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Abstract

In bridge team tournaments there often is not enough time for each team to

compete against every other. Nevertheless, in order to obtain a final ranking

order we modify a procedure proposed by Zermelo (1929) for chess tournaments.

This algorithm can easily be implemented on any computer. Previous tests have

proved that the differences of the so-called International Match Points (IMPs)

occuring during rank computation are normally distributed with constant

variance, whereas their expectations depend on the corresponding pair of teams

competing against each other. We propose an algorithm to estimate this

expectation from the known differences of the IMPs, including those for teams

which have not met during the tournament.
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1. Rank versus strength

Let us suppose that N ≥ 2 teams Ti, 1 ≤ i ≤ N, participate in a bridge tournament.

In general, each team does not necessarily compete against every other team. In each

match between two teams - consisting of a fixed numer of games - each team reaches a

result measured in International Match points (IMPs) which is then transformed in a
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tournament result of a certain amount of Victory Points (VPs). Thus the paper starts

from the known set of IMPs for those teams which have competed against each other.

Nevertheless, we offer a procedure for finding the final ranking via the usual sum of

VPs gained by each team. Because of the given situation we define the symmetric

index set

G := {(i, j) ∈ IN[1,N ] × IN[1,N ], Ti competes against Tj}

of the ”real” matches, i.e. those matches which really took place. Here IN[a,b] := {n ∈
IN0 := IN + {0} : a ≤ n ≤ b} denotes the set of natural numbers between a and b with

0 included. On the other hand we call the symmetric index set

Gc := {(i, j) ∈ IN[1,N ] × IN[1,N ], Ti does not compete against Tj}

of complementary elements the set of ”virtual” matches. At the end of the tournament,

we have a ”matrix”

δ = (δij)(i,j)∈G with δij ∈ ZZ := {integer numbers}, (1.1)

where δij ∈ ZZ is the difference of the IMPs between Ti and Tj , (i, j) ∈ G. Thus

δji = −δij , and Ti is called winning [losing] against Tj iff δij ≥ 0 [δji ≤ 0]. The letter

δ = difference is chosen in order to remind us of this fact. From the Victory Point Table

of the World Bridge Federation (in short: IMP→VP-Table) one obtains a function

ZZ ∋ n 7→ gB(n) ∈ IN[0,30]

(depending on the number B of played games - called ”boards” in bridge) with whose

help the Victory Points (= VPs) can be defined by

vij := gB(δij), (i, j) ∈ G. (1.2)

As an example for gB(·) we quote Table 1.

Putting vij := ”∗” for (i, j) ∈ Gc and vii := ”−” we obtain from (1.2) the VP-matrix

v = (vij)1≤i,j≤N .

Further we set

vi :=

N
∑

j=1

vij , 1 ≤ i ≤ N, (1.3)
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Table 1: IMP→VP-Table for B = 8 (x/y for n reads as x ≤ n ≤ y)

n ≤ -51 -50/-46 -45/-42 -41/-38 -37/-34 -33/-30 -29/-27 -26/-24

gB(n) 0 1 2 3 4 5 6 7

n -23/-21 -20/-18 -17/-15 -14/-12 -11/-9 -8/-6 -5/-2 -1

gB(n) 8 9 10 11 12 13 14 15

n 0/1 2/5 6/8 9/11 12/14 15/17 18/20 21/23

gB(n) 15 16 17 18 19 20 21 22

n 24/26 27/29 30/33 34/37 38/41 42/45 46/50 ≥ 51

gB(n) 23 24 25 25 25 25 25 25

where stars and hyphens are counted as zeros. Hence vi denotes the total number of

VPs gained by Ti.

Suppose that v is a VP-matrix where each team competed against every other (hence

the matrix does not contain stars). Then everybody will agree with the ranking order

obtained simply by ordering the vi according to size. (This is always possible in the

case N = 2. We therefore assume from now on that N ≥ 3.) Nevertheless, even in

the case where each team competes against every other team it is not always possible

to infer from (vi)1≤i≤N a reasonable order of strength for the competing teams. For

suppose that a team tournament with N = 4 teams results in

v =

















− 20 19 25

10 − 16 25

11 14 − 25

0 0 0 −

















with

v4 = 0 < v3 = 50 < v2 = 51 < v1 = 64,

hence

T4 < T3 < T2 < T1. (1.4)
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However, since v4 = 0, it makes no sense to derive an order of (relative) strengths

from the ranking order (1.4). Even worse: assume that T1 is the winner of the

last World Championship, whereas the remaining teams are equally weak. Then the

tournament could possibly result in

v =

















− 25 25 25

0 − 15 15

0 15 − 15

0 15 15 −

















yielding

v4 = v3 = v2 = 30 < v1 = 75

with min1≤i≤4 vi 6= 0. Hence the relative strength of T1 compared to the other teams

is 75/30 = 2.50, where the relative strength of Ti against Tj is vi/vj . In the above

eaxample we have vN = · · · = v2 = (N − 2) · 15 < v1 = (N − 1) · 25 with N = 4. Hence

if the number of teams would tend to infinity, the relative strength v1/vN would tend

to 25/15 = 1.67 yielding the rather inappropriate result that the top team is less than

twice as strong as the remaining weak teams. Admittedly, one could object that in

a tournament ”Each against every other” there is no need for computing the relative

strengths. However, it is necessary to introduce the concept of relative strength as

soon as each team does not compete against every other, for then it is definitely an

advantage to play against a weak rather than a strong team, which could easily happen

since opponents are selected at random. Moreover, as we have seen, it is by no means

always possible to derive an order of strength from the ranking order, while the other

way around is always possible.

2. Comparability of the teams

Assume that in a tournament there are two separate groups such that none of the

teams in the first group plays against a team of the second group. This must not

be allowed to happen under any circumstances because then the teams of the two

groups cannot be compared any longer, even if it were somehow possible to design

a mathematical procedure for the order of strength. As an example, consider the
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following VP-matrix v which could be the result of a tournament with two equally

strong top teams T1 and T2 and two almost equally weak teams T3 and T4, namely

v =

















− 15 ∗ ∗
15 − ∗ ∗
∗ ∗ − 16

∗ ∗ 14 −

















.

Recall that the stars indicate that the two top teams did not play against the two

weak teams. Probably any procedure computing the order of strength would yield the

absurd result that the weak team T3 is the winner.

Comparability of the two teams can only be guaranteed by an appropriate matching

strategy. Hence the set of rules (called ”movement” in bridge) according to which the

teams move from one round to the next have to be designed properly. In particular

comparability is fullfilled if the following condition holds

δ from (1.1) has non-zero entries in the two secondary diagonals. (2.1)

In [1] we supply together with the Zermelo algorithm, the ”movement” for which (2.1)

holds. This is guaranteed because the ”movement” implies that after two rounds at

the latest Ti has played against Ti−1 and Ti+1.

3. IMPs versus VPs

In the sequel we set IR, IR>a and IR≥a for the set of reals, namely the reals > a and

the reals ≥ a, respectively. By IR[a,b] we denote the reals within the interval [a, b]. The

interval also can be open or half-open. In an analogous notation we replace IR by the

set Q of rationals. By

IN[0,n] ∋ y 7→ Bin(n, p, y) :=

(

n

y

)

py(1 − p)n−y, in short Bin(n, p) on IN[0,n],

we denote the discrete density of the sum of n i.i.d. (= independent and identically

distributed) {0, 1}-random variables with success probability p ∈ (0, 1). The procedure

Zermelo [4] published in 1929 was designed for chess tournaments with a not necessarily
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constant number of games between the competitors. He started from (3.2) below which

we interpret in the following way. The observation was a fixed pair (k, z) with

k = (kij)(i,j)∈G symmetric, kij ∈ IN, (3.1)

and

z = (zij)(i,j)∈G, zij ∈ IN[0,kij ], zij + zji = kij .

There zij denoted the number of games player i won against player j out of kij games.

The result of Zermelo’s procedure was a sequence s∗ = (s∗i )
N
i=1, s∗i > 0, of ”strengths”

for the chess players depending on the observed result (k, z) in the following way:

assume we start with some sequence s = (si)
N
i=1, si > 0, of ”strengths” for the players.

Then, from the standpoint of Probability Theory we could interpret the values

pij(s) :=
si

si + sj
, (i, j) ∈ G, s ∈ S(0,∞) := IRN

>0,

as the probability that player i beats player j. Suppose that (Xijn)
kij

n=1 is a sequence

of i.i.d. random variables Xijn ∼ Bin(1, pij(s)) representing the outcomes 1=gain

or 0=loss of the n-th game of Ti against Tj. Then Yij :=
∑kij

n=1 Xijn is the random

number of games player i won against player j. Assume further that the elements of

the vector (Yij)(i,j)∈G are independent. Then the multidimensional discrete density of

(Yij , (i, j) ∈ G, i < j) on ×(i,j)∈G,i<j IN[0,kij ] equals

LBin(s) :=
∏

(i,j)∈G,i<j

Bin(kij , pij(s), ·) with s ∈ S(0,∞). (3.2)

(Because of kij = kji it suffices to consider LBin instead of the discrete density

of (Yij)(i,j)∈G.) Then the density (3.2) evaluated at the observed result (k, z) with

z ∈×(i,j)∈G,i<j IN[0,kij ] is the probability that z occurs when the unknown sequence

of strengths equals s. It was maximized with respect to s. The maximum point, i.e.

the maximum-likelihood estimator was chosen as s∗, thus depending on (k, z).

In 1987 the second author applied this theorem by Zermelo to team tournaments

in his bridgeclub, as not all of the teams could play against each other in the weekly

events due to lack of time. There zij := vij from (1.2) denoted the VPs which team Ti

won against team Tj and kij := vij + vji denoted the total number of VPs between the
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same teams. In order to compute s∗ on a computer he wrote a Turbo-Pascal program.

In section 4 we formulate a variant of the theorem of Zermelo and give a self-

contained proof in section 6. In section 5 we apply the theorem to team tournaments

not using the customary VPs as above but rely directly on δ = (δij)i,j∈G from (1.1).

Actually, there the elements zij represent probabilities which depend on δij by the

definition

zij := Φ0,Bτ2(δij), (i, j) ∈ G, τ2 := 5.52, (3.3)

where

IR ∋ x 7→ Φµ,σ2(x) :=
1√
2π

x−µ

σ
∫

−∞

e−t2/2dt

denotes the (cumulative) distribution function of the N(µ, σ2)-distribution.

As a motivation for (3.3), we suppose that for fixed (i, j) ∈ G the random vector

(Dijb)
B
b=1 with Dijb equal to the difference of the IMPs between Ti and Tj in each of

the B played games is i.i.d. with mean µij and variance τ2
ij both of them not known for

the time being. From statistical observations, see e.g. [2] and [3], we learn that τ2
ij is

independent of (i, j) and equals approximately 5.52. Hence we derive from the Central

Limit Theorem that for large B the following approximation holds for the total sum

∆ij :=
∑B

b=1 Dijb of the differences of the IMPs

P

(

∆ij − Bµij√
Bτ

< x

)

≈ Φ0,1(x), x ∈ IR.

An easy calculation yields

P (team Ti wins against team Tj) := P (∆ij > 0) ≈ Φ0,Bτ2(Bµij). (3.4)

As an estimate for Bµij we use the observed value δij . Thus

P (team Ti wins against team Tj) = P (∆ij > 0) ≈ Φ0,Bτ2(δij) (3.5)

yielding (3.3) as our derived observation. In particular (3.3) and (2.1) yield that

the two secondary diagonals of (zij , (i, j) ∈ G) do not contain zeros. (3.6)

From (3.5) we obtain the probability distribution of ∆ij , namely

∆ij ∼ N(δij , Bτ2). (3.7)
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4. A variant of a theorem by Zermelo

In this section we present a variant of [4] which is more restrictive as we replace the

fairly general condition in [4, Nr. 4, S.454] by (3.6). On the other hand this variant is

more general, as real scores, not only integer ones, are admissible. But note Remark 1

below.

Given a fixed pair (k, z) with

k = (kij)1≤i,j≤N,i6=j symmetric, kij ∈ IR≥0, (4.1)

z = (zij)1≤i,j≤N,i6=j , zij ∈ IR[0,kij ], zij+zji = kij , zij > 0 on the two secondary diagonals.

(4.2)

Set

L(s) :=
∏

1≤i<j≤N

Γ(kij + 1)

Γ(zij + 1) · Γ(zji + 1)
·
(

si

si + sj

)zij

·
(

sj

si + sj

)zji

=: l
∏

1≤i<j≤N

(

si

si + sj

)zij

·
(

sj

si + sj

)zji

, s ∈ S(0,∞) := IRN
>0, (4.3)

with

l :=
∏

1≤i<j≤N

Γ(kij + 1)

Γ(zij + 1) · Γ(zji + 1)
> 0,

where the Gamma-function Γ(·) is given by

IR>0 ∋ x 7→ Γ(x) :=

∫ ∞

0

tx−1e−tdt.

With

pij(s) :=
si

si + sj
∈ (0,∞), 1 ≤ i, j ≤ N, i 6= j, s ∈ S(0,∞), (4.4)

we obtain

L(s) = l
∏

1≤i<j≤N

(pij(s))
zij · (pji(s))

zji .

Put

ri :=
∑

1≤j≤N

zij > 0, 1 ≤ i ≤ N.

We now assert the following
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Theorem (A variant of a result by Zermelo) (Existence and approximation of

a maximum point)

Given (k, z) from (4.1) and (4.2) the following holds:

(a) S(0,∞) ∋ s 7→ L(s) has a maximum point s∗ = (s∗i )
N
i=1. Hence

0 < s∗i < ∞, 1 ≤ i ≤ N.

(b) For each s = s∗ the following set of equations is valid:

ri =
∑

1≤j≤N,j 6=i

kij · pij(s) > 0, 1 ≤ i ≤ N. (4.5)

(c) Any solution s of (4.5) is uniquely determined except for constant positive

factors.

(d) Set

fi(s) :=
ri

∑

1≤j≤N,j 6=i
kij

si+sj

∈ (0,∞), 1 ≤ i ≤ N, s ∈ S(0,∞). (4.6)

Then s is a fixed point of f(·) = (fi(·))N
i=1, i.e. s = f(s), iff s is a solution of (4.5).

In particular,

s∗ is a fixed point of f(·). (4.7)

(e) The Zermelo procedure: define recursively for all n ∈ IN0 the sequence of vectors

sn = (sn
i )N

i=1 ∈ S(0,∞) by







s0 := ~1,

sn+1 := f(sn) ∈ (0,∞).
(4.8)

Then the following statements hold:

(e1) There exists limn→∞ sn =: s ∈ S(0,∞),

(e2) s is a fixed point of f(·),
(e3) s is a maximum point of s 7→ L(s).

Remark 1 (Relation to Zermelo’s result)

The function L of (4.3) extends LBin to the case of non-negative reals kij and zij .

Thus we get back LBin in the integer case together with the property that s∗ is a

maximum-likelihood estimator. This property cannot be proved any longer in the real
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case. But in case zij ∈ Q≥0, there still exists a motivation for L: find the smallest

common denominator d of all the zij
′s involved. Hence kij := dkij ∈ IN0, zij :=

dzij ∈ IN[0,kij ]
and zij + zji = kij . Hence if we add upper indices in order to indicate

dependency on (k, z) we obtain

L(k,z)(s) = l(k,z) · (l(k,z))−1/d · (L(k,z)
Bin (s))1/d.

As neither multiplication with a positive constant nor composition of s 7→ L
(k,z)
Bin (s)

with the strictly increasing function x 7→ x1/d on IR≥0 affects maximum points, both

of the functions s 7→ L(k,z)(s) and s 7→ L
(k,z)
Bin (s) have the same maximum points. In

section 5 we will apply the theorem to kij = 1 and zij ∈ IR[0,kij ] by computing a

maximum point. Hence, since all numbers on a computer are treated as rationals due

to finiteness of the number of available digits, the mentioned motivation holds. Indeed,

already in the integer case, the ratio kij : zij of all played games compared with the

games actually won is rational. The same interpretation is therefore admissible when

starting from rationals instead of integers.

Remark 2 (Numerical methods)

There are at least three possibilities for computing a maximum point s∗ in the above

Theorem:

(i) One tries to solve (4.5) algebraically. This however will become tedious for large

N .

(ii) One applies the successive approximation from (4.8) which by (e3) of the The-

orem yields a solution.

(iii) One solves (4.5) using methods from Dynamic Programming.

5. Application of the Zermelo procedure to team tournaments

We now apply the Zermelo procedure in order to provide a ranking order for a

tournament where not all of the teams have competed against each other. This we do

step by step, at the same time supplying an example.
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Step 1: We start with the matrix δ = (δij)1≤i,j≤N . According to (1.1) we know

the δij ∈ ZZ , (i, j) ∈ G, where δji = −δij , as soon as the tournament has terminated.

Moreover, we set δij := ” ∗ ” for the virtual matches (i, j) ∈ Gc and δii := ”− ”. As an

example we consider

Example 1 (N=8 teams, 4 rounds, B=8 games)

δ =















































team 1 2 3 4 5 6 7 8

1 − 0 ∗ 4 ∗ −14 ∗ −14

2 0 − 2 ∗ 6 ∗ −16 ∗
3 ∗ −2 − 4 ∗ 8 ∗ −2

4 −4 ∗ −4 − 20 ∗ 10 ∗
5 ∗ −6 ∗ −20 − 8 ∗ 12

6 14 ∗ −8 ∗ −8 − 10 ∗
7 ∗ 16 ∗ −10 ∗ −10 − 12

8 14 ∗ 2 ∗ −12 ∗ −12 −















































.

Step 2: According to (3.3) we obtain the zij > 0, (i, j) ∈ G. Hence condition (2.1)

holds trivially. Since δij = −δji,

zij + zji = Φ0,Bτ2(δij) + Φ0,Bτ2(δji) = 1, (i, j) ∈ G,

and we have kij = 1, (i, j) ∈ G. Setting kij := zij := 0 for (i, j) ∈ Gc we obtain a pair

(k, z) with (4.1) and (4.2). The entries zero for the virtual matches are to be considered

only as starting values for the Zermelo iteration procedure. Basically, the procedure

is a ”balancing” process taking into account that not all of the teams played against

each other.

Step 3: The Zermelo procedure now computes for each (k, z) a sequence s = (si)
N
i=1

of strengths (depending on (k, z)) for the sequence (Ti)
N
i=1 of teams. This value is the

limit s of (4.8) where the iteration process stops as soon as there are no further changes

with respect to the precision 10−5. From parts (a), (b), (c) and (e3) of the theorem
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we know that there exists some c > 0 with s = cs∗. Hence by (4.4)

pij(s
∗) = pij(s) =

si

si + sj
, (i, j) ∈ Gc.

This value used by the procedure can be interpreted as the probability that Ti

wins against Tj. Recall that by (3.3) and (3.5) the zij , (i, j) ∈ G, have the same

interpretation. This justifies applying the inverse of the N(0, Bτ2)−distribution on

the way back in order to estimate the IMP-difference

δij := Φ−1
0,Bτ2(pij(s)), (i, j) ∈ Gc,

for the virtual matches while the IMP-difference for (i, j) ∈ G are estimated by the

observed values δij := δij . Now the whole IMP-matrix δ is known.

Step 4: Finally we derive estimates for the VPs vij from the δij . Of course, for

the real matches we use the customary IMP→VP-Table and define

vij := gB(δij) = gB(δij), (i, j) ∈ G.

For the virtual matches we use

vij :=

∞
∑

n=−∞

gB(n) · κij(n), (i, j) ∈ Gc, (5.1)

with

κij(n) := Φδij ,Bτ2(n +
1

2
) − Φδij ,Bτ2(n − 1

2
), n ∈ ZZ , (5.2)

i.e. according to (3.7), one assigns to the points n ∈ ZZ the mass which the N(δij , Bτ2)-

distribution puts on the interval [n− 1
2 , n + 1

2 ]. Thus vij is the expectation of gB(∆ij)

where the variable ∆ij has the discrete density κij . Actually the sum in (5.1) is a

finite sum. For B = 8 for example, we have g8(n) = 0 for n ≤ −51 and g8(n) = 25 for

n ≥ 30. Hence (5.2) and Table 1 yield

∑∞
−∞ g8(n) · κij(n) =

∑29
n=−50 g8(n) · κij(n) + 25

∑∞
n=30 κij(n)

=
∑29

n=−50 g8(n) · κij(n) + 25(1 − Φδij ,Bτ2(29.5)).

In our Example 1 we obtain
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v =















































team 1 2 3 4 5 6 7 8 vi

1 − 15.0 12.7 16.0 13.5 11.0 12.9 11.0 92.1

2 15.0 − 16.0 13.2 17.0 14.0 10.0 15.1 100.3

3 17.2 14.0 − 16.0 15.8 17.0 15.1 14.0 109.1

4 14.0 16.7 14.0 − 21.0 15.8 18.0 16.9 116.4

5 16.4 13.0 14.1 9.0 − 17.0 14.3 19.0 102.8

6 19.0 15.9 13.0 14.1 13.0 − 18.0 16.0 109.0

7 17.0 20.0 14.8 12.0 15.6 12.0 − 19.0 110.4

8 19.0 14.8 16.0 13.0 11.0 13.9 11.0 − 98.7















































.

Step 5: The sequence

vi :=

N
∑

j=1

vij , 1 ≤ i ≤ N,

from (1.3) will be ordered according to size.

Hence in our Example 1 we obtain

rank 1 2 3 4 5 6 7 8

number of team 4 7 6 3 5 2 8 1

VPs 116.4 110.4 109.1 109.0 102.8 100.3 98.7 92.1

6. Proof of Zermelo’s theorem

Proof. Basically, the proof follows the ideas of Zermelo.

(a1) We first show that there exists a maximum point s∗. Setting 0/0 := 0 and

00 := 1 the function L(·) is defined and continuous on S[0,∞). Suppose s lies on the

border of S[0,∞). Hence si = 0 for some 1 ≤ i ≤ N . Thus when 1 ≤ i ≤ N − 1

0 ≤ L(s1, · · · , si−1, 0, si+1, · · · , sN )
(4.3)

≤
(

si

si + si+1

)zi,i+1
(4.2)
= 0. (6.1)
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When i = N the following holds

0 ≤ L(s1, · · · , sN−1, 0)
(4.3)

≤
(

sN

sN−1 + sN

)zN,N−1
(4.2)
= 0

which together with (6.1) yields

L(·) = 0 on the border of S[0,∞). (6.2)

As L(·) is homogeneous of dimension 0 in s, i.e. L(λs) = L(s), λ > 0, we can replace

S[0,∞) by the compact set S[0,1]. Then the assertion follows by the Bolzano-Weierstraß

Theorem. In particular s∗ < ∞.

(a2) We prove that s∗ > 0. Assume on the contrary that s∗i = 0 for some 1 ≤ i ≤ N .

This by (6.2) yields the contradiction L(s∗) = 0 < L(~1).

(b) From (b) we infer that s∗ is an inner point of S[0,∞). Thus setting the partial

derivatives of s 7→ ln(L(s)) at s∗ equal to zero yields (4.5).

(c) Note that the right hand side ρn in the set of equations

n
∑

i=1

N
∑

j=n+1

kij · pij(s)
(4.4)(4.5)

=
n

∑

i=1

ri −
n

∑

i=1

n
∑

j=i+1

kij =: ρn, 1 ≤ n ≤ N, (6.3)

is independent of s ∈ S(0,∞). Now suppose that there are two different solutions

s, t ∈ S(0,∞), i.e. s 6= λt for all λ > 0. Order the elements of s and t by size and

divide each of the sequences by the sum of their elements. Thus we obtain a sequence

u > 0 with
∑

ui = 1 and a sequence v > 0 with
∑

vi = 1. Moreover, u and v are

different points, hence without loss of generality ui < vi for some i. Let n be the

greatest of such i′s. Then 1 ≤ n < N , since otherwise we obtain the contradiction

1 =
∑

ui <
∑

vi = 1. Hence

0 < ui < vi, 1 ≤ i ≤ n, and 0 < vj ≤ uj , n + 1 ≤ j ≤ N,

which yields

pij(u) =
ui

ui + uj
<

vi

vi + vj
= pij(v), 1 ≤ i ≤ n < j ≤ N. (6.4)
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Thus

ρn
(6.3)
=

n
∑

i=1

N
∑

j=n+1

kij · pij(u)

=
n−1
∑

i=1

N
∑

j=n+1

kij · pij(u) + kn,n+1 · pn,n+1(u) +
N

∑

j=n+2

knj · pnj(u).

(6.5)

Replacing u by v in (6.5) and using (3.6) and (6.4) yields the contradiction ρn < ρn.

(d) This follows immediately.

(e1) From (4.6) we obtain

rifij(s) := ri
∂fi(s)

∂sj
=







kij

(si+sj)2
· f2

i (s) ≥ 0, 1 ≤ i, j ≤ N, j 6= i,
∑

1≤n≤N,n6=i
kin

(si+sn)2 · f2
i (s) ≥ 0, 1 ≤ i ≤ N, j = i.

(6.6)

Hence

s 7→ fi(s) ↑, 1 ≤ i ≤ N, (6.7)

with respect to the product ordering. Now, fix n ∈ IN0 and set

0 < λn := min
1≤j≤N

sn
j

s∗j
≤ max

1≤i≤N

sn
j

s∗j
=: µn. (6.8)

Hence

λns∗i ≤ sn
i ≤ µns∗i , 1 ≤ i ≤ N, (6.9)

which implies

λns∗ ≤ sn ≤ µns∗. (6.10)

As f from (4.6) is homogeneous of dimension 1, i.e.

f(λs) = (fi(λs))N
i=1 = (λ · fi(s))

N
i=1 = λ · f(s), λ > 0, (6.11)

we obtain

λns∗i
(4.7)
= λn · fi(s

∗)
(6.11)
= fi(λ

ns∗)
(6.10)(6.7)

≤ fi(s
n)

(4.8)
= sn+1

(6.10)(6.7)

≤ fi(µ
ns∗)

(6.11)
= µn · fi(s

∗)
(4.7)
= µns∗i , 1 ≤ i ≤ N.
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Hence

λn ≤ sn+1

s∗i
≤ µn, 1 ≤ i ≤ N,

which, on taking the minimum and maximum with respect to i, yields

λ0 ≤ λn ≤ λn+1 ≤ µn+1 ≤ µn ≤ µ0. (6.12)

Hence

λ := lim
n→∞

λn and µ := lim
n→∞

µn ≤ µ

exist and

λn ≤ λ ≤ µ ≤ µn.

We claim that

λ = µ. (6.13)

Proof. (6.6) together with fi > 0 from (4.6) and (4.2) imply that for each 1 ≤ i ≤ N

there exists some 1 ≤ ρi ≤ N such that

fiρi
> 0, 1 ≤ i ≤ N.

Hence continuity of all the functions involved guarantees that

fiρi
|[λ0s∗, µ0s∗] ≥ γi > 0, 1 ≤ i ≤ N, (6.14)

for some properly chosen γi. Hence we infer from the mean value theorem

sn+1
i − λns∗i = fi(s

n) − λns∗i
(4.7)(6.11)

= fi(s
n) − fi(λ

ns∗)

=:
N

∑

j=1

fij(x
i) · (sn

j − λnsn
j ), 1 ≤ i ≤ N, (6.15)

where xi denotes an adequately chosen point on the straight line between λns∗ and sn

which implies

xi ∈ [λns∗, sn]
(6.10)
⊂ [λns∗, µns∗]

(6.12)
⊂ [λ0s∗, µ0s∗].

Hence

sn+1
i − λns∗i

(6.15)

≥ fiρi
· (sn

ρi
− λns∗ρi

)
(6.14)

≥ γi · (sn
ρi

− λns∗ρi
), 1 ≤ i ≤ N. (6.16)
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Setting

γ := min
1≤i≤N

γis
∗
ρi

s∗i
> 0

we obtain

λn+1 − λn
(6.8)

≥ sn+1
i

s∗i
− λn

(6.16)

≥
γis

∗
ρi

s∗i
·
(

sn
ρi

s∗ρi

− λn

)

≥ γ

(

sn
ρi

s∗ρi

− λn

)

which implies

λn+1 − λn
(6.8)

≥ γ(µn − λn).

For n → ∞ we obtain (6.13). Thus (6.9) yields

lim
n→∞

sn
i = λs∗i , 1 ≤ i ≤ N.

(e2) This assertion follows from (4.8) by (e1) and continuity of (4.6).

(e3) By (e2) s is a fixed point of f(·). Hence by (d) s is also a solution of (4.5). By

(c) this solution is unique except for constant positive factors. Hence s = cs∗ for some

c > 0. Thus also s is a maximum point of s 7→ L(·) as by (a) s∗ is a maximum point

and L(·) is homogeneous of order 0.

7. Software

The C++ code as well as a DOS version of the complete algorithm for the Zermelo

procedure may be downloaded cost-free from the internet address given in [1]. Included

are all IMP→VP-Tables and an observation-file as an example.

We are thankful to Wolfhart Umlauft for hints and stimulating discusssions as well

as for the possibility of applying the new methods in the Bridgeclub of Böblingen-

Sindelfingen in Germany. Moreover he designed the ”movement” such that condition

(2.1) is fullfilled.
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