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Abstract

The bandwidth that minimizes the mean integrated square
error of a kernel density estimator may not always be good
when the density estimate is used for classification purpose.
On the other hand cross-validation based techniques for
choosing bandwidths may not be computationally feasible
when there are many competing classes. Instead of concen-
trating on a single optimum bandwidth for each population
density estimate, it would be more useful in practice to look
at the results for different scales of smoothing. This paper
presents such a multi-scale approach for classification us-
ing kernel density estimates along with a graphical device
that leads to a more informative discriminant analysis. Use-
fulness of this proposed methodology has been illustrated
using some benchmark data sets.

1. Introduction

Discriminant analysis aims to develop a rule for classify-
ing an observation into one of several competing classes
as accurately as possible. When density functions f;
and prior probabilities 7; of all the .J competing classes
are known, the optimal Bayes rule assigns an observa-
tion x to class j* where j* = argm]axnjfj(x). How-

ever, these density functions are usually unknown in prac-
tice, and they have to be estimated using the training sam-
ple observations. In Kernel discriminant analysis (see
e.g., [3], [4], [10]), these class densities are estimated
by fin; () = n; ' hy 30 K {h; (X5 —X)}, where
Xj1,Xj2, - - ., Xjn, aretraining sample observations from the
4t population ( = 1,2,...,.J), K(-) is a d-dimensional
density function and h; > 0 is the associated smoothing
parameter commonly known as the bandwidth (see e.g.,
[15]). Throughout this article, we will use Gaussian kernel
K(t) = (2r) " *?e=t*/2 for our analysis.

The value of the bandwidth parameter h; plays a cru-
cial role in the performance of the kernel density estimate
and that of the corresponding classifier. Data based band-
width selection techniques (see e.g., [11], [15]) that target

to minimize the mean integrated square error (MISE =
E[[{fin(x)— f;(x)}?* dx]) of the density estimate may lead
to rather poor misclassification rates for the resulting clas-
sifiers (see e.g., [7], [8]). On the other hand, popular cross-
validation methods are not quite effective for bandwidth se-
lection in classification problems due to piecewise constant
nature of estimated misclassification probabilities with in-
finitely many minima (see e.g., [7]). One should also keep
in mind that the choice of bandwidth should depend on the
specific observation to be classified in addition to depend-
ing on the population densities, and apart from determining
the class of an observation, it is also desirable to assess the
strength of the evidence in favor of that population for vary-
ing choices of bandwidth parameters.

Instead of going for the classical need of data based
bandwidth selection, this article considers a family of den-
sity estimates {fjhj : hj € H;} foreach population to carry
out a multi-scale version (see e.g., [2]) of kernel discrimi-
nant analysis. Here, we study the effect of various levels of
smoothing simultaneously to get more useful information
for classification than that obtained in an approach based
on a single optimum bandwidth for each class density esti-
mate. The results of this multi-scale analysis are presented
using two-dimensional plots, which are specific to an obser-
vation to be classified, and there one can visually compare
the strength of the evidence in favor of different competing
classes over wide ranges of bandwidth parameters. Statis-
tical uncertainties at various locations in the plots are also
quantified on the basis of appropriately estimated misclas-
sification probabilities. To arrive at the final decision for
classifying an observation, we take some judicious combi-
nation of all the information obtained at different levels of
smoothing.

In classification problems with many classes, often it
is not computationally feasible to use the usual cross-
validation based methods for bandwidth selection. More-
over, such methods usually allow a single bandwidth for a
population density estimate, which does not vary depend-
ing on its competitors. In this article, we have treated such
multi-class problem as a combination of several two-class



problems. This pairwise approach not only reduces the
computational burden but also provides the flexibility of us-
ing different bandwidths for a class density estimate when
it is compared with the density estimates for different com-
peting classes.

2. Description of the methodology

For classifying an observation x, we need to compute the
density estimates f;,, (x) for all the competing classes. In
practice, before this computation, one can standardize the
data points in a class using an estimate of the class disper-
sion matrix to make the data more spherical in nature and
thereby making the use of a common bandwidth & ; for all
co-ordinate variables more justified. Then, the density esti-
mate for the original data vector can be obtained from that
of the standardized data vector by using the simple trans-
formation formula. For a given pair of competing classes,
say, class-1 and class-2, and a fixed pair of bandwidths A
and ho for the two plass density es}imates, there is an or-
dering between 1 f15, (X) and 7 fop, (X) that determines
the favored class. We now introduce two different measures
for the strength of this evidence in favor of one of the two
classes.

Posterior probability : Given an observation x and a pair
of bandwidths (h1, ho) for the density estimates of the two
classes, the posterior probability in favor of the first popu-
lation is given by

7T1f1h1 (x)
7r1f1h1 (x) + 7T2f2h2 (%) .

Phhhz(l | X) =

P-value : For a given pair of bandwidths (h1,hs),
we classify an observation x to population-1 if
T fin, (X)) > mofon,(X).  Now, consider the proba-
bility P, p,(X) = P{mifin(x) > mfon(x) | X}.
Clearly, high and low values of this probability func-
tion indicate the strength in favor of the first and the
second population respectively. For fixed (hi,hs), the
density estimates for different populations are inde-
pendent, and since they are averages of i.i.d. random
variables, we can reasonably assume normality of their
distributions to evaluate the above probability even for
moderately large training sample sizes. Means and
variances of these normal distributions are estimated by

Jins () = 5ty O Ly K (e = x)} and 83, (x) =
{ni(n; = D} SRy Ay K AR 0036 = X)} = fin, (9}

respectively. Thus, Py, p,(X) is approximated by

W1f1h1(x) —W2f2h2(x)
\/ﬂ'%S%hl (X) + 7353, (X)

Phl,hz (X) ~ o
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Figure 2: Multi-scale analysis of simulated data.

where & is the standard normal distribution function. The
above expression can be viewed as the one-sided P-value
when the training sample is used to test the hypothe-
ses Ho : mE{fin(X)} > mE{fan(X)} against Hy :
T E{fin(X)} < maE{f2n(X)}. We can use a wide range of
values for hy and hsy to compute these posterior probabili-
ties and P-values, and they are plotted using grey scale in
a two-dimensional diagram, where 0 corresponds to black
and 1 corresponds to white color.

To demonstrate our methodology, we consider a sim-
ulated example with a two-class problem where both the
classes [NV2(0,0,1,1,0.5) and N»(2,2,1,1,0.5)] are nor-
mally distributed. Taking 50 observations from each class,
we generated a training sample (see Figure 1) and used it
to carry out a multi-scale analysis for observations A=(0,0),
B=(1,1) and C=(2,2) (marked by ‘o’ in Figure 1). We take
equal priors for the two populations and use a wide range
of bandwidths for each population to evaluate the posterior
probabilities and P-values for different levels of smoothing.

Figure 2 gives the grey scale representation of these dis-
crimination measures for the three cases, where the band-
widths of the first and the second populations are plot-
ted along the horizontal and the vertical axes respectively.
Though we have allowed h; and hs to vary in the range
(0, 6) one may use longer intervals as well. Since most of
the standardized observations are expected to lie within an
interval of 6 units (mean + 3), it is a fairly good choice
for the upper limit of bandwidths. Our empirical experi-
ence suggests that further extension of this interval only in-
creases the computational burden but does not reveal any



new pattern. Here, white color indicates the regions in favor
of the first population whereas black color points towards
the other. Intensity of the color varies with the magnitude
of these discrimination measures, and this helps us to find
out the regions for strong evidence in favor of one of the
two populations. As it is expected, we observe a dominance
of light colored region in the case of observation ‘A’ (which
lies at the center of population-1) and that of the dark re-
gion in the case of observation ‘C’ (which lies at the center
of population-2). However, for observation ‘B’, which lies
near the class boundary, the evidence is not so clear in favor
of any of the two populations. One note-worthy feature of
the plots in the two rows in Figure 2 is that the plots cor-
responding to the P-values at the bottom are much sharper
than those corresponding to posterior probabilities on the
top. The plots in the second row enable an easier visualiza-
tion of the strength of classification, and thereby justify the
use of P-values as measures of discrimination (see [8] for
further theoretical justification).

3. Aggregation of results

The posterior probabilities computed for different choices
of (hi,hs) may be combined through an appropriate
weighted average to arrive at the final decision. Some well
known methods like boosting (see e.g, [6]) adopt such a
procedure for combining the result of various classifiers,
where different weights are assigned to different classifiers
based on their corresponding misclassification probabili-
ties. Clearly, the weight function should be higher for those
pairs (hy, ho) which led to lower misclassification proba-
bility A(hq, h2). For varying choices of bandwidths, fol-
lowing the idea of [7], we have used normal approximation
to the distribution of a kernel density estimate to estimate
A(hy, ha) by a smooth function A(hy, hs), and then con-
sider the weight function given by
e~ Phiny i Dhyhe <7 and

K(hl, h2) < min{m, 7T2}
0 otherwise,

w(hl, hg) =

where Dhl,hz = % for N = ny; + no and
[Bo(1-Ag)/N]

Ao = min A(hy,hs). Ao and Ag(1 — Ag)/N can be

viewed as estimates for the mean and the variance of the
empirical misclassification rate of the best kernel classifier
when it is used to classify IV independent observations. The
constant 7 determines the maximum amount of deviation
from Ay in a standardized scale beyond which the weight-
ing scheme ignores the bandwidth pair (h1, h2) by putting
zero weight on them. It also puts zero weight on those pairs
(h1, ha), which lead to a poorer performance than that of
a trivial classifier (i.e. when ﬁ(hl,hQ) exceeds any of the

two prior probabilities). Clearly, 7 = 0 corresponds to the
situation of putting all the weights only on those bandwidth
pairs (h1, he) for which A(hq, he) = Ag. Because of the
choice of above Gaussian-type weight function, one does
not have to consider a value of  larger than 3 in practice.

In order to classify an observation x, it would be mean-
ingful to incorporate the corresponding P-value Py, ., (X)
in weights. It makes sense to rely more on those band-
width pairs, which lead to stronger evidence for one of
the two classes and adjust the weight function accordingly.
Then these adjusted weights will not only depend on the
estimated overall misclassification probabilities but also on
the particular observation to be classified. In all our nu-
merical work, we have used the adjusted weight function
’U}X(hl, h2) = U)(hl, h2) |Ph1’h2(X) — 05| This choice of
the adjusted weight function is somewhat subjective, and
one may use many other suitable functions as well. How-
ever, our empirical experience suggests that the final result
is not much sensitive to the weighting procedure as long as
any reasonable weight function is used.

Now, consider once again the simulated data for the pur-
pose of illustration. For 7 = 0, weighted average of poste-
rior probabilities for population-1 were found to be 0.521,
0.497 and 0.464 respectively for A, B and C, from which it
is difficult to visualize the difference in the strength of clas-
sification. However, 7 = 3 gives a much better result. In the
case of observations A and C, it led to 0.665 and 0.299 as
the weighted averages, which give a clear indication about
the classes to which they belong. In the case of observation
B, however, this value was found to be 0.484, which is very
close to 0.5 as one would expect since the observation lies
near the class boundary where both the classes have almost
equal strength.

We conclude this section with another simulated exam-
ple on a six-dimensional data set, which shows the utility of
these weight functions in visualization of strength in classi-
fication in addition to its use for aggregating the posteriors.
As before, we consider both the populations to be multi-
variate normal with the same dispersion matrix ¥ = I,
but different location parameters v, = (2,0,...,0) and
uy = (0,0,...,0). We generate a training sample taking
50 observations from each class and choose the priors to be
equal for our analysis.

Next, consider an observation x = (z1,0,0,0,0,0).
Clearly, z;y = 0 and z; = 2 give the center for population-
2 and population-1 respectively while 21 = 1 represents a
point near the class boundary. So, one should expect to have
three different behavior of the classification methodology at
these three points. As before, the weighted method with
7 = 0 fails to reflect the difference in strength of classifi-
cation, where Py, 5, (1 | x) is observed to be 0.471, 0.499
and 0.528 respectively for x; = 0, 1 and 2. Once again,
T = 3 gives a better result (weighted posteriors = 0.383,
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Figure 4: Linearly transformed signed adjusted weight function.

0.493 and 0.609 respectively). In Figure 3, the posterior
probabilities and P-values for these observations are plotted
for various choices of bandwidth parameters along with the
corresponding probabilities of correct classification, where
white color points out the regions having low misclassifi-
cation rates. Adjusted weight functions (re-scaled to have
maximum value 1 and minimum value 0) are also presented
in the last column of the figure to identify the regions of
high reliability (indicated by white color). In the plots both
of posterior probabilities and P-values, the white region ex-
tends as we move on from z; = 0 to z; = 2. However,
the strength of the decisions are not quite clear from these
figures since in all the cases we have almost equal split in
favor of the classes indicated by white and black regions.
However, the difference in the strength of classification
become evident if we look at the adjusted weight function
with the sign same as that of Py, n,(Xx) — 0.5. In Figure
4, we have plotted a linearly transformed version of this
signed weight function which have a maximum value of 1
and a minimum value of 0. This version can be expressed
as W (ha, ha) = 0.5+ Sign{Pr, n, (X) — 0.5} wx (hy, ha),
where wy is the re-scaled version of the adjusted weight
function plotted in the last column of Figure 3. W (h1, h2)
can also be viewed as a super-imposition of the plots
of P-values over that of the weight functions w(hy, ha).
It is quite clear from the definition that when the pairs
(h1, hs) have low weights, W (hy, ha) is expected to be
very close to 0.5, which is indicated by the grey regions
in the plots. However, in more reliable regions (pairs hav-
ing high weights), we get stronger evidence as Py, ,(X)
moves away (in either direction) from 0.5. When z; = 0 (or
1 = 2), we observe a black (or white) shade in this region,

which gives a clear idea about the direction and the strength
of the decision. Evidence for classification is very strong in
these cases. For x; = 1, we observe some white as well
as some black shades of almost equal intensity. Clearly, the
evidence is poor in this case, and the figure gives a clear
indication about a border line case.

In the plots of posterior probabilities and P-values, one
may notice a white or a black streak near each of the two
axes. This is because for the given sample sizes use of
very small bandwidth makes one density estimate very close
to zero and therefore the competing class density estimate
turns out to be the winner. However, these streaks appear
in a region of the plot where misclassification rates are high
(see third column of Figure 3). Consequently, the weight
function becomes almost zero in those regions, and the ag-
gregation procedure does not get affected.

4. Casestudies

We now consider some benchmark data sets that illustrate
the utility of the proposed method. Results of the kernel
discriminant analysis based on hy (the bandwidths that min-
imize M ISE) and those based on the weighted averaging
of posteriors are presented to compare their performance.
In multi-class problems, we adopt the pairwise classifica-
tion method and proceed in the same way as before. The
results of all these pairwise classification are combined by
the method of majority voting (see e.g., [5]) as well as by the
method of pairwise coupling (see e.g., [9]). Voting method
in some cases may end up with a tied situation, which is
considered as misclassification here. Hence, the reported
results on voting are the error rates in the worst possible
cases. Misclassification rates for usual linear and quadratic
discriminant analysis (LDA and QDA) are reported for each
data set. Error rates for some well known nonparametric
methods like classification trees (CART, see [1]), nearest
neighbors (see e.g., [4]), and neural nets (see e.g., [13]) are
also given to facilitate the comparison. Throughout these
experiments, sample proportions for different classes are
used as their priors.

Chemical and overt diabetes data : This data set con-
tains information on five measurement variables (fasting
plasma glucose level, steady state plasma glucose level, glu-
cose area, insulin area and relative weight) and three classes
of individuals (“overt diabetic”, “chemical diabetic” and
“normal”) reported in [12]. There are 145 individuals with
33, 36 and 76 in the three classes according to clinical clas-
sification. For this data set, leave one out cross-validated
error rates for different classifiers are given in Table 1. Due
to computational difficulties, these error rates could not
be computed for CART and neural network. Clearly, the
weighted averaging methods outperformed the other classi-
fiers when majority voting is used to reach the final result.



Image segmentation data : This data set contains 19
different measurements on each image of one of seven dif-
ferent objects. There are 210 observations in the training
and 2100 observations in the test set which are equally dis-
tributed in those 7 classes. The data set and the descrip-
tion of the variables are available at UCI repository. The
value of the variable ‘region pixel count’ is ‘9’ for all ob-
servations. For the two variables, ‘short line density-5’ and
‘short line density-2’, almost 95% of the values are zero.
We did not consider these variables in our study. There are
some variables in the data set which are linear or nonlin-
ear functions of R (‘raw red mean’), B (‘raw blue mean’)
and G (‘raw green mean’). We have deleted those vari-
ables too and carried out our analysis using the remaining 9
variables. Among different classifiers, weighted averaging
methods and LDA had better misclassification rates.

Vowel recognition data : This data set is related to
a vowel recognition problem where ten measurements on
speech signal are taken on each observation corresponds
to one of the 11 vowels (see [14] for detail description of
this data set). There are 528 observations in the training set
while the test set consisting of 468 cases. This is a difficult
data set and a part of this difficulty arises due to the presence
of a fairly large number of competing classes. In this data
set, many well-known classifiers misclassified more than
50% of the test set observations. The best error rate was
observed for nearest neighbor method. Error rates for the
multi-scale methods were quite competitive as compared to
the other nonparametric classifiers.

Classification Diabetes | Image | Vowel

Methods. Data Data Data
LDA 11.0 11.4 55.6
QDA 9.7 14.6 52.8
CART — 12.6 56.4
Neural Net — 12.1 50.9
Nearest Neighbor 9.0 18.2 43.7

Kernel (with hg) 12.4 15.7 62.1
Kernel (Wt. avg.)

\oting (7 = 0) 6.2 10.5 50.6
Coupling (7 = 0) 15.2 11.7 47.2
\oting (7 = 3) 6.2 11.0 51.9
Coupling (7 = 3) 8.3 10.6 48.9

Tablel : Misclassification rates (in %) for different classifiers.

5. Conclusions

In usual kernel discriminant analysis, one looks at the es-
timated posteriors both for classifying an observation and
assessing the strength of the decision. But the multi-scale
approach proposed here is a more informative classifica-
tion procedure. Using the information obtained from var-
ious levels of smoothing, it gives a clear idea about the
strength of classification and the related statistical uncer-
tainties present there. Unlike the usual kernel method based

on single bandwidth, this multi-scale method uses a data de-
pendent adjusted weight function to arrive at the final result.
This case specific emphasis on various bandwidths provides
more flexibility to the classification methodology.

The pairwise classification method seems to be a useful
technique for multi-class problems, when it is computation-
ally difficult to find out the optimal bandwidths by mini-
mizing A(hq, ha, ..., hy). It not only reduces the compu-
tational burden significantly, but also provides the flexibility
of using different bandwidths for a class when we compare
it to different competing classes. The plots of the discrimi-
nation measures and that of the weight functions enable an
easier visualization of the strength of classification.
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