
216

CHAPTER 8
8. CHAPTER 8

SUMMARY, CONCLUSIONS & DIRECTIONS FOR
FUTURE WORK

In this final chapter we bring together the work described in the previous chapters of this

thesis. Section 8.1 explains the significance of the thesis in terms of its main contributions and

summarises the main findings. Section 8.2 presents the conclusions drawn through the research

experience gained, regarding network monitoring applications in which agent mobility can be

effectively used. Section 8.3 identifies areas in which this work could be developed further.

8.1. SUMMARY OF MAIN CONTRIBUTIONS

The main objective of this thesis has been to assess the values and weaknesses of Mobile

Agent (MA) technology form the management viewpoint and identify ways for the effective

use of this technology in distributed management applications. That involved the design and

implementation of MA platform (MAP) expressly oriented to Network & Systems

Management (NSM), and the development of three network monitoring and performance

management applications implemented on the top of our framework. The research

contributions of this thesis have been outlined at the end of Chapters 4-7. We re-iterate through

the main findings below.

The contributions and findings related to the design and implementation of our MA-based

management framework are summarised in the following:

� The MA framework introduced in Chapter 4, is characterised by a lightweight design that

makes it particularly suitable for developing MA-based applications with minimal impact

on network and system resources. That has mainly been achieved through designing a code

distribution scheme that involves the transfer of MA bytecode to managed devices at the

MAs’ creation time, with only MAs state being transferred following that. This is in

contrast with the majority of MAPs, which enforce the transfer of both the MA code and

state in every agent migration. This code distribution model has been refined in Chapter 6,



Chapter 8: Summary, Conclusions & Directions for Future Work

217

by taking advantage of remotely located Mobile Distributed Managers (MDM) to

implement a tree multicasting code distribution scheme. Mobile Agent Servers (MAS)

have also been designed so as to have a lightweight footprint on hosting devices.

� Being implemented in Java, the framework is portable across all platforms supporting the

Java Virtual Machine (JVM), addressing the requirement for integrated management.

� Integration with legacy systems is achieved through an MA-to-SNMP gateway integrated

within the MAS, which allows incoming MA objects to locally interact with SNMP agents.

� A set of security features has been incorporated, shielding network devices against

malicious MAs attacks and protecting management data from eavesdropping. In particular

the Security Component (SC), an integral component of the MAS, provides authentication

and access control (authorisation) services, whilst the data carried by MAs can optionally

be encrypted.

� Fault-tolerance issues have also been addressed, covering scenarios where a host included

in the MAs’ itinerary (or the manager) fails or an interconnecting link breaks.

� The MA class versioning problem has been addressed through a customised MA

ClassLoader (MACL), which allows distinguishing between different versions of the same

MA class, thereby enabling modifications of MA-based NSM tasks at runtime.

� A Mobile Agent Generator (MAG) tool has been implemented to automate the

introduction/customisation of service-oriented MAs through a user-friendly Graphical User

Interface (GUI).

� Additional features include: (a) design of GUIs offering Management Information Base

(MIB) browsing, data visualisation, management tasks customisation, etc.; (b) support for

Remote Method Invocation (RMI) interactions between the manager and the managed

devices; (c) visual profiling and active control over remotely executing MA threads; (d)

support for MA transfers over TCP or UDP protocols, with the choice made by the

administrator depending on the application; (e) management data compression.

� Experimental results revealed that our framework marginally outperforms Java RMI both

in terms of network overhead and response time when considering simple manager-

managed systems interactions. However, a detailed investigation of the factors affecting

MA-based NSM scalability indicated an exponential growth of management cost with the

managed network size when using a single multi-hop MA to collect data from a number of

managed devices (‘flat’ MA-based management); that represents a non-scalable solution,

especially when MAs are not highly selective. This conclusion dictates that MA itineraries

length should be limited and led to the optimisations described in Chapter 5.



Chapter 8: Summary, Conclusions & Directions for Future Work

218

� In particular, Chapter 5 introduced two complementary polling schemes that aim at

answering the scalability problems of flat MA-based management. In particular, Get ’n’

Go (GnG) polling is suitable for collecting real-time data and performing short-term

control and configuration tasks on multiple network elements (NE). Response time is

minimised by relying on a number of MAs to carry out distributed management tasks in a

parallel fashion. In addition, when considering networks with large numbers of managed

hosts, the network overhead of flat management is also reduced due to the limited number

of hops corresponding to each MA (the overall amount of data accumulated within MAs

state is reduced). Regarding the off-line analysis of management data, we proposed the Go

’n’ Stay (GnS) polling scheme. In this approach, single-hop agents are dispatched to

managed devices and collect a large number of data samples before delivering

performance reports to the manager, thereby leading to drastic reduction of MA transfers.

Collected data can be delivered either by the originally deployed MAs, clones of these

MAs or RMI invocations; the second approach has been found to be the most cost-

effective solution. In the GnS approach, MAs-manager communication can also be event-

driven, with the manager notified only when specific performance thresholds are crossed.

Concluding, the selection of the appropriate polling scheme is application-dependent, with

the management task execution period and the type of management data to be collected

being the main factors. Experimental analysis of GnG scheme has shown that there is an

optimal number of MAs that minimises the overall latency and network overhead,

depending on the managed network size; GnS polling overhead is reduced for lower data

delivery frequencies.

� In Chapter 6, we introduced further extensions, devising a flexible and adaptive

hierarchical MA-based management model, which meets the requirements for the

management of dynamic, large-scale enterprise networks. That model incorporates mobile

mid-level manager entities (MDMs), transparently deployed to remote network domains to

take over their management responsibility and localise the associated traffic. Our

infrastructure offers adaptability to changing networking environments and defines

concrete policies regarding network segmentation in management domains and MDMs

deployment, explicit determination of domain boundaries, etc.

� To minimise network overhead on remote domains, MDMs rely on MAs for the data

collection process. Depending on the application, these can either be single-hop or multi-

hop agents. MDMs may also move within their managed domain to ensure balanced

distribution of processing and memory load over managed systems. In particular, MDMs

periodically inspect the resources availability on managed nodes and choose to move and

resume execution to the least loaded host. Finally, fault tolerance issues are also addressed,



Chapter 8: Summary, Conclusions & Directions for Future Work

219

securing that distributed MDM objects continue to perform their decentralised tasks even

when the communication with the manager platform is not feasible. When considering the

management of remote domains, empirical results demonstrated that the proposed

architecture outperforms alternative solutions, both in terms of the overall management

cost and the bandwidth usage of low-bandwidth WAN links.

� It is emphasised that the management models proposed throughout Chapters 4-6, are

supplemented by analytical quantitative evaluations and experimental results, which

quantify their performance in terms of the latency and network overhead incurred when

used for realistic management operations.

The contributions and findings related to the network monitoring and performance

management applications described in Chapter 7, are listed below:

� The first application involved the computation of health functions (HF) by MAs, enabling

the semantic compression of several MIB variables into a single system indicator. That

allows the direct observation of managed systems health and obviates the need for

transferring vast amounts of data over the network. HF configurations may be dynamically

updated to reflect management needs at different systems or times, while HF values can

optionally be delivered to the manager only when pre-determined thresholds are crossed.

Either single-hop or multi-hop agents can be used to compute HFs. In LAN environments,

the latter perform worse than SNMP, while single-hop agents (GnS polling) offer the most

scalable solution. In LAN-WAN management scenarios, multi-hop MAs outperform

SNMP as they reduce the usage of expensive WAN links. However, in that scenario, the

MA-based hierarchical model improves management scalability even further.

� The second application involved efficient SNMP table retrievals. MAs have been used to

obtain table snapshots through local interactions with SNMP agents; table snapshots are

then delivered to the manager through single transfers. That scheme improves management

scalability as it reduces the number of network interactions and applies data compression,

whilst ensuring improved consistency of retrieved table contents. A variety of applications

can benefit from table snapshots to investigate transient problems of short duration or

identify trends on changing networking conditions. In cases that views of SNMP tables

including large amounts of data are requested, single multi-hop agents represent an non-

scalable approach as the state of these MAs would rapidly grow; in that case, using

multiple MAs (GnG polling) can offer performance benefits, yet, GnS polling provides the

most scalable solution.

� The third, and most complex, application exploits the ability of MAs to perform intelligent

filtering of SNMP tables and enable delivery of high-level, pre-processed information to



Chapter 8: Summary, Conclusions & Directions for Future Work

220

the manager platform. Filtering patterns can be defined/reconfigured at runtime, using a

variety of textual and arithmetic operators, ensuring the transfer of only those table values

that satisfy specified filtering criteria. Table filtering operations may lead to significant

cost savings, especially when highly selective filtering patterns are involved. Furthermore,

multi-hop agents have been used to correlate the data collected during their itinerary and

offer domain/global views of managed devices. Empirical results have shown that MA-

based approaches outperform SNMP with sufficient distinct, especially when using our

flexible hierarchical model for table filtering applications in a LAN-WAN environment.

� An important contribution of the introduced applications relates to a factor that currently

prevents the acceptance of MAs, whose nature is less technological. MAs will be adopted

only when a sufficient body of literature will provide incontrovertible evidence about

when, where and how they are useful. The proposed applications serve as case studies in

which the implications of using MAs in a real application domain can be thoroughly

analysed on a quantitative and experimental basis; such case studies are still very rare. The

MA research community must put more effort into validating its own outcomes, in order to

gain credibility outside.

8.2. APPLICABILITY OF AGENT MOBILITY IN MONITORING APPLICATIONS

One of the main objectives of the research work described in this thesis has been to identify

efficient mobility patterns for management applications. That involved the investigation of

single-hop and multi-hop mobility, with the latter representing the most common use of MAs

[KU97, SAH98, CHI99, ZAP99, ELD99, PUL00b]. Generally, multi-hop agents can offer

flexibility and performance benefits over single-hop agents in the scenarios described in

Section 3.4. In the management context and particularly on network monitoring and

performance management, we have identified the following areas in which multi-hop agents

can enhance flexibility and scalability:

� Collection of real-time data: Multi-hop agents represent an efficient approach for real-time

monitoring operations, i.e. when response time restrictions apply. Specifically, when the

latency involved in MA migrations is relatively small (i.e. lightweight, efficient agent

transfer protocols are used), multi-hop mobility may significantly improve the efficiency

of management data collection operations, compared to the single-hop mobility approach,

in which an MA object is deployed to every device. However, this performance gain is

conditional to the following: (a) short-term monitoring tasks performed over large sets of

hosts should be involved, especially when these hosts reside in remote subnets (in such

case, each MA would typically execute for a time negligible with respect to its deployment



Chapter 8: Summary, Conclusions & Directions for Future Work

221

time); (b) MAs should be able to perform semantic compression of collected data

(otherwise their state size will rapidly grow, affecting both the network overhead and

response time of the monitoring task). In addition, the latency of time-sensitive

management operations can be further reduced using the GnG polling scheme.

� Data correlation: The ability of MAs to realise multi-hop itineraries can be exploited to

perform data correlation, bringing forth the concept of global filtering. In particular, MAs

deliver to the manager a domain/global-level view of managed devices and obviate the

need for further processing/correlation of data either by the manager or a mid-level entity.

That saves the manager from considerable processing burden and provides a more even

distribution of computational load. To the best of our knowledge, this is the only scenario

in which MAs employed in monitoring applications use the information already collected

to perform a superjacent level of data filtering. Hence, the ability to perform data

correlation can be used as a solid argument in favour of multi-hop mobility in the

management domain.

� Flexible and adaptive hierarchical management: MAs have been shown particularly

suitable to implement flexible mid-level managers (MDMs), able to perform decentralised

management tasks. In this context, agent mobility can be effectively exploited to localise

management traffic, reduce the dependency on inter-connecting links and perform

distributed management tasks without the manager’s intervention. Although, in theory, this

can be achieved through simply uploading the mid-level manager code to a remote host

(i.e. using single-hop agents), multi-hop agents add a new dimension in management

flexibility and autonomy. For instance, they can dynamically migrate to another host to

optimise the average resource usage on managed systems. Furthermore, they can directly

observe changes in topology or traffic characteristics, re-define the boundaries of their

assigned domain and create clones to share its management responsibility. Remote cloning

offers the advantage of reducing the latency and overhead associated with the deployment

of a new mid-level manager entity from a central location [LIO99].

It should be emphasised though that multi-hop agents do not represent a one-way approach

on MA-based management applications. As explained in Section 3.2.3., multi-hop MAs can be

regarded as a ‘superset’ of single-hop mobility, as they can offer all the functionality provided

by the latter, with the additional ability of autonomous migration. As a result, single-hop

agents can complement their multi-hop counterparts and provide an effective management

delegation mechanism in management scenarios where the latter fail to offer performance gain.

In particular, single-hop agents are suitable for dynamically augmenting the management

capabilities of NEs, monitoring the performance and health of managed systems over long



Chapter 8: Summary, Conclusions & Directions for Future Work

222

periods and minimising data transfers by returning QoS alarms and periodic summarisation

reports after processing raw management information.

8.3. DIRECTIONS FOR FUTURE WORK

The current prototype of our core MA framework presented in Chapter 4 can serve for

structuring scalable, flexible and dynamically customised distributed management operations.

The following optimisations could be considered in future extensions:

� The framework can be extended to enable web-based management operations. To achieve

that, the front-end of the framework should be designed as an applet rather than an

application, allowing the administrator to remotely control its managed network through

loading the management applet on standard web browsers.

� MA transfers can be implemented using Java RMI as ‘transport protocol’ and compared, in

terms of latency and network overhead, against MA transfers over TCP and UDP.

� To provide a more complete performance evaluation, the performance of our framework

should be compared against that of the Common Object Request Broker Architecture

(CORBA). Although in theory CORBA is more heavyweight and slow than Java RMI, the

choice of an appropriate implementation may lead to marginal performance gain compared

to RMI [BOH00a].

� The integration of a resource accounting tool, such as Jres [CZA98] can be considered as a

means of controlling the occupation of system resources (CPU, memory, etc) within the

Java runtime system and potentially killing mis-behaving MA processes.

� The integration of the SC with the Java Cryptography Architecture (JCA) can also be

considered to allow compliance and interoperability with other cryptography

implementations. Such integration will incorporate the design of a provider [Providers],

encapsulating the implementations of the SC component’s authentication and encryption

algorithms.

� The framework’s fault tolerance could be improved so as to cover a broader range of fault

scenarios in addition to the ones mentioned in Section 4.4.2. For instance, the case where

the hosting device of an MA fails while the MA is still executing its task should also be

taken into account. Therefore, MAs should transparently resume computations that are

affected by system or network interruptions or failures. That can be achieved by

periodically saving the MA’s persistent state information, as proposed in [BRU01]. This

feature should be optionally used depending on hosting devices storage capacity.



Chapter 8: Summary, Conclusions & Directions for Future Work

223

� The functionality of the MACL (described in Section 4.4.3.) can be extended so as to

maintain information about the last time each of the existing MA classes has been loaded.

For those classes not being used for time exceeding a certain limit, their bytecode will be

removed from the MACL’s hashtable and their associated class files deleted. That way, the

use of local memory and disk space would be minimised. In the case that one of the MAs

whose bytecode has been removed visits the same device, MACL would download its code

from the manager’s Mobile Code Repository (MCR) component. An alternative way for

optimising the usage of local memory and disk resources would be to enforce the MAs

themselves to inform the managed devices whether they execute a long or short-term

management task. In the latter case, the Migration Facility Component (MFC) would

request MACL to remove the MA code from the hashtable, as soon as the MA migrates to

another host.

� Additional code distribution models need to be investigated and compared against the

solution adopted in our prototype. For example, the code pre-fetching proposed in

[SOA99], whereby the bytecode of an MA object is transferred to the hosts included into

the MA’s itinerary right before the MA’s travel begins.

� Finally, several optimisations could also be performed to maximise the framework’s

performance with respect to the network overhead and response time associated with MA

transfers. In particular, the optimisations suggested in Appendix B considerably reduce the

MAs state size and therefore moderate the impact of MA migrations upon network

resources. In addition, response time could be further reduced by saving the time needed to

create MA objects at the beginning of each Polling Interval (PI) and also the time needed to

translate host names to their respective IP addresses. This issue is also discussed in

Appendix B.

Regarding the two complementary polling schemes described in Chapter 5, the following

optimisations could be considered in future extensions, to further improve their efficiency:

� GnG scheme performance could possibly benefit by applying a variation of the technique

described in [BAR99]. Namely, enforce individual MAs to download their state (i.e. their

collected data) to the manager station after visiting a fixed number of NEs. That would

represent significant gain in network overhead, especially when large amounts of data are

collected from each host, as it would prevent MAs state from growing over a certain limit;

yet, response time penalties associated with the employment of such scheme should be

investigated in detail.

� Optimal itineraries can be designed by implementing the Optimal Itinerary Planning (OIP)

algorithm described in Section 5.2.1.2.



Chapter 8: Summary, Conclusions & Directions for Future Work

224

� In GnG polling, network segmentation could be automated and dynamically adapted to the

managed network, aiming at minimising the response time and/or network overhead

depending on the number and physical distribution of NEs.

� The performance of GnS polling can be optimised by eliminating information carried

within the MAs’ state that is only useful for multi-hop agents, e.g. itinerary.

� Additional experiments should be conducted in large-scale networking environments

comprising several remote management domains. That would allow to evaluate the effect of

network partitioning in reducing the overall response time over flat MA-based model.

Should experiments on such environments are not feasible, ‘virtual’ remote segments could

be created, introducing some fixed time penalty to MA transfers whenever an agent

traverses a simulated ‘WAN link’.

The functionality of the hierarchical model proposed in Chapter 6 can be further improved

through incorporating the following optimisations:

� The topology map GUI can be designed as an expandable graphical component: The map

will initially display a representation of the managed network where individual subnets

will be illustrated as icons that will expand to provide a detailed view of their included

managed devices.

� MDMs deployment Policy 2, described in Section 6.3.3., can be implemented to enable the

dynamic placement of MDMs depending on the management cost associated with the

management of a remote domain rather than the number of devices included therein.

� The Resources Monitoring Tool (RMT) tool (see Section 6.3.7) can be extended so as to

support Windows 95/98 and 2000 operating systems.

� The configuration of the hierarchical model can be saved through serialising the

HierarchicalSettings object (see Section 6.3.3.) whenever the settings are

modified. The serialised information would be stored in a file, used to restore the settings

at manager startup. That would obviate the need for the administrator to re-define the

hierarchical system’s configuration.

� MDMs autonomous decision making can be further enriched: in the current version of our

prototype, the decision regarding the segmentation of a management domain (already

assigned to an MDM) in two parts, is made by the manager. For instance, should a new

device is connected to a segment within the boundaries of the examined domain, its local

MAS server will publicise its initialisation through communicating directly with the

manager. It is then left to the manager to decide whether the remote MDM can cope with

the increased number of managed devices or its domain should be divided in two. As a



Chapter 8: Summary, Conclusions & Directions for Future Work

225

future extension, we intend to enforce the MDMs to make such decisions without requiring

any communication with the manager. In particular, at the time that an MAS server starts,

it will first get (through a network ‘map’) a list of the hosts residing on the same subnet

and then broadcast an “I'm-alive” message to them. Should an MDM executes on one of

these devices, it will instantly acknowledge the receipt of the message and append the

‘discovered’ host to its list of managed devices, otherwise, after a pre-determined time

interval elapses, the MAS will send the message to the manager platform. In the former

case, if the number of NEs managed by the MDM exceeds the specified limit, the MDM

will divide its domain in two parts, create a clone of itself and send its clone to take over

the management of the second domain. That approach will increase the ability of the

MDMs to make autonomous decisions, while minimising the dependency on links

connecting remote subnets to the manager site and also the overhead of MDM deployment.

� The current three-level hierarchical model can be extended to a multi-level hierarchy,

whereby MDMs could be supervised by other MDMs residing on higher levels rather than

directly by the manager platform.

� The existing prototype allows the manager to download on-the-fly new monitoring task

definitions to distributed MDMs. However, the functionality of the MDMs themselves

cannot be modified at runtime. Therefore, rather than deploying MDMs with fixed

capabilities able to perform only dynamically customisable monitoring tasks, the MDM

should also provide an interface allowing the manager to plug-in software components

implementing new functionality. That interface could be implemented through the

MdmRmiServer component thereby enabling the design of MDMs as extensible engines.

The functionality of the monitoring applications described in Chapter 7 can be further

enriched through applying the following extensions:

� Management applications often need to retrieve information scattered among several MIB

tables, e.g., routing information specific to certain type of interfaces and their current

utilisation. For instance, the MIB-II ipRouteTable [McC91] keeps track of IP routes,

with interfaces information found in ifTable. An application may need to correlate

routes with interface utilisation for capacity planning purposes. That correlation could be

achieved by using the ipRouteIfIndex column of ipRouteTable as index for the

corresponding retrievals from the ifTable. Such operations imply joining two MIB

tables, in a fashion similar to database table joins. Currently the table filtering operations

described in Section 7.5 do not support table joins, which could be considered in future

extensions.



Chapter 8: Summary, Conclusions & Directions for Future Work

226

� The applications described in this chapter considered exclusively filtering of MIB-II

objects/tables. Hence, additional applications and filtering patterns should be envisaged

and applied to other MIBs. For instance, MAs may work in conjunction with Remote

Monitoring (RMON) probes to provide, on demand basis, high-level network-oriented

statistics, e.g. an MA could visit all the devices with installed RMON probes and return to

the manager information about the least loaded Ethernet segment. This information,

retrieved from the RMON MIB [WAD95], could be used for network planning, for

example to help the administrator decide where to connect a new managed device so as to

achieve even distribution of traffic.

Another scenario could be to return a number of N host pairs that communicate in more

frequent basis and therefore generate a substantial amount of traffic (this information can

be extracted from the RMON matrix group). The administrator might then consider

connecting these hosts in the same segment so that the generated traffic will only affect

that segment. In the case that no RMON probes are installed, MAs could extract similar

information from packet sniffers, like the C-based sniffer tool used in [FER01].

� The latency associated with table retrievals can be reduced by implementing the ‘get-table’

operation through successive get-bulk (instead of get-next) requests; that would also

improve table values consistency. Since the get-bulk operation is only available in SNMP

v2c and v3 frameworks, MAs could be instructed to first check the SNMP version of the

local agent and then accordingly invoke an appropriate ‘get-table’ method implementation,

issuing either get-next or get-bulk requests.

� Current filtering patterns allow Table Filterer (TF) agents to either obtain single column

values or the whole table row. These patterns should be extended so as to allow

encapsulation of an arbitrary number of table column values.

� The MAG tool’s functionality can be extended so as to provide the user a ‘library’ of

actions to be triggered at the event of specific threshold crossings. Such an extension would

enable MAs to perform simple configuration or fault management tasks.


