Backfitting Neural Networks

Anil Kumar Ghosh and Smarajit Bose

email : res9812@Qisical.ac.in, smarajit@isical.ac.in
Stat-Math Unit, Indian Statistical Institute, 203, B. T. Road,
Calcutta 700108, India.

Summary

Regression and classification problems can be viewed as special cases of the
problem of function estimation. It is rather well known that a two-layer per-
ceptron with sigmoidal transformation functions can approximate any con-
tinuous function on the compact subsets of RP if there are sufficient number
of hidden nodes. In this paper, we present an algorithm for fitting per-
ceptron models, which is quite different from the usual backpropagation or
Levenberg-Marquardt algorithm. This new algorithm based on backfitting
ensures a better convergence than backpropagation. We have also used re-
sampling techniques to select an ideal number of hidden nodes automatically
using the training data itself. This resampling technique helps to avoid the
problem of overfitting that one faces for the usual perceptron learning al-
gorithms without any model selection scheme. Case studies and simulation
results are presented to illustrate the performance of this proposed algorithm.

Keywords: Backfitting, backpropagation, backward deletion, cross vali-
dation, multi-layer perceptron, simulation.

1 Introduction

Solving regression or classification problems involves the estimation of a p-
dimensional function of X = (X7, X>,...,X,), which are usually known as
predictor or measurement variables. The aim of regression analysis is to es-
timate f(x) = E(Y | X = x), the conditional expectation of the response
variable Y given a value of X on the basis of the available training sample
observations {(X,,yn); n = 1,2,...,N}. Y can also be a random vector
which leads to multi-response regression analysis. In parametric approaches,
one assumes a functional form for f and uses the training data set to esti-
mate its unknown parameters. As a consequence, the performance of these
methods largely depends on the validity of these parametric model assump-
tions. Nonparametric regression techniques, however, are more flexible and
free from such model assumptions. Notably methods like kernels (Silverman,
1986; Scott, 1992), regression trees (Breiman et. al., 1984), local polynomi-
als (Fan and Gijbels, 1996), splines (Friedman, 1991; Breiman, 1993), and
wavelets (Donoho et. al., 1996) can outperform the parametric approaches
in a wide variety of problems. Neural network models (Lippman, 1987; Bar-
ron & Barron, 1988; Cheng & Titterington, 1994; Ripley, 1994, 1996) are
also valid statistical models which are capable of estimating any continuous
function on the compact subspaces of RP to a desired level of accuracy.

In classification, one uses the training sample to formulate a decision rule
d(x) : RP — {1,2,...,J} for classifying the observations (into one of .J
classes) with the maximum possible accuracy. For instance, Bayes rule (An-
derson, 1984) assigns an observation to the class with the largest posterior
probability. Accurate estimation of these unknown probabilities may lead
to a classification rule capable of achieving nearly the optimal misclassifi-
cation rate. These probabilities can be estimated either parametrically or
nonparametrically. In parametric approaches (Anderson, 1984; Fukunaga,
1990; McLachlan,1992), the measurement vector X is assumed to have a
known distribution with unknown parameters. For instance, in Fisher’s dis-
criminant analysis, this known distribution is taken as multivariate normal
with different parameters for different classes. If one or more of the conven-
tional assumptions are violated, the classical methods of linear and quadratic
discriminant analysis fail to adequately approximate the class boundaries
which are typically far too complex. Nonparametric methods (Breiman et.
al., 1984; Duda, Hart & Stork, 2000; Cristianini & Shawe-Taylor, 2000,
Hastie, Tibshirani & Friedman, 2001) perform better in such situations.
Some of these methods use indicator variables Yi,...,Y; (defined for the
J classes respectively) to treat it as a multi-response regression problem
and apply suitable method to estimate the regression surfaces. Neural net-
work follows the same idea and uses a very general model for estimating
EY;|x)=p(|x) (j=1,2,...,J), the posterior class probabilities.

This paper provides a successful implementation of backfitting and cross val-
idation techniques for fitting perceptron models in regression and classifi-
cation problems. Instead of backpropagation, this proposed algorithm uses
backfitting to achieve faster convergence, while backward deletion and cross
validation techniques are used for automatic selection of an appropriate num-
ber of hidden nodes for a given problem. The paper is organized as follows.
Section 2 contains a brief description about the feed forward neural network
model and related training algorithms. Problems related to these algorithms
are discussed in Section 3. The backfitting algorithm and the cross-validation
based model selection procedure are also proposed in this section. Experi-
mental results are given in Section 4. Section 5 deals with some related ideas
followed by concluding remarks.

2 Network architecture and training algorithm

Like specifying a regression model, before using a neural network, one has to
decide about its architecture. In practice, a network receives a p-dimensional
input vector X and produces an output Y as an estimated value of the un-
known response Y. At any node, we get an output of the form Y; = f(wlx)
where f is the prescribed transformation function, x is the input vector and
elements of w are the weights associated with the connections leading into
that node. A sufficient number of such nodes are connected in a suitable
manner to form a network architecture. In perceptron models, these nodes
are arranged in different layers where connections are allowed only between
the nodes in consecutive layers and that too only in the upward direction.

Single-layer perceptron (SLP) has the simplest architecture among the per-
ceptron models. A set of p input variables X generates an output Y through
the formula

p
Y = f(’on + ijXj).
j=1

Taking X, = 1 as a dummy variable, it can also be expressed as Y = f (wX) .
Sigmoidal function (o(z) = H%) is the most popular choice for the trans-
formation function f.

Multi-layer perceptron (MLP) uses one or more hidden layer(s) between the
input and output layers to provide a more flexible prediction mechanism. A
perceptron model with single hidden layer having sigmoidal transformation
can approximate any continuous function to any given level of accuracy if
sufficiently large number of hidden nodes are used (Hornik, Stinchcombe and
White, 1989). Throughout this paper, by MLP we shall mean perceptrons
with solitary hidden layer. If there are k nodes in the hidden layer, the input-
output relationship of an MLP can be given by

k
Y = f(B'Z) = f(Bo + Z Bi filai %)),
i1

where a;; = weight associated with the connection between 4t input and
it" hidden node, f; = transformation at the i** hidden node, Z; = output
of the i'" hidden node (Zy = 1), 3; = weight associated with the connection
between " hidden node and the output node, and f = transformation at
the output node.

To estimate the parameters (weight functions) of a given network, usually
an iterative algorithm is used which readjusts the weights at each iteration
to minimize a suitably chosen loss function E. Squared error loss function is
the most popular choice and generally gradient descent method is employed
for this minimization. The traditional backpropagation training algorithm
of neural networks takes fixed steps in the direction of steepest descent for
minimizing the criterion E. After starting with some initial weights, at the
(t+ 1)t iteration w;;(t) is readjusted to w;; (t +1) = w;; (t) + Aw;;(t), where
Aw;i(t) = —n%E(wij). The step control parameter 7 generally remains
unchanged throughout the procedure. The convergence of this algorithm is
not guaranteed, and it is usually very slow. The expert computer scientists
know many clever techniques to fasten the backpropagation convergence rate
but none of these strategies can be used as rules. Of course, one can use other
optimization techniques to train MLP. Among them, Levenberg-Marquardt
technique (Seber and Wild, 1989) improves the rate of convergence, but it
requires a huge memory space. Backpropagation and Levenberg-Marquardt
methods have the disadvantage of having no optimal stopping rule. As a
result, for many real problems, they typically show a tendency of overfit-
ting the training data because of the overparameterized model. This paper
presents an algorithm based on backfitting which unlike backpropagation en-
sures the reduction in cost function at every stage, and at the same time
the cross-validation based model selection technique seems to reduce such
overfitting.

3 The Backfitting Approach

As we have mentioned earlier, for using a neural network model, one has to
decide about the number of hidden nodes and hidden layers to be used. These
numbers and the transformation functions as well have to be specified before
training the network. Hornik et. al., (1989) showed that a single hidden
layer with sigmoidal transformation functions and enough number of hidden
nodes is adequate. However, no such result is known for finding the number
of hidden nodes for a given problem. A network with fewer than required
number of hidden nodes may not be able to approximate a function properly.
On the other hand, too many hidden nodes may cause overfitting.

Computer scientists have come up with many pruning algorithms to find out
an optimum number for a given problem. A brief discussion on pruning can
be found in Reed (1993). Most of these algorithms can be classified into
two broad categories. One group uses sensitivity of the error function and
other adds a penalty term to modify the objective function. In the sensitivity
methods, after training the network with a sufficiently large number of initial
nodes, sensitivities are estimated, and the less sensitive weights/nodes are
removed (Karnin, 1990; Mozer & Smolensky, 1989). In penalty term meth-
ods, backpropagation based on the modified objective function removes the
unnecessary weights during training (Chauvin, 1989, 1990). Weight decay
method (Hinton, 1986; Nowlan & Hilton, 1992) also belong to this group.
Most of these pruning algorithms require retraining of the network which
takes considerable amount of computing time. Moreover, they lack mean-
ingful statistical interpretation. In this paper, we have proposed a different
algorithm which does not require retraining. It uses the idea of backward
deletion and cross validation to find out an ideal number of hidden nodes
automatically using the training sample observations.

3.1 The algorithm

Following the result of Hornik et. al., (1989), we use a single hidden layer
and consider the following perceptron model

57:30%—2&'21' :ﬁ0+23i a(a;X),

where o(z) = (1+e) ", o5 = (@0; ;... api) and X = (1 X;...X,) . It
is easy to see that after finding the estimates of a;, the problem of estimating
B; reduces to multiple linear regression and hence the least square method
can be to used estimate f; avoiding any iteration at this stage. We can use
backfitting to re-adjust the estimates of aj; and proceed iteratively.

Suppose that there are k nodes in the hidden layer. To train this network
using the data {(xp,yn) ;n=1,2,..., N}, we take the following steps :-

STEP 1: Feature directions «; are initialized and the features (hidden layer
outputs) are computed. Z; = o(a;x), i=1,2,...,k.

STEP 2: Y is regressed on Z1,Zs,...,Z to get the initial estimates for
180761’""18/6'

STEP 3: Backfitting is used at the hidden layer to re-adjust the features.
At any stage, a; is adjusted by a factor of A = —(U,U;) 'U;r, where r is
the residual vector and ((U1))n; = 59;]_"1 (n=1,2,...,N; j=0,1,2,...,p).
Z, is adjusted accordingly.
Y — Z Z; is regressed on Z; to re-compute ; and Sy.

i#1

However, if this re-adjustment procedure fails to reduce the current value of
RSS, a; is not adjusted at all, and the feature Z; is also kept unchanged.
Otherwise the residuals are updated, and we proceed in the similar fagshion
to adjust ay. Thus, all k features (Z1,Z5 ..., Z;) are updated one by one.
This procedure is continued until no significant improvement is observed in
the features.

STEP 4: Y is regressed on Z1,Zs,...,7Z; to get the new estimates for
180761’""18/6'

The last two steps (STEP 3 and 4) are repeated until we achieve convergence
(reduction in RSS is very small over a number of consecutive iterations). A
detailed version of this algorithm is given in the Appendix.

This algorithm has two basic steps. At the first step, it tries to estimate the
best possible features Z1, Zs, ..., Z, from the data, and using those estimated
features, at the next step, it minimizes the loss function. Since the classifica-
tion problem can be treated as a multi-response regression problem, the above
algorithm can easily be extended to develop a flexible classification algorithm.
In that case, J output nodes are used to estimate the posterior probabilities
p(j|x), (j =1,2,...,J) for the J classes. Like CUS (Bose 1996), it puts
no restriction to ensure that the probability estimates are in [0,1]. Impos-
ing positivity restriction by any manner results in much more complicated
but not necessarily better classification (Kooperberg et. al., 1996). Due to
special type of bias-variance decomposition (Friedman, 1997) in classification
problems, this backfitting algorithm leads to fairly good results in spite of
having posterior estimates outside [0,1] range. However, inclusion of the in-
tercept terms guarantees the additivity constraint (Y p(j | x) = 1). In our
simulation studies, this algorithm could achieve low misclassification rates
even when the class boundaries are highly nonlinear.

3.2 Selection of ideal network

Since the optimum network architecture depends on the problem itself, it is
desirable to find it using the training sample observations. For a single hidden
layer perceptron, it is the number of hidden nodes which determines this ar-
chitecture. Therefore, one has to optimize this number based on the available
data. A similar type of training algorithm was used by Hwang et. al. (1994)
where they proposed the use of forward and backward deletion of nodes to
arrive at different networks but they did not address this optimization prob-
lem. Zhao and Atkenson (1996) also used backfitting for training networks
but instead of node optimization they concentrated on the smoothness of the
estimated function and tried to optimize the smoothing parameter. As we
have mentioned earlier, a number of pruning algorithms are available in the
literature for determining the node size but they lack meaningful statistical

interpretation, and at the same time require re-training at each stage, which
considerably increase the computational cost. Some of this methods use norm
of the weight vector as the penalty term and try to minimize it. But, in our
method, from a statistical point of view, more importance is given on model
parsimony.

The strategy we adopt is to start with a sufficiently large number of hidden
nodes, and then (after training) perform stepwise backward deletion to arrive
at an appropriate smaller number. At any stage, the feature (node) whose
exclusion makes the least increment in the training set RSS is dropped from
the model. Thus we generate a sequence of nested models indexed by the
number of hidden nodes. The problem then reduces to selection of an opti-
mum one under some criterion. If training set RSS is used as a criterion, the
largest model would be selected which may not produce the best result for
future observations. Therefore, to arrive at a parsimonious model, we adopt
the cost complexity criterion. Cost complexity for the model with ¢ hidden
nodes is defined as

R, (i) = RSS(i) +~i, i=0,1,2,... k.

Clearly, the criterion is minimized by the largest model when v = 0. This
model remains optimum up to a certain positive value of v after which a
smaller model turns out to be the cost minimizer. In the process, a number of
intervals (m < k+1) and the corresponding minimizing models are obtained.
In classification problems, instead of the training set RSS, we use resubsti-
tution error (i.e. the training set misclassification error) but follow the same
procedure. Here, v = 0 does not necessarily lead to the largest model but
to the model with the least training set error. However, different intervals of
~ and the corresponding nested sequence of models can be obtained exactly
the same way. Thus, the number of competitive models gets automatically
reduced. Suppose that we get m intervals for v {(v—1,%); t =1,2,...,m}
and corresponding models are My > Ms > ... > M,,. The problem of selec-
tion of final model then reduces to the selection of an ideal cost parameter
for which we use cross validation.

In V-fold cross validation, the whole training set is randomly divided into V'
groups L1, Ls, ..., Ly of sizes as nearly equal as possible. For classification
problems, stratified random sampling is carried out where different strata
consist of observations from different classes.

Leaving one group L, (r = 1,2,...,V) at a time as a hold-out sample,
the network is trained using k£ hidden nodes and the remaining observa-
tions. Backward deletion of nodes is carried out to generate a sequence
of models, and each time the training set RSS is computed. The cost
function is minimized over these models for different -y, more specially for
Vi = Y= (t=1,2,...,m). Let Mt(r) be the models which minimize the
cost functions R+ (t =1,2,...,m). These models are then used to compute

the cross validation errors.

v = Y -0 t=12..m,
{n:(Xn,yn)ELr}
where 7" is the estimate of y,, obtained from the model Mt(r). In case of
classification, we follow the same procedure but instead of RS.S, misclassifi-
cation rates are used. This procedure is repeated over the V' groups, and the
errors are pooled to compute the final cross validation errors for different ~.

\%
Vi) =S eV, t=1,2,...,m.
r=1

The value v which minimizes the cross validation error, is chosen as the ideal
value, and the corresponding model is selected. For more detailed discussion
on cost-complexity pruning, see Breiman et. al., (1984), Ripley (1996) or
Hastie et. al. (2001).

The number of initial nodes has to be specified. From our simulation study,
we feel that the result is not too sensitive on this number as long as sufficiently
large number of hidden nodes are used. We used at least p hidden nodes.
From our experience, 2¢/N seems to be a good choice for this number. We
have to also keep in mind that there are p input variables and & hidden nodes,
and hence, to estimate a response, (p+ 2)k + 1 parameters are required to be
estimated. Therefore, it is desirable that k should be such that (p+2)k+1 <

N. Therefore, we used max {p, min(2v' N, [%])} in our experiments.

4 Experimental Results

In this section, we illustrate the performance of the proposed method using
some real and simulated examples. For assessing the accuracy of this method,
we compare its performance with the conventional neural nets trained by
Levenberg-Marquardt(LM) algorithm. LM algorithm is preferred to back-
propagation because of its better performance and faster rate of convergence.
For the conventional methods, there is no optimal stopping rule as such.
There is no universally accepted method for finding the optimum number of
hidden nodes as well. Hence, we had to resort to trial and error and in each
case we report the best result over a large number of such trials. The exam-
ples for classification problems are chosen from previously published works
to have a good evaluation for the proposed method. The results of some
relevant classification methods like classification trees (CART; Breiman et.
al., 1984), flexible discriminant analysis (FDA; Hastie, Tibshirani and Buja,
1994) and nonlinear discriminant analysis (Breiman and Thaka, 1984) are
quoted directly from those articles. All other results are reported from our

experiments. Since training sets for real problems are usually not very large
(because of the cost involving generation of samples), we tried to use rela-
tively smaller training sets in our simulations. However, for obtaining reliable
estimates for the prediction errors in regression and that for the misclassifi-
cation rates in classification, we used much larger test sets.

4.1 Regression

For regression, we consider four examples (Example 1.1 - 1.4) of which the
first three are simulated. For each of these simulated examples, the average
and standard error (given inside the braces) of multiple R? of 10 simulation
runs are reported in Table 1 both for backfitting neural nets (BNN) and
Levenberg Marquardt neural nets (LMNN).

Example 1.1 is based on a pure interaction model in two dimensions
Y = X1 X5 + €, where X3, X5 are éid U(—1,1) and € ~ N(0,0.04)

From this model, we generated 200 observations for training and 2000 obser-
vations for the test set.

Two higher dimensional problems are considered as the next two examples.
In both cases, ten predictor variables are generated, of which only five of
them appear in the true regression model. The other five are used to add to
the underlying noise. In Example 1.2, we consider a pure additive model

4
1+ exp[—20(X3 — 0.5)]

Y =0.1 exp(Xy) + +3X35+2X,+ X5 +e,

whereas in Example 1.3, the model involves an interactive component
Y = 10sin(7 X1 X5) + 20(X5 — 0.5)° + 10X 4 5X5 + €.

In both cases Xi, Xs,...,X10 are iid U(0,1) and ¢ ~ N(0,1). In these
two examples, we used 400 observations as the training data whereas 4000
observations were used as test cases.

The last data set (Example 1.4) is a real one taken from the Boston Housing
study (Harrison & Rubinfeld, 1978). Harrison and Rubinfeld used this data
to estimate the marginal air pollution damages as revealed in the housing
market. In order to predict the housing value using the other 13 variables
given in the data, the whole set of observations was randomly divided into
two parts. 300 observations were used to estimate the regression surface and
the rest 206 cases were considered as the test set. This random division
is carried out 10 times to generate 10 different training and test samples.
Average and standard error of multiple R? over these 10 random splits are
reported both for LMNN and BNN.

10

Table 1 confirms that BNN performed quite well in all the examples. It could
produce results which are comparable (or even better in some cases) to the
best result obtained from a number of trials using LMNN. What is more
important is that even though BNN uses cross validation to find the ideal
network automatically, it did not take much more time than a single run of
LMNN in any of these experiments. Therefore, the user does not have to use
trial and error to find a reasonably accurate predictive neural network, it can
be accomplished by BNN in a single run without any significant increment
in computational cost.

4.2 Classification

Eight examples (Example 2.1 - 2.8) are considered for classification. The first
two of them deals with two completely separated classes in two dimensions.
Example 2.1 is taken from Breiman & Thaka (1984) where measurements
(z,y) were generated such that

Class-1: {(x = rcosf,y = rsinf) : r ~ U(3,4),0 ~ U(0,7)},
Class-2 : {(x =rcosb,y =rsinf) : v ~U(4,5),0 ~U(0,7)}.

For Example 2.2, following Hastie et. al., (1994) we generated observations
(z,y) from U(—1,1) x U(—1,1) and then assigned them to

Class-1 if zy > 0 and to Class-2 if zy < 0.

In both examples, we used 200 and 2000 observations respectively for the
training and the test sets.

The next three examples are taken from Bose(1996) and Bose(2003) where he
used 500 observations for the training and 3000 for the test sets. In Example
2.3, each of the two classes is an equal mixture of three bivariate normal
distributions.

p(x|1)=1/3> No(ui, Bs), p(x[2) =1/3 No(s, i), where

i=1 1=4

H1 = (an)v M2 = (_27_3)a M3 = (2a —1),
Ha = (31 _4)a M5 = (11 _3)1 He = (4a _3)1

11

Example 2.4 deals with a three class problem in higher dimension. The dis-
tribution of the measurement vector in the first class is multivariate normal.
For the other two classes, X, Xé, X3, ..., Xg follow multivariate normal dis-
tribution where X, = log(X5). The details are as follows:-

p(x[1)=Ne(u1,%1), px|2)=G(p2,22), px|3)=G(us,Xs),
where p1 =(-1,2,.5,.5,.25,.25), p2=0, pz=(-2,0,1,1,.5,.25),
31 = Ig, the six dimensional identity matrix,

Yoij = .5IP791 1 <, j < 6, where Xy is the (i,7)"" element of Xy,

Yaij = ci5(:5)F771 1 <4, j < 6, where

1 ifi=y
cij=¢q —1 ifi#jandi=2o0rj=2
0 otherwise.

G is such that X1, log X5, X3, X4, X5 and Xg have joint multivariate normal
distribution.

We consider another two class problem as Example 2.5 where the classes are
p(X | 1) = U(_575) X U(_5,5)7 p(X | 2) = Nz(0,0,]-v 1705)

For each of these five examples, we repeated the experiment 10 times. The
averages and standard errors of the misclassification error rates (given inside
the braces) of these 10 simulation runs are reported in the tables.

Results of different classification methods are also presented for three bench-
mark data sets (Example 2.6-2.8). Example 2.6 is related to a vowel recogni-
tion problem, where two measurements are taken for each observation coming
from any of 10 classes. This data was created by Peterson and Barney (1952)
by a spectrographic analysis of vowels. There are 338 observations in the
training set and the test set consists of 333 cases. Bose (1996) and Cooley
and MacEachern (1998) analyzed this data set extensively and reported the
error rates for different classifiers. The other two data sets, known as dia-
betes data and vehicle data, are taken from UCI machine learning repository.
Example 2.7 is about identification of diabetic patients in Pima Indian fe-
male population having at least 21 years of age. It is a two-class problem,
where 8 different measurements are taken on each of the 768 individuals.
Vehicle data consists of 18 measurements on each of the four different types
of vehicles. Though there are originally 946 observation but only 846 were
available on UCI repository. Unlike vowel data, these two data sets do not
have any separate training and test sets. In both these cases, we divided the
data sets randomly to form the training sets consisting of 400 observations
while the rest of the observations were used as the test samples. The average
of the misclassification rates over 10 random splits are reported for different
classifiers along with their corresponding standard errors.

12

Fisher’s linear discriminant analysis (LDA) could not produce satisfactory
performance in most of the simulated data sets. Quadratic discriminant
analysis (QDA) also failed in the case of the first and the third examples.
In Example 2.1, as the class boundary is purely additive, CUS and succes-
sive projection performed well but they failed in Example 2.2 in the presence
of pure interaction. Though this example was an ideal one for CART, it
could not figure out the optimal splits. In this data set, QDA and the per-
ceptron models clearly outperformed the other classifiers. However, FDA-
MARS (deg. 2) was also reported to have a decent misclassification rate of
6.0% (Hastie et. al., 1994). In Example 2.3, the perceptron models led to the
best error rates. They had a slight edge over CART and other classifiers. In
the last two simulated examples (2.4 & 2.5), as the class boundaries are nearly
elliptical, QDA managed to approximate them very well. Apart from LDA,
all other methods could achieve competitive misclassification rates. In both
these examples, LMNN and BNN could match the performance of QDA to a
reasonable extent. These two methods led to reasonably lower misclassifica-
tion rates in all these simulated data sets. In Example 2.1, BNN performed
better than LMNN, and it could nearly match the performance of CUS.

These perceptron models could produce descent performance for the bench-
mark data sets as well. In vowel recognition problem (Example 2.6), the
second iteration of CUS (successive projection) achieved lowest misclassifi-
cation rate but the error rates for BNN and FDA-MARS (deg.2) were very
close to that. Apart from LDA, CART and CUS, performance of the other
classifiers were fairly similar. In diabetes data, BNN led to the best perfor-
mance. Misclassification rates for the other classifiers were fairly competitive
except for QDA which had a slightly higher error rate. In the case of vehicle
data, QDA outperformed the other classifiers. In this example, BNN could
achieve a reasonably lower error rate and its performance was better than
that of the usual Levenberg Marquardt algorithm.

From the above results, it appears that BNN is quite competitive with the
other nonparametric classifiers. Moreover, it automatically found an ideal
number of nodes to match the best performance of LMNN in all examples
that we have tried. We should also like to point out that the best result of
LMNN was obtained by trial and error. We have run the LMNN algorithm
over different models and chosen that one which led to the best performance
(least test set error), whereas BNN selected the best model based on cross-
validation errors using the training set itself. Performance of BNN could
have made to look much better if its best performance on test set had been
considered. This also makes the BNN algorithm more useful in the absence of
an independent test set which is a common scenario in many real problems.

13

4.3 Computational Aspect

As backpropagation takes only small steps towards the direction of steepest
descent, it has a very slow rate of convergence. In contrast, the algorithm we
present tries to find the local optimum at each stage. Not only it has consider-
ably faster rate of convergence but backfitting also ensures reduction in RSS
in all stages. As we have earlier pointed out, Levenberg Marquardt (LM)
algorithm is a better and faster alternative compared to back-propagation.
Since the methods were run in different platforms in our experiments, it
was not possible to compare the CPU times. However, for each iteration,
backfitting requires only O(N.Jkp?) computations as compared to at least
O(N Jk?p?) required by LM algorithm. For complex problems, when large
number of hidden nodes are required, backfitting will have a definite advan-
tage. For model selection, backward deletion of nodes works extremely fast
since it does not require retraining. Though the deletion algorithm is a greedy
one, it could produce comparable, if not better results as compared to the
best one obtained by trial and error using LM algorithm in our experiments.

The LMNN algorithm was run in Matlab on a Sun-3000 (using sparc CPU
and solaris 2.5 operating system). For the vowel recognition example, for a
single run, it took almost 45 minutes. In the same sun environment, BNN
(written in C) could come up with a better result than the best one obtained
by LMNN within that time period. It should be noted that BNN had to train
the data 11 times (including 10 times for cross validation).

5 Discussion

A simple algorithm based on backfitting and cross validation is presented in
this paper for fitting perceptron models in regression and classification prob-
lems. This algorithm reduces the training time (compared to LM algorithms)
and at the same time automatically selects an ideal network architecture.
One can also notice that the perceptron models can be viewed as the spe-
cial cases of projection pursuit models (Friedman and Stuetzle, 1981; Huber,
1985; Roosen and Hastie, 1994). In projection pursuit, one has to find the
optimal search directions and the corresponding smooth functions as well.
The advantage of using perceptron model is that, here the smooth functions
are fixed and known (usually sigmoidal functions are used). Better directions
are sought for at each iteration.

It is evident though that BNN suffers from similar problems like the other
conventional methods because of the presence of possibly numerous local
minima. Therefore it may not be a bad idea to run BNN a few times starting
from different random points or to adopt simulated annealing (Laarhoven and
Aarts, 1987) to see if the algorithm converges to a better local minimum. We

14

have opted for the second strategy to keep the algorithm automatic. At
each time, we computed two competitive features directions, one by Newton-
Gauss method (as described in the algorithm) and the other by simulation
from a uniform distribution over a small neighborhood of the current value of
the feature direction. Out of these two features, which led to lower training
set RSS, was considered for further adjustment. This adjustment was done
when it resulted in reduction in RSS, otherwise this adjustment was carried
out with a certain probability (depending on the amount of increase in RS.S)
which is gradually decreased over iterations to attain convergence.

The traditional training algorithms of neural network have a tendency to
overfit the training data. The algorithm we propose automatically selects
an ideal number of hidden nodes by cross-validation which helps in reducing
this overfitting. Under regression framework that adopted in the backfitting
approach, cross validation seems to be an useful idea for finding the ideal
network architecture.

Acknowledgement

We thank the associate editor and the two referees for their useful suggestions.

Appendix

BNN Algorithm :-

|| Initialization ||
Initialize the feature directions o, (i =1,2,...,k) randomly.
Compute the hidden layer outputs (which are often called features)
70 —o(@¥x,) (i=1,2,....,k n=1,2,...,N).
Regress Y on Z9,72,..., 72 to find 83, 87,..., Y.
k
Compute 32 FBS‘FZﬁ?Z?n: 0 —yn — 2, (n=1,2,...,N).
i=1

N
t« 0; Count < 0; Stop «+ 0; RSSy <« Z(rﬁ)Q.
n=1
while(Stop=0) do
|| Backfitting ||
RSS, + RSS,
for (i =1 to k) do

Use Taylor series approximation (up to linear term) of RSS about o!
N

RSS = 3" [t - Bloiui, T,

n=1

’
o t . _ 00(yX)
where §; = a; — a; and u;, = Ta;bi:a:’x:x".

15

Use least squares method to estimate d;.

Compute a!* < af +§; and Z}7 + U(ozf"lxn)7 (n=1,2,...,N).
Regress Y — Y 81" 2" =" g17) on 2! to find 4§ and B!
i<i i>i

Compute 32*, ri*, (n=1,2,..
if(RSS* < RSS.)
RSS, + RSS*; a!t' « al*; ZI*' « z!*; Bt « gi*; Bt + BE.
Pyt el ol (n=1,2,...,N).
end (if)
if(RSS* > RSS.)
alt —al; ZH «— Z1 it Bl

., N) and RSS™ accordingly.

i

end (if)
end(for)
ot = Bt < it -, (n=1,2,...N).

RSS1 + RSS.; Reduction + %S{ZSSO.
if(Reduction < 0.005)

Regress Y on Z{t!, Zi*tt ..., ZI*! to re-compute A5, gitt .. gt
Re-adjust g5, 5™, (n=1,2,...,N), RSS; and Reduction.
end (if)
t<+—t+ 1; RSSO < RSSl
|| Termination ||
if(Reduction > 0.005) Count + 0
if(Reduction < 0.005) Count + Count + 1
if(Count=>5) Stop « 1
if(Reduction=0) Stop « 1
end(while)
Tables
Example Levenberg-Marquardt Backfitting
number Training Test Training Test
11 0.755 (0.011) | 0.709 (0.005) | 0.746 (0.009) | 0.719 (0.005)
1.2 0.852 (0.011) | 0.792 (0.009) | 0.832 (0.009) | 0.776 (0.008)
13 0.960 (0.010) | 0.899 (0.012) | 0.962 (0.004) | 0.900 (0.005)
14 0.938 (0.015) | 0.861 (0.015) | 0.924 (0.011) | 0.858 (0.012)

1. Multiple R? for the regression problems

2A.

Method Training Test

LDA 41.00 (0.95) | 43.00 (0.32)
QDA 27.00 (0.95) | 30.00 (1.26)
Nonlinear (ACE) | 4.00 (0.32) 4.00 (0.32)
CUS 1.65 (0.24) | 2.20 (0.22)
Succ. Proj. 1.30 (0.26) | 2.00 (0.20)
LMNN 2.00 (0.31) | 3.77 (0.21)
Backfitting 1.55 (0.32) | 2.47 (0.31)

Misclassification rates (in %) for Example 2.1

16

Method Example 2.2 Example 2.3 Example 2.4
Training Test Training Test Training Test
Optimal 0.0 (0.00) | 0.0 (0.00) | 5.0 (0.25) | 6.6 (0.11) | 23.1 (0.36) | 24.5 (0.23)
DA 45.9 (1.06) | 49.7 (0.83) | 14.3 (0.92) | 13.9 (0.29) | 34.2 (0.50) | 35.7 (0.28)
QDA 3.3 (0.50) 9 (0.42) | 11.2 (0.77) | 10.9 (0.33) | 24.5 (0.45) | 28.0 (0.34)
CART 22.0 24.0 6.2 7.4 26.0 33.8
CUS 39.6 (2.03) | 46.7 (LA1) | 7.2 (0.53) 1(0.23) | 24.8 (0.50) | 29.4 (0.43)
Succ. Proj. | 35.1 (2.53) | 41.1 (2.84) 1 (0.50) 5(0.22) | 24.9 (0.45) | 29.5 (0.47)
LMNN 1.3 (0.30) | 4.0 (0.37) 7 (0.41) 8(0.13) | 21.0 (0.87) | 28.3 (0.29)
Backfitting | 2.9 (0.35) | 4.2 (0.73) 1 (0.41) 6 9(0.12) | 2.0 (0.91) | 28.6 (0.36)
2B. Misclassification rates (in %) for Example 2.2, 2.3 & 2.4
Method Example 2.5 Example 2.6
Training Test Training | Test
Optimal 10.3 (0.13) | 10.5 (0.10) — —
LDA 45.8 (0.79) | 48.3 (0.53) 28.40 26.13
QDA 10.4 (0.38) | 10.7 (0.15) | 21.59 | 21.02
FDA(BRUTO) | 12.1 (0.16) | 12.9 (0.15) | 23.70 | 20.42
FDA(MARS) | 12.3 (0.18) | 13.3 (0.15) | 19.80 | 20.72
(degree=2) 10.7 (0.16) | 11.5 (0.12) | 22.80 | 19.82
CART 98 (0.17) | 12.7 (0.14) | 17.756 | 23.72
(lin. comb.) 9.4 (0.15) | 12.5 (0.12) | 19.82 | 24.02
CUS 12.4 (0.37) | 12.4 (0.18) | 28.11 | 24.32
Succ. Proj. 12.6 (0.38) | 12.3 (0.15) | 17.16 | 18.92
LMNN 5(0.34) | 109 (0.15) | 18.05 | 21.32
Backfitting 9.9 (0.31) 10.8 (0.16) 22.19 19.82
2C. Misclassification rates (in %) for Example 2.5 & 2.6
Method Example 2.7 Example 2.8
Training Test Training Test
LDA 25.07 (0.87) | 24.48 (0.83) | 18.44 (0.50) | 21.90 (0.43)
QDA 21.58 (0.79) | 29.01 (1.02) | 5.67 (0.30) | 16.84 (0.45)
CUS 92.48 (0.68) | 24.68 (0.77) | 13.87 (0.46) | 19.75 (0.47)
Succ. Proj. | 22.32 (0.61) | 24.89 (0.73) | 13.81 (0.48) | 19.63 (0.44)
LMNN 10.69 (0.94) | 23.67 (0.80) | 10.18 (0.72) | 20.69 (0.59)
Backfitting | 19.46 (0.72) | 23.23 (0.68) | 14.56 (0.54) | 18.51 (0.50)
2D. Misclassification rates (in %) for Example 2.7 & 2.8
References

[1]

Wiley, New York.

22, 505-525.

and Data Analysis.

Stat. and Comp. Science, 192-203.
Bose, S. (1996) Classification using splines. Comput. Stat. and Data Analysis,

Anderson, T. W. (1984) An Introduction to Multivariate Statistical Analysis.

Barron, A. R. and Barron, R. L. (1988) Statistical learning networks: a uni-
fying view. Symp. on the Interface :

Bose, S. (2003) Multi-layer statistical classifier. To appear in Comput. Stat.

17

Breiman, L. (1993) Fitting additive models to regression data: diagnostics and
alternating views. Comput. Stat. and Data Analysis, 15, 13-46.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984) Classifi-
cation and Regression Trees. Chapman and Hall, New York.

Breiman, L. and Thaka, R. (1984) Nonlinear discriminant analysis via scaling
and ace. Tech. Rep., Dept. of Stat., Univ. of California, Berkeley.

Cheng, B. and Titterington, D. M. (1994) Neural networks: a review from a
statistical perspective (with discussion). Stat. Science , 9, 2-54.

Chauvin, Y. (1989) A backpropagation algorithm with optimal use of hidden
units. Adv. Neural Info. Processing, 1, 519-526.

Chauvin, Y. (1990) Dynamic behavior of constrained backpropagation net-
works. Adv. Neural Info. Processing, 2, 642-649.

Cooley, C.A. and S.N. MacEachern (1998) Classification via Kernel Product
Estimators. Biometrika, 85, 823-833.

Cristianini, N. and Shawe-Taylor, J. (2000) An Introduction to Support Vector
Machines. Cambridge University Press, Cambridge.

Donoho, D., Johnstone, I., Kerkyacharian, G. and Picard, D. (1996) Density
estimation by wavelet thresholding. Ann. Stat., 24, 508-539.

Duda, R., Hart, P. and Stork, D. G. (2000) Pattern Classification. Wiley, New
York.

Fan, J. and Gijbels, 1. (1996) Local Polynomial Modeling and its Applications.
Chapman and Hall, London.

Friedman, J. (1991) Multivariate adaptive regression splines (with discussion).
Ann. Stat., 19, 1-141.

Friedman, J. and Stuetzle, W. (1981) Projection pursuit regression. Jour.
Amer. Stat. Asso., 76, 817-823.

Friedman, J. (1997) On bias, variance, 0-1 loss and the curse of dimensionality.
Data Mining and Knowledge Discovery, 1, 55-77.

Fukunaga, K. (1990) Introduction to Statistical Pattern Recognition. Academic
Press, New York.

Harrison, D. and Rubinfeld, D. L. (1978) Hedonic housing prices and demand
for clean air. Jour. Environ. Econ. Management, 5, 81-102.

Hastie, T., Tibshirani, R. and Buja, A. (1994) Flexible discriminant analysis.
Jour. Amer. Stat. Asso., 89, 1255-1270.

Hastie, T., Tibshirani, R. and Friedman, J. H. (2001) The elements of statis-
tical learning : data mining, inference and prediction. Springer- Verlag, New
York.

Hinton, G. E. (1986) Learning distributed representations of concepts. Proc.
Eighth Annual Conf. of the Cog. Science Soc., Amherst, 1-12.

Hornik, K., Stinchcombe, M., and White, H. (1989) Multi-layer feedforward
networks are universal approximators. Neural Networks,2, 359-366.

Huber, P. J. (1985) Projection pursuit. Ann. Stat., 13, 435-475.

[26]

[33]
[34]

[35]

18

Hwang, J.-N., Lay, S.-R., Maechler, M., Martin, D. and Schimert, J. (1994) Re-
gression modeling in back-propagation and projection pursuit learning. IEEE
Trans. on Neural Net., 5, 342-353.

Karnin, E. D. (1990) A simple procedure for pruning backpropagation trained
neural networks. IEEFE trans. on Neural Net., 1, 239-242.

Kooperberg, C., Bose, S. and Stone, C. J. (1996) Polychotomus regression.
Jour. Amer. Stat. Asso., 92, 117-127.

Laarhoven, P. J. M. and Aarts, E. H. L. (1987) Simulated Annealing : Theory
and Application. D. Reidel Pub. Dordrecht.

Lippmann, R. P. (1987) An introduction to computing with neural nets. IEEE
ASSP Magazine, 4, 4-22.

McLachlan, G. J. (1992) Discriminant Analysis and Statistical Pattern Recog-
nition. Wiley, New York.

Mozer, M. C. and Smolensky, P. (1989) Skeletonization: a technique for trim-
ming the fat from a network via relevance assessment. Adv. Neural Info. Pro-
cessing, 1, 107-115.

Nowlan, S. J. and Hilton, G. E. (1992) Simplifying neural networks by soft
weight sharing. Neural Comp., 4, 473-493.

Peterson, G. E. and Barney, H. L. (1952) Control methods used in a study of
vowels. The Jour. Acoust. Soc. Amer., 24, 175-185.

Reed, R. (1993) Pruning algorithms - a survey. IEEE Trans. on Neural Net.,
4, 740-747.

Ripley, B. D. (1994) Neural networks and related methods for classification
(with discussion.) Jour. Royal Stat. Soc., series B, 56, 409-456.

Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge
University Press, Cambridge.

Roosen, C. B. and Hastie, T. (1994) Automatic smoothing spline projection
pursuit. Jour. Comput. Graph. Stat., 3, 235-248.

Scott, D. W. (1992) Multivariate Density Estimation : Theory, Practice and
Visualization. Wiley, New York.

Seber, G. A. F. and Wild, C. J. (1989) Nonlinear Regression. Wiley, New York.

Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis.
Chapman and Hall, London.

Zhao, Y. and Atkenson, C. G. (1996) Implementing projection pursuit learn-
ing. IEEE Trans. on Neural Net., 7, 362-373.

