the scalability and flexibility of MA-based

management that need to be carefully evaluated. For instance, appropriate organisation models

and mobility schemes that meet the specific requirements of management applications need to

be identified and evaluated to ensure that MAs are effectively used and offer performance

benefits. The investigation of these issues comprises the main part of the research work

presented in the following chapters, which describe the design and implementation details of a

MAP tailored to management applications, with the main focus being on network monitoring

and performance management.

