SIMULTANEOUS IDENTIFICATION OF THE STRUCTURE AND THE PARAMETERS OF A TRANSFER FUNCTION USING A GENETIC ALGORITHM

Ángel Martín Martínez

ISA Students Section – University of Valladolid

INTRODUCTION

When designing a control system for a process, it is often necessary to develop a dynamic model of the process that is to be controlled. This model is useful both for calculating the parameters of the controller, and for evaluating its performance in a simulation.

There are different types of model that can represent the dynamic behaviour of a process. Some examples are pulse responses, step responses and transfer functions. The latter is frequently used, as it has several advantages:

· It is a very compact representation, that is, it has fewer parameters than other types of models as pulse or step response.

· Several parameters related to the dynamics if the process can be analytically calculated from a transfer function.

Transfer functions used for designing controllers are usually obtained from the fitting of experimental data. Several optimisation methods (i.e. Least Squares) are used for this purpose. With these methods, it is necessary to make a supposition about the structure of the transfer function (i.e., suppose that it is of first order), and later calculate its parameters with the optimisation algorithm. If the fitting is not satisfactory, another transfer function structure is supposed ant the minimization process is repeated.

In this work, a method for the simultaneous identification of transfer functions structure and parameters, based on a genetic algorithm, has been developed. This method thus avoids the need of supposing the structure of the transfer function.

TRANSFER FUNCTION CODING

Transfer functions are made up with the following elements: poles, zeros, delays and static gains. These elements can be represented in a genetic code with two numbers, the first corresponding to the type of element, and the second to its value.

To implement this representation, strings of 35 bits has been used. The latter 32 bits store the value of the parameter, using the standard Pascal representation of float numbers. The first 3 bits store an integer that represents the type of the parameter, with the following correspondences:

0: first order zero.

1: first order pole.

2: second order zero.

3: second order pole.

4: gain.

5: delay.

6,7 : parameter not used.

For example, the following genetic code stores the decimal values 1 | 0,8853:

001|00100101100101001110110111010101

And this code would be translated in a transfer function as a pole z + 0,8853.

It should be noted that first and second order zeros and poles are considered different types of parameters. With this representation, it is ensured that the genetic code can represent complex zeros and poles. As a gene only stores the numeric value of a parameter, in this cases the numeric value of the following gene is taken, regardless of its type, so a pole or zero in the form z2 + a·z + b can be constructed.

REPRODUCTION

The reproduction method must allow that transfer functions with different number and type of parameters can be tried. Thus, it has not been used a genetic code of predefined length, but a genetic code whose length can change during reproduction.

The reproduction method is as follows:

· A gene of the first parent, and a different gene of the second parent, are randomly chosen.

· A random number between 1 and 35, representing a intermediate position in the gene’s string, is chosen.

· The first child inherits the genetic code of the first parent until this separating point, and the genetic code of the second parent from it. The second child inherits the remaining genetic code.

In the following example, two parents with four genes are taken, and its genetic code is recombined, with the division point placed on the 17th element of the second gene of the first parent, and the third gene of the second parent, so two child with three and five genes are obtained:

Parent 1:

00100100101100101001110110111010101 0010010010101110|010111001010011101 00100100100111011011101011001010101 00010100111011001001001011111010101

Parent 2:

00100010100111010010110110111010101 00100100010100111011011100101110101 0010011101101110|001011001010010101 00100111010101010010110010100111011
Child 1:

00100100101100101001110110111010101 0010010010101110001011001010010101 00100111010101010010110010100111011
Child 2:

00100010100111010010110110111010101 00100100010100111011011100101110101 0010011101101110010111001010011101 00100100100111011011101011001010101 00010100111011001001001011111010101
OBJECTIVE FUNCTION

An objective function with two terms has been used. The first term is the sum of the squares of the difference between experimental and calculated values, and the second term is proportional to the number of parameters of the transfer function:

[image: image1.wmf](

)

å

+

=

NumParam

K

error

Objective

·

2

With this objective function, the algorithm tries to minimize the prediction errors, using transfer functions as simple as possible.

If the transfer function is not realizable (it has more zeros than poles), unstable, or has a too small gain, a very high value is given to the objective function.

GENETIC ALGORITHM PARAMETERS

A genetic algorithm with the following parameters has been used: sigma scaling, crossover probability 0,85, mutation probability 0,01, and elitism. A population of 500 individuals was evolved during 100 generations. It should be emphasized that the population must be large, because a significant fraction of the transfer functions randomly generated during the start-up of the algorithm are not valid (because they are unstable, unrealisable, ...), and there must be enough valid transfer functions to ensure the genetic diversity.

RESULTS

The method has been applied to the identification of the dynamic model for the control of the level of a deposit with a variable – speed pump. The obtained transfer function is:

[image: image2.wmf]56

,

0

·

024

,

0

·

19

,

0

40

,

0

·

32

,

1

)

(

2

3

2

-

+

+

+

+

=

z

z

z

z

z

z

F

In the picture, experimental and predicted values are compared:

[image: image3.wmf]0

200

400

600

800

1000

1200

1400

1600

-3

-2

-1

0

time (s)

input

0

200

400

600

800

1000

1200

1400

1600

-15

-10

-5

0

time (s)

output

model

experimental

_1078556477.unknown

_1078558037.doc

0

200

400

600

800

1000

1200

1400

1600

-3

-2

-1

0

time (s)

input

0

200

400

600

800

1000

1200

1400

1600

-15

-10

-5

0

time (s)

output

model

experimental

_1078242144.unknown

