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Abstract

A very well-known traditional approach in discriminant analysis is to use some linear (or nonlinear)
combination of measurement variables which can enhance the class separability. For instance, a linear
(or a quadratic) classifier finds out the linear projection (or the quadratic function) of the measurement
variables that will maximize the separation between the classes. These techniques are very useful in
obtaining good lower dimensional view of class separability. Fisher’s (Fisher, 1936) discriminant
analysis, which is primarily motivated by multivariate normal distribution, uses the first and the
second order moments of the training sample to build such classifiers. These estimates, however,
are highly sensitive to outliers, and they are not reliable for heavy tailed distributions. This article
investigates two distribution free methods for linear classification, which are based on the notions of
statistical depth functions. One of these classifiers is closely related to Tukey’s half-space depth (Tukey,
1975) while the other one is based on the concept of regression depth (Rousseeuw and Hubert, 1999).
Both these methods can be generalized for constructing nonlinear surfaces to discriminate among
competing classes. These depth based methods assume some finite dimensional parametric form of
the discriminating surface and use the distributional geometry of the data cloud for building the
classifier. We use a few simulated and real data sets to examine the performance of these discriminant

analysis tools and study their asymptotic properties under appropriate regularity conditions.

Keywords : Bayes risk, elliptic symmetry, generalized U-statistic, half-space depth, linear dis-
criminant analysis, location shift models, misclassification rates, optimal Bayes classifier, quadratic

discriminant analysis, regression depth, robustness, Vapnik-Chervonenkis dimension.



1 Introduction

Discriminant analysis aims at finding out an appropriate function f(x) of the measurement vector x =
(z1,29,...,24) that contains the maximum information about class separability. In a two-class problem,
this function f can be used to construct the separating surface S = {x : f(x) = 0} between the two
classes. For instance, in linear discriminant analysis, one tries to determine a separating hyperplane
S={x: ax+p = 0} based on the training sample observations. Several methods for choosing the
projection vector @ and the constant § from the training sample are available in the literature (see
e.g., Fukunaga, 1990; McLachlan, 1992; Duda, Hart and Stork, 2000; Hastie, Tibshirani and Friedman,
2001). Similarly, in quadratic discriminant analysis, one uses a quadratic separating surface S = {x :
o'x+xIx+ B =0}, where I is a symmetric matrix to be chosen from the training sample in addition
to a and (. Fisher’s original approach in linear and quadratic discriminant analysis (see Fisher, 1936)
was primarily motivated by multivariate normal distribution of the measurement vector x, and there
estimates for a , 8 and I" were constructed using the mean vectors and the dispersion matrices of the
training samples. Under the assumption of multivariate normal distribution for the data, such linear or
quadratic classifiers turn out to be the optimal Bayes classifiers. However, since such methods require
the estimation of a, f and T' using the first and the second order moments of the training samples,
these procedures are not very robust and happen to be highly sensitive to extreme values and outliers
if they are present in the training sample. When the assumption of normal distribution for the data is
violated, these methods may lead to a rather poor classification especially if the observations follow some

distribution having heavy tails.

In this paper, we will study some linear and nonlinear classification methods that are based on the
notions of half-space depth (Tukey, 1975) and regression depth (Rousseeuw and Hubert, 1999). Over the
last decade, various notions of data depth have emerged as powerful exploratory and inferential tools
for nonparametric multivariate analysis (see e.g., Liu, 1990; Liu, Parelius and Singh, 1999; Vardi and
Zhang, 2000; Zuo and Serfling, 2000a; Serfling, 2002; Mosler, 2002). Recently, Christmann, Fischer

and Joachims (2002) used regression depth for constructing linear classifiers in two-class problems and



investigated their statistical performance. They also made some comparative studies of such linear
classifiers with the classifiers built using support vector machines (see e.g., Vapnik, 1998; Hastie et.
al., 2001). Since the discriminant analysis tools investigated in this article are based on half-space and
regression depth functions, they are completely distribution free in nature. These classifiers use the
distributional geometry of the multivariate data cloud formed by the training sample to minimize the
empirical misclassification rates, and they are not dependent on any specific model for the underlying

population distributions.

2 Description of the methodology

Half-space depth of a point in the multi-dimensional space measures the centrality of that point with
respect to a multivariate distribution or a given multivariate data cloud. Regression depth, on the other
hand, is a concept of depth of a regression fit (i.e., a line or a hyperplane). Hyperplanes are the simplest
forms of separating surfaces, which lead to linear discrimination among the classes. We now describe
how these two different depth based linear classification tools are built using a given training sample
with two classes. Subsequently, we will generalize these techniques to nonlinear classification as well as

to multi-class discrimination problems.

2.1 Linear classification using half-space depth

Half-space depth (see e.g., Tukey, 1975; Donoho and Gasko, 1992) of a d-dimensional observation x with
respect to a multivariate distribution F' is defined as the minimum probability of a closed half-space
containing x.

HD(x,F) = i%f Pp{H : H is a closed half-space and x € H}

Sample version of this depth function is obtained by replacing F' with the empirical distribution function
F,,. Half-space depth is affine invariant, and its sample version uniformly converges to the population

depth function when F' is continuous. Different properties of this depth function have been studied



extensively in the literature (see e.g, Nolan, 1992; Donoho and Gasko, 1992; He and Wang, 1997; Zuo

and Serfling, 2000b).

Suppose that we have a two-class problem with univariate data. If the classes are well-separated,
we would expect that most of the observed differences x1; — x2; (x1; and x; belong to two different
classes for 1 < i < njy, 1 < j < ng) will have the same sign (positive or negative). This idea can be
easily extended to multivariate situations, where if the two classes can be well discriminated by a linear
discriminant function, we would expect to have a linear projection a'x for which most of the differences
o'x1; — a/ij will have the same sign. We propose to estimate a by maximizing

1

ZZI{a’(xli — Xg;) > 0},

i=1j=1

Un{a) = ning

where n = (n1,n9) is the vector of sample sizes for the two classes. Clearly, the maximization problem
can be restricted on the set {a : ||a|| = 1}. It can also be shown that this is actually a maximization
problem over a finite set (see e.g., Chaudhuri and Sengupta, 1993), and the estimated linear projection
is orthogonal to the hyperplane, which defines the half-space depth of the origin with respect to the data
cloud formed by the differences x1; — x2; in the d-dimensional space. This generalized U-statistic Un ()
is a measure of linear separability between the two classes along the direction a;, and its maximum value
over different possible choices of a can be viewed as a multivariate analog of the well known univariate
Mann-Whitney U-statistic (or Wilcoxon’s two sample rank statistic). The maximizer of Un(a), denoted
by a, can be used to construct a linear classifier of the form a/Hx + B = 0 for some suitably chosen
constant 5. The classification rule, and consequently the corresponding misclassification probabilities

depend on the choice of this constant. After getting the estimate &y, Sy can be obtained by minimizing

w.r.t. [ the average training set misclassification error Ap(@y, ) given by the expression
™1 L ’ Uy’ 2 ’
An(an,p) = - > Hayxy+ B <0+ - > H{ayxa + B> 0},
i=1 i=1

where m; and 7o are the prior probabilities for the two classes.



2.2 Linear classification using regression depth

Regression depth (see e.g., Rousseeuw and Hubert, 1999; Bai and He, 1999) gives the depth of a ‘fit’
determined by a vector a; = (a,3) € Rt of co-efficients in a linear regression framework. Given a
data cloud ¢, = [{x; = (i1, %2, ..., Tia),¥i}; © = 1,2,...,n], ey is called a ‘nonfit’ to ¢, if and only
if there exists an affine hyperplane V in the x-space such that no x; belongs to V, and the residuals
rilay) =y — a;_(xi, 1) are all positive in one open half-space (i.e., one side of V') in the x-space and all
negative in the complementary open half-space (i.e., the other side of V). Regression depth of a ‘fit’ a4

is defined as the minimum number of observations that need to be removed to make it a ‘nonfit’.

Recently, Christmann and Rousseeuw (2001) and Christmann et. al. (2002) used this notion of
regression depth in a binary regression context to construct linear classifiers for two-class problems.
If we take the class-labels (‘0’ or ‘1’) as the values of the response variable y, and consider a ‘fit’
a; =(0,0,...,0,0.5), ay will be a nonfit to (, if and only if there exists a hyperplane V in the x-space,
which completely separates the data points from the two classes. Hence, the regression depth of the ‘fit’
o can be viewed as the minimum number of misclassifications that can be achieved by a separating

hyperplane V' in the x-space.

Since Christmann et. al. (2002) considered only the problem of determining the separating hyperplane
by minimizing the total count of misclassified observations, their linear classifier is empirically optimal
when the two competing classes have prior probabilities proportional to their training sample sizes. In the
general case, one can properly adjust the weights for the different observations and define the weighted
regression depth of a ‘fit’ @y as the minimum amount of weights that need to be removed to make it
a ‘nonfit’. Then the weighted regression depth eventually turns out to be the average training sample

misclassification probability

v Al ] T n2 1]
An(a, ) = n—iZI{a x1i + f8 <0}+n—221{a x2i + > 0} .
=1 =1

Here, the minimization of Ap (e, ) w.r.t. a and j gives the estimates ar and Br defining the separating

hyperplane to be used for classification. Once again, it is clear that the minimization problem can be



restricted to {(a, ) : |[(e, B)|| = 1}. It is also straight forward to verify that the minimization of
An(a, ) actually turns out to be an optimization problem over a finite set (see e.g. Rousseeuw and

Struyf, 1998).

Christmann et. al. (2002) discussed the fact that the maximum likelihood estimate in a logistic
regression problem exists only when there is some overlap in the covariate space (the x-space) between
the data points from the two classes corresponding to the values 0 and 1 of the response variable (see
e.g., Albert and Anderson, 1984; Santner and Duffy, 1986). In completely separable cases, there exists
no finite maximum likelihood estimate for regression coefficient vector a,. If the observations from the
two classes are completely separable, it is fairly easy to see that (ag, BR) is a minimizer of Ap(a, ) if

and only if ap maximizes Up(a), and hence this ag is also an aj.

2.3 Depth based classification using nonlinear surfaces

In practice, linear classifiers may be inadequate when the class boundaries are more complex in nature.
In such situations, one has to depend on nonlinear separating surfaces for discriminating among the
classes. To construct such surfaces, we can project the observations x; = (x;1, Zj2,. .., Tiq) into a higher
dimensional space to have the new vector of measurement variables z; = (f1(x;), fo(x;), ..., fm(x)), and
perform a linear classification on that m-dimensional space. For instance, if we project the observations to
the space of quadratic functions, it can be viewed as a linear classification with m = d+ (‘21) measurement
variables, which eventually give rise to a quadratic separation in the original d-dimensional space. The
quantities Un(a) and Ap(e, ) can be optimized as before to get appropriate estimates of & (a € R™)

and B, which are to be used to form the discriminating surfaces in a two-class problem.

As we have already mentioned, traditional methods of linear and quadratic discriminant analysis
are primarily motivated by multivariate normal distributions. As a matter of fact, in a two-population
problem, the moment based linear discriminant function is closely related to the Hotelling’s 72 or Ma-
halanobis’ distance, which are well known to be sensitive to possible ouliers present in the data. On

the other hand, the distribution free depth based classifiers discussed above are quite robust against



such outliers, and we will now illustrate this using a small example. We consider a binary classification
problem where both the population distributions are bivariate normal with mean vectors p; = (0,0)
and py = (2,2), and they have a common dispersion matrix 3 = Is. A random sample of size 50 is
generated from each of the classes to form the training sample. As the optimal Bayes rule is linear for
this problem, a good linear classifier is expected to give a good separation of the data from the two
populations. Here the traditional (shown as LDA) and the two depth based linear classifiers (shown as
H-depth and R-depth) performed quite well in discriminating between the two populations (see Figure
2.1(a)). But the scenario gets completely changed when five of the class-1 observations get replaced by
outliers generated from N5(10,10,1,1,0). In the presence of this contamination, the performance of the
traditional moment based linear discriminant function falls drastically (see Figure 2.1(b)) but the two
depth based distribution free classifiers remain more or less unaffected. For such a bivariate example, the
outliers are clearly visible in the scatter-plot, but for multivariate data in higher dimensions that may
not be the case. So, it is important to have classifiers that have some automatic safeguards against such

outliers which may or may not be easily identified using any avaialable diagnostic tool.

(a) Linear classification on normal distribution (b) Linear classification on perturbed normal distribution
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Figure 2.1 : Different linear classifiers for normal and perturbed normal distributions



3 Large sample properties of depth based classifiers

We will now discuss the asymptotic behavior of the classifiers based on half-space and regression depths
as the size of training sample grows to infinity. As before, suppose that we have a two class problem,
and Xi1,X12,...,X1p, and Xg1,X22,...,Xo,, are two independent sets of d-dimensional i.i.d. observa-
tions from two d-dimensional competing populations. Let z11,212,...,21,, and z21, 299, ..., Z2,, be their
transformations into the m-dimensional space as described in Section 2.3 above, and &y is a maximizer

of Un(e) while ag, fr are minimizers of An (e, ) as before.

Theorem 3.1 : Assume that as N = ny +ng — oo, ni/N = X (0 < XA < 1). Define, U(a) =
Pr{a/(z1; — 2z2;) > 0}, and A(a, ) = mPr{a’z1;+ < 0} + maPr{czs; + 8 > 0}. Then, as N — oo,

we have
(1) [Un(am) — max U(a)] 250 as well as |U(am) — max U(a)| 250, and

(i4) [An(@r: fr) = min Ale, )] =5 0 as well as |A(an. fr) — min Ae )] 5 0.

) )

Further, when there exist unique optimizers oj; and (o, By,) for U(a) and A(a, B) respectively, and
U and A are continuous functions of their arguments, ag converges to oy and (aR,BR) converges to

(o, BR) almost surely as N — oc.

Here, U(a) is a measure of linear/non-linear separability between two competing multivariate dis-
tributions along the direction o, and max U(a) measures the maximum linear/non-linear separability
between two multivariate populations. Note also that A(e, ) is the average misclassification proba-
bility when the surface 'z + 8 = 0 is used to discriminate between the two competing populations,
and min A(e, f3) is the best average misclassification probability achievable using such linear/non-linear
classifiers. It will be appropriate to point out here that A(apg, BR) can be viewed as the conditional
average misclassification probability given the training sample, when the surface ale + B r = 0 is used to
classify a future observation coming from one of the two competing populations. A proof of this theorem

will be given in the Appendix. We state below some interesting and useful results for depth based linear

and nonlinear classifiers that follow from this theorem.



Corollary 3.1 : The average misclassification probability of the regression depth based linear (or
nonlinear) classifier asymptotically converges to the best possible average misclassification rate that can
be obtained using a linear (or nonlinear) classifier as the training sample size tends to infinity. Further,
when the best linear (or nonlinear) classifier is unique, the regression depth based linear (or nonlinear)

classifier itself converges to that optimal discriminating hyperplane (or nonlinear surface) almost surely.

Corollary 3.2 : Suppose that the population densities fi and fo of the two competing classes are
elliptically symmetric with a common scatter matriz X2. Also assume that fi(x) = g(x—p;) (i =1,2) for
some location parameters pu, and py and a common elliptically symmetric density function g satisfying
g(kx) > g(x) for every x and 0 < k < 1. Then, under the conditions assumed in Theorem 3.1, the
average misclassification probability for the regression depth based linear classifier converges to the optimal
Bayes error as the training sample size tends to infinity provided that the prior probabilities of the two
classes are equal. Further, in the equal prior case, if the Bayes classifier is unique and U(a) has a
unique maximizer, the same holds for the half-space depth based classifier, and in this case both of these
two depth based classifiers themselves converge almost surely to that Bayes classifier. When the prior
probabilities are unequal, the above convergence results for depth based linear classifiers remain true for

normally distributed populations with a common dispersion matriz but different mean vectors.

Corollary 3.3 : Suppose that the population distributions fi and fo both belong to the class of
elliptically symmetric multivariate normal or Pearson type-VII distributions, and they are of the same
form except possibly for their location and scatter parameters. Then, the average misclassification rate of
the quadratic classifier constructed using regression depth converges to the optimal Bayes error, and the
quadratic classifier itself converges almost surely to the optimal Bayes classifier as the training sample

size grows to infinity.

Recall that the probability density function of a d-dimensional elliptically symmetric Pearson type-VII

distribution is given by
f(x) = (o) PT(0)/T(0 - d/2) [B]7* 1+ v (x— ) T (x - p)}

where p and X are the location and the scatter parameters, v > 0 and 0 > d/2 (see e.g., Fang, Kotz



and Ng, 1989). When 6 = (v + d)/2 and v is an integer, the corresponding distribution is known as the
multivariate ¢-distribution with v df. In the special case v = 1, we get the multivariate Cauchy distribu-
tion. Because of the heavy tails of such multivariate distributions, the traditional linear and quadratic
classifiers would not perform satisfactorily in discriminating among such distributions. However, the
above theorem and the corollaries imply that the depth based linear and quadratic classifiers can achieve
good misclassification rates for distributions with exponential tails like multivariate normal as well as for

multivariate Cauchy and other distributions having heavy polynomial tails.

We conclude this section by pointing out an important fact related to the asymptotic convergence
results stated in this section. All of these results have been stated for the case when the dimension m of
the space of projection does not vary with the sample size N. On the other hand, in some non-parametric
discriminant analysis methods e.g., those based on support vector machines (see e.g., Vapnik, 1998) or
neural nets (see e.g., Ripley, 1996), the dimension of the space of projection usually grows with the sample
size. For the depth based method also one may allow this kind of flexibility with respect to the choice of
the discriminating surface. It will be clear from the proofs given in the Appendix that if m grows with

me—cN

N in such a way that for all positive values of ¢, we have Z N2 < oo, the convergence results

N>1
in (i) and (ii) in Theorem 3.1 hold good. For instance, if m grows at the rate of N” for any 0 < p < 1,

these convergence results remain valid.

4 Data analytic implementation

As we have already observed in Section 2, maximization of Up(a) w.r.t. a requires the computation of
the half-space depth of the origin with respect to the data cloud formed by the m-dimensional vectors
of differences z1; — zo; (1 = 1,2,...,n1; j =1,2,...,n2). It is a finite maximization problem (see e.g.,
Chaudhuri and Sengupta, 1993), however, maximization by complete enumeration would lead to com-
")

putational complexity of the order O(n where n, = maz{ni,ny}. An algorithm due to Rousseeuw

(m—1)

and Ruts (1996) can reduce the computational complexity to order O(nz log no). Similarly, max-

imization of Ap(a, ) w.r.t. a and § has computational complexity O(n.™log n.). Rousseeuw and

10



Struyf (1998) provided some algorithms for computing location depth and regression depth. Some other
optimization algorithms for regression depth are also available in Rousseeuw and Hubert (1999) and in

Christmann et. al., (2002).

4.1 Optimization of Un(a) and Ap(a, f)

Recall from Sections 2.1 and 2.2 that the maximization of Un(a) can be restricted to the a’s with
|le|| = 1 and the minimization of A(a, ) can be restricted to (o, 8)’s with ||(e, 8)|| = 1. However, since
the order of the computational complexity increases rapidly with the dimension m, exact optimization
of Un(a) and An (e, ) is not feasible for high dimensional problems, and there one can only resort to
some approximate optimization. In this article, we have used a procedure, where the indicator functions
appearing in the expressions for Un and Ap get approximated by suitably chosen smooth functions.
This approximation allows us to use the derivatives to find out the direction of steepest ascent/descent
of the objective function to be optimized. A very simple approximation for the indicator function
I(z > 0) is the logistic function 1/(1 + e~**) with large positive t. Clearly, a value of ¢, which is not
large enough, will make the approximation very inaccurate. On the other hand, a very large value of
t will make the approximation quite accurate but will make the numerical optimization using steepest
ascent /descent numerically rather unstable. We have observed that a greater degree of numerical stability
in the optimization algorithm can be achieved even for fairly large values of ¢ if all measurement variables
are standardized before the approximations are done. In all our numerical studies reported in the next
two sections, we have found that if we use 5 < ¢ < 10 after standardizing the measurement variables,
the average misclassification errors for the resulting procedures remain more or less same, and they are
fairly low. Consequently, we have reported the best values obtained in that range. For linear discriminant
analysis in the bivariate case, where exact computation of Up(e) and Ap (e, 8) is easy, we have compared
the performance of the exact and the approximate versions of these depth based classification methods
and found them to achieve nearly similar average misclassification rates. In order to cope up with the

problem of possible presence of several local minima, we have always run our approximate versions of
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the optimization algorithms a few times starting from different random initial points.

In the case of classifiers based on half-space depth, after estimating o, we need to estimate S from
the training sample. This is done by enumerating the order statistics of the projected data points a’th-
and a’Hsz (1 <14 < my,1 <35 < ny) along the estimated direction ayy. Fortunately, since we use

linear projections, the computational complexity in obtaining the estimate B  does not increase with the

dimension m.

4.2 Generalization of the procedure for multi-class problems

In a k-class (k > 2) problem, to arrive at the final decision, one can use the method of majority voting
(see e.g., Friedman, 1996), where binary classification is performed for each of the (’2“) pairs of classes,
and then an observation is assigned to the population which has the maximum number of votes. However,
this voting method may lead to some regions of uncertainty where more than one population can have the
maximum number of votes. For instance, in a three class problem we may have a circular situation where
each of the classes can have exactly one vote. When such situations occur, we can use the method of
pairwise coupling as given in Hastie and Tibshirani (1998). Pairwise coupling is a method for combining
the posterior weights of different populations obtained in different pairwise classifications. Recall that in
our case, for any pairwise classification, an observation x is classified depending on the sign of o'z +f.
So, if g is some monotonically increasing function on the real line satisfying 0 < g(z) <1, g(0) = 0.5 and
g(—z) = 1 — g(z) for every z € R, we can use g(a'z + ) as a measure of the strength in favor of the
class determined by the inequality o'z + p > 0. This can be taken as some kind of an estimate for the
posterior weight in favor of that class in our pairwise comparison. Similarly, 1 — g(a'z + ) can be used
as an estimate for the posterior weight for the class determined by the inequality 'z + 8 < 0. After
one gets these posterior weights from pairwise comparisons, coupling can be conveniently used to get the
combined weights for each of the k& populations, and the observation can be classified to the population
having highest combined posterior weight. However, we have applied pairwise coupling only for those

rare observations, which did not get classified uniquely by the method of majority voting. In all our
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numerical studies reported in the following two sections, for coupling we have taken g to be the simple
logistic function i.e., g(x) = 1/(1 4+ e~%). This choice is subjective and possibly many other choices will
lead to similar results. Note that the logistic function used in approximate computation of depth as

described in Section 4.1 has nothing to do with the choice of g(z) here.

5 Results on simulated examples

In this section, we report our findings on some simulation studies that illustrate the performance of depth
based classifiers as compared with traditional linear and quadratic classifiers. In all our simulated exam-
ples, we have restricted ourselves to two-class problems only, where the priors for both the populations

are taken to be equal.

We first consider spherically symmetric multivariate normal and Cauchy distributions (with ¥ = I),
which differ only in their location parameters. To make our examples simpler, we choose the location
parameters p; = (0,0,...,0) and py = (g, p,...,p), where p is taken to be only 1 and 2 in our
experiments. For each of these examples, we generated 100 sets of training samples taking equal number of
observations (either 50 or 100) from both the classes, and we used 2000 observations to form each test set.
Average test set misclassification probabilities and their standard errors over these 100 simulation runs
are reported in Tables 5.1A and 5.1B. Optimal Bayes errors are also given to facilitate the comparison.
For two-dimensional problems, we present the results for the depth based classifiers based on the exact
and the approximate computation of the linear classifiers, and they don’t seem to have significantly
different performance. This is very encouraging as the approximate algorithms run very fast even for
fairly high dimensional problems. From now on we will write H-depth to denote the half-space depth

and R-depth to denote the regression depth in all the tables and subsequent discussion.

As the optimal Bayes rules are linear in the case of above mentioned spherically symmetric popula-
tions, good linear classifiers are expected to have error rates very close to the optimal Bayes risk. When
the underlying distributions are multivariate normal, the traditional linear discriminant analysis (hence-

forth called LDA) performed very well as one would expect. However, the depth based methods also had
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a descent and comparable performance. But, in the case of multivariate Cauchy distribution, the depth
based classifiers clearly outperformed LDA, and their performance was far closer to the optimal Bayes

classifier than that of LDA.

Further, the performance of LDA was observed to fall drastically, when we added a small pertur-
bation to the normally distributed data. We tried examples, where data in class-2 were taken to be
normally distributed as before, and 10% of the observations in class-1 were replaced by observations
having N (10p4,I) distributions. LDA in this case performed very poorly compared to both of the depth
based classification techniques. Notice that the optimal Bayes rule is not linear in this case. Hence, none

of the linear classifiers could achieve the accuracy of the optimal Bayes classifier.

Bayes H-depth R-depth

risk n LDA Exact Approx. Exact Approx.

p=1 12398 | 50 | 24.40 (0.10) | 25.21 (0.14) | 25.19 (0.15) | 25.44 (0.15) | 25.42 (0.13)

Normal 100 | 24.21 (0.10) | 24.80 (0.10) | 24.72 (0.13) | 25.11 (0.12) | 24.88 (0.13)

p=2| 787 | 50 | 823(0.07) | 8.96(0.11) | 891 (0.11) | 9.15(0.15) | 8.99 (0.11)

100 | 8.11(0.07) | 8.56 (0.11) | 8.48 (0.11) | 8.62 (0.09) | 8.57 (0.09)

p=1| 3040 | 50 | 43.81 (0.95) | 32.45 (0.26) | 32.51 (0.24) | 32.45 (0.25) | 32.50 (0.27)

Cauchy 100 | 41.95 (0.98) | 31.78 (0.15) | 31.80 (0.15) | 31.77 (0.15) | 31.59 (0.14)

p=2| 1958 | 50 | 32.02 (1.34) | 21.11 (0.19) | 21.22 (0.19) | 21.01 (0.16) | 20.92 (0.15)

100 | 33.19 (1.31) | 20.83 (0.15) | 20.77 (0.14) | 20.60 (0.13) | 20.43 (0.11)

p=1 | 2271 | 50 | 50.75 (0.53) | 29.15 (0.15) | 28.96 (0.15) | 29.21 (0.16) | 29.20 (0.16)

Perturbed 100 | 50.28 (0.53) | 28.55 (0.12) | 28.65 (0.13) | 28.66 (0.13) | 28.70 (0.12)
Normal | p=2 | 7.46 | 50 | 49.69 (0.25) | 13.39 (0.10) | 13.33 (0.11) | 13.52 (0.11) | 13.29 (0.09)
100 | 50.41 (0.36) | 12.98 (0.09) | 12.97 (0.09) | 13.02 (0.09) | 12.87 (0.08)

Table 5.1A : Results on linear discrimination : average misclassification

rates (in percentages) with standard errors (dimension 2).
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d=3 d=4
p=1 p=2 p=1 w=2
Bayes risk 19.32 4.16 15.87 2.28
LDA | 20.65 (0.16) | 4.76 (0.07) | 17.32 (0.15) | 2.72 (0.06)
Normal | n=50 | H-depth | 21.00 (0.15) | 5.09 (0.10) | 17.57 (0.15) | 3.59 (0.10)
R-depth | 21.22 (0.16) | 5.18 (0.10) | 18.04 (0.18) | 3.31 (0.08)
LDA | 19.64 (0.09) | 4.28 (0.05) | 16.33 (0.09) | 2.42 (0.03)
n=100 | H-depth | 20.05 (0.12) | 4.75 (0.07) | 16.78 (0.12) | 3.06 (0.07)
R-depth | 20.37 (0.12) | 4.73 (0.07) | 17.14 (0.13) | 2.90 (0.06)
Bayes risk 27.29 16.67 24.98 14.73
LDA | 40.15 (0.87) | 26.96 (1.14) | 37.36 (0.81) | 23.85 (0.79)
Cauchy | n=50 | H-depth | 30.03 (0.26) | 18.79 (0.19) | 28.50 (0.25) | 17.43 (0.19)
R-depth | 29.68 (0.23) | 18.38 (0.19) | 27.59 (0.23) | 16.87 (0.18)
LDA | 39.21 (0.90) | 27.67 (0.98) | 37.21 (0.87) | 26.98 (1.19)
n=100 | H-depth | 29.22 (0.18) | 18.03 (0.14) | 27.35 (0.22) | 16.65 (0.13)
R-depth | 28.87 (0.15) | 17.61 (0.12) | 26.93 (0.16) | 16.25 (0.11)
Bayes risk 18.32 3.95 15.04 2.15
LDA | 50.28 (0.23) | 50.14 (0.15) | 49.99 (0.15) | 50.00 (0.12)
Perturbed | n=50 | H-depth | 24.60 (0.13) | 10.08 (0.11) | 21.87 (0.15) | 8.52 (0.12)
Normal R-depth | 24.89 (0.17) | 9.99 (0.09) | 22.28 (0.17) | 8.46 (0.11)
LDA | 49.71 (0.27) | 50.04 (0.15) | 49.98 (0.13) | 49.96 (0.11)
n=100 | H-depth | 24.23 (0.11) | 9.65 (0.08) | 21.02 (0.11) | 8.00 (0.06)
R-depth | 24.52 (0.12) | 9.48 (0.06) | 21.26 (0.12) | 7.85 (0.07)

Table 5.1B : Results on linear discrimination : average misclassification

rates (in percentages) with standard errors (dimensions 3 and 4).

Results obtained in the case of quadratic discrimination are reported in Table 5.2, and here too we
found similar behavior of the competing classifiers as in the case of linear discriminant analysis. We used
the same mean vectors as before but took two different scatter matrices for the two competing popu-
lations (with distributions normal or Cauchy), namely ¥; = I and ¥ = 41. The traditional quadratic
discriminant analysis (henceforth called QDA) performed well in discriminating multivariate normal pop-
ulations but its performance turned out to be very poor in the case of multivariate Cauchy populations
as well as multivariate perturbed normal populations. The two depth based quadratic classifiers, on

the other hand, showed descent performance in the case of normally distributed data, and had average
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misclassification rates much closer to the optimal Bayes risks than the error rates of QDA in the case of

multivariate Cauchy and perturbed normal distributions.

In all these simulated examples, the performance of the two depth based classifiers were fairly similar

except for quadratic classification in the case of perturbed normal distribution, where the H-depth based

classifier had a small edge over the R-depth based classifier for all sample sizes and all dimensions.

d=2 d=3 d=4

p=1 n=2 p=1 n=2 p=1 n=2

Bayes risk 22.03 13.31 16.62 8.34 12.89 5.37
QDA 23.07 (0.10) 13.75(0.09) 17.97 (0.10) 9.13 (0.07) 14.80 (0.13) 6.41 (0.08)
Normal n=50 H-depth | 25.08 (0.21) | 14.99 (0.28) | 20.40 (0.22) | 11.18 (0.19) | 17.13 (0.25) 8.65 (0.20)
R-depth | 25.09 (0.20) | 15.35 (0.18) | 20.31 (0.20) | 10.99 (0.18) | 16.99 (0.21) 8.30 (0.17)
QDA 22.55 (0.10) | 13.53 (0.07) | 17.36 (0.09) 8.67 (0.06) 13.86 (0.09) 5.80 (0.06)
n=100 | H-depth | 23.61 (0.14) | 14.24 (0.11) | 18.69 (0.15) | 10.05 (0.13) 15.22(0.13) 7.32 (0.13)
R-depth | 23.85 (0.14) | 14.58 (0.11) | 18.73 (0.14) 9.94 (0.12) 15.18 (0.13) 7.17 (0.11)

Bayes risk 30.92 22.97 28.36 19.84 26.49 17.76
QDA 46.63 (0.39) | 45.86 (0.55) | 46.13 (0.43) | 43.59 (0.58) | 45.08 (0.44) | 43.47 (0.65)
Cauchy n=>50 H-depth | 34.70 (0.24) | 26.12 (0.19) | 32.58 (0.22) | 23.43 (0.21) | 31.17 (0.23) | 21.36 (0.24)
R-depth | 34.29 (0.26) | 26.11 (0.20) | 33.48 (0.27) | 23.45 (0.20) | 31.05 (0.23) | 22.12 (0.25)
QDA 48.08 (0.32) | 46.90 (0.34) | 47.50 (0.32) | 46.89 (0.39) | 46.29 (0.30) | 44.84 (0.41)
n=100 | H-depth | 33.24 (0.16) | 25.02 (0.14) | 31.10 (0.18) | 22.22 (0.16) | 29.36 (0.19) | 20.49 (0.14)
R-depth | 33.30 (0.19) | 24.96 (0.17) | 31.35 (0.19) | 22.47 (0.17) | 29.52 (0.20) | 20.55 (0.14)

Bayes risk 21.36 12.90 16.10 8.06 12.46 5.20
QDA 38.42 (0.49) | 28.62 (0.57) | 28.95 (0.31) | 17.80 (0.35) | 23.61 (0.23) | 13.50 (0.26)
Perturbed n=>50 H-depth | 25.85 (0.24) | 15.01 (0.16) | 22.75 (0.30) | 12.71 (0.26) | 20.88 (0.28) | 11.77 (0.24)
Normal R-depth | 28.23 (0.28) | 16.81 (0.26) | 24.70 (0.24) | 14.58 (0.19) | 21.26 (0.20) | 12.34 (0.20)
QDA 39.08 (0.33) | 29.71 (0.42) | 28.32 (0.19) | 17.70 (0.22) | 22.78 (0.16) | 12.73 (0.21)
n=100 | H-depth | 24.85 (0.19) | 14.43 (0.15) | 20.76 (0.23) | 10.69 (0.19) | 18.73 (0.21) 9.49 (0.23)
R-depth | 26.88 (0.22) | 15.66 (0.23) | 22.61 (0.18) | 12.33 (0.23) | 19.82 (0.18) 11.02(0.16)

rates (in percentages) with standard errors.
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6 Results from the analysis of benchmark data sets

We will now investigate the performance of the depth based classifiers on six well known data sets all
of which except the first one are available from http://www.statlib.cmu.edu. In the case of the first
two data sets (the vowel data and the synthetic data), there are well-defined training and test sets. For
them, we have reported the performance of different competing classifiers on those test sets. In each of
the remaining four cases, we have divided the data randomly into two parts to form training and test
samples. This random division is carried out 1000 times to generate 1000 different partitions for each data
set. Average test set misclassification errors over these 1000 random partitions and their corresponding
standard errors have been reported in Table 6.1. In all the examples, sample proportions for different

classes have been used as their prior probabilities.

6.1 Vowel data

We begin with a fairly well known data set related to a vowel recognition problem, where there are two
measurement variables for each observation coming from one of the 10 classes. This data was created by
Peterson and Barney (1952) by a spectrographic analysis of vowels on words formed by ‘h’ followed by
a vowel and then followed by ‘d’. There were 67 persons, who spoke the words, and the first two format
frequencies (the two lowest frequencies of a speaker’s vocal track) for 10 vowels were split into a training
set consisting of 338 cases and a test set consisting of 333 observations. A scatter plot of this data set is
given in Figure 6.1. This figure shows some significant overlaps among the competing classes, and this

makes the data set a challenging one for any classification procedure.

For this data set, traditional LDA led to a test set error rate of 25.26 % (with a standard error of
0.02%), but using depth based linear classifiers, we were able to get significantly better results. The
linear classifiers based on H-depth and R-depth could reduce the average misclassification probability
to 20.72% (with a standard error of 0.02%) and 19.83% (with a standard error of 0.02%) respectively.
Interestingly, as reported in Table 6.1, in the case of quadratic classifiers, the performance of the two

depth based classification rules and that of the traditional QDA applied to the test set turned out to be
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Figure 6.1 : Scatter plots for vowel data

fairly similar for this data.

6.2 Synthetic data

This bivariate data set has been used by Ripley (1994). It consists of bivariate observations from two
competing populations. Here both the populations are bimodal in nature and they are equal mixtures
of bivariate normal populations, which differ only in their location parameters. In this data set, the
sizes of the training and the test sets are 250 and 1000 respectively. We report in Table 6.1 the average
misclassification rates obtained for different methods applied on the test set. Here, we found that in
linear as well as quadratic discriminant analysis, the error rates of the traditional and the depth based
methods were fairly similar. Figure 6.2 shows the performance of these linear and quadratic classifiers
on the training and the test sets. For both of the linear and the quadratic classification, the estimated

class boundaries for the traditional and the depth based classifiers were found to be almost identical.
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(a) Linear classification : training set (b) Linear classification : test set
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Figure 6.2 : Different linear and quadratic classifiers for synthetic data
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6.3 Diabetes data

This data set contains measurements on five variables (fasting plasma glucose level, steady state plasma
glucose level, glucose area, insulin area and relative weight) and three classes (“overt diabetic”, “chemical
diabetic” and “normal” ) as reported in Reven and Miller (1979). There are 145 individuals with 33,
36 and 76 in these three classes according to some clinical classification. Unlike the vowel data and the
synthetic data, this data set does not have any separate training and test sets, we formed these sets by
randomly partitioning the data. We formed training samples of size 100 taking 25 observations from
each of the first two populations and 50 observations from the third. The rest of the observations were

used to form the corresponding test sets.

In this data set, the depth based procedures clearly outperformed traditional LDA and QDA. While
traditional LDA showed an average misclassification rate of 11.12% with a standard error (S.E.) of 0.07%,
the H-depth and the R-depth based linear classifiers could reduce this error rate to 5.49% (S.E.= 0.06%)
and 6.12% (S.E.= 0.06%) respectively. Though traditional QDA (error rate = 9.32%, S.E.= 0.06%)
performed better than traditional LDA, it is quite apparent from the figures in Table 6.1 that depth

based quadratic classifiers clearly outperformed the traditional one.

6.4 Bio-medical data

This data set was generated by Larry Cox and used by Cox, Johnson and Kafadar (1982) in the annual
meeting on “Exposition of Statistical Graphics Technology”. This data set contains the information on
four different measurements on each of the 209 blood samples (134 for “normals” and 75 for “carriers”).
Out of the 209 observations, 15 have missing values, and we have removed those observations and applied
the classification methods on the remaining 194 cases (127 for “normals” and 67 for “carriers”). 100
observations from the first group and 50 from the second were chosen randomly to form each training

sample while the remaining observations were used as the corresponding test cases.

Here also the depth based linear classifiers outperformed traditional LDA. As shown in Table 6.1,

LDA had an error rate of 15.96% (S.E.= 0.07%), while the H-depth and the R-depth based classifiers
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could reduce it upto 10.87% (S.E.= 0.07%) and 11.03% (S.E.= 0.07%) respectively. Figures reported
in Table 6.1 also indicate that even in the case of quadratic discriminant analysis, these depth based

classifiers have a slight edge over traditional QDA for this data set.

6.5 Crab data

Campbell and Mahon (1974) used this data set for morphological study on the rock crabs of the genus
Leptograpsus. One species had been split into two new species, which were previously marked by colors
‘orange’ and ‘blue’. As the preserved specimens lost their colors, it was hoped that the morphological
study would help to classify the museum materials. This data set contains the information on 50 spec-
imens of each sex of each of the species. For each specimen there are measurements on five different
variables (body depth and four other measurements on carapace). We have randomly taken 40 observa-
tions from each of the four classes to form a training set while remaining observations have been used as
the corresponding test sample. For this data set, the results reported in Table 6.1 show that the depth
based classifiers and traditional LDA and QDA have comparable performance with depth based methods

having a small edge over the traditional techniques.

6.6 Iris data

As the last example of this section, we consider the famous Iris data (Fisher, 1936), which contains the
measurements on four different features (sepal length, sepal width, petal length and petal width) on each
of the 150 observations coming from three different types of Iris plants : ‘Iris Setosa’, ‘Iris Virginica’ and
‘Iris Versicolor’. Here, we have randomly chosen 40 observations from each class to construct a training
sample, and the remaining 30 observations have been used to form the test set. It is quite well known
that traditional LDA and QDA perform very well for this data set, and depth based classifiers are not
expected to beat them in this case. However, the error rates reported in Table 6.1 show that both the
linear and the quadratic versions of the depth based methods could produce a descent and comparable

performance on this data set.
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Linear classification Quadratic classification

LDA H-depth R-depth QDA H-depth R-depth

Vowel data 25.26 (2.38) | 20.72 (2.22) | 19.83 (2.18) | 19.83 (2.18) | 19.22 (2.16) | 19.53 (2.17)

Synthetic Data | 10.80 (0.98) | 10.70 (0.98) | 10.30 (0.96) | 10.20 (0.96) | 10.70 (0.98) | 11.00 (0.99)

Diabetes Data | 11.12 (0.07) | 5.49 (0.06) | 6.12 (0.06) | 9.32 (0.06) | 6.57 (0.06) | 7.09 (0.06)

Bio-medical Data | 15.96 (0.07) | 10.87 (0.07) | 11.03 (0.07) | 12.68 (0.06) | 11.61 (0.07) | 11.76 (0.06)

Crab Data 5.20 (0.06) | 4.85 (0.06) | 4.47 (0.06) | 5.89 (0.06) | 4.37 (0.06) | 4.26 (0.06)

Tris Data 2.18 (0.07) | 3.92 (0.10) | 3.56 (0.10) | 2.75(0.09) | 3.99 (0.11) | 3.43 (0.10)

Table 6.1 : Results on benchmark data sets : average misclassification

rates (in percentages) with standard errors.

7 Concluding remarks

Use of data depth in discriminant analysis was first proposed by Liu (1990), where she suggested to classify
an observation using its relative center-outward ranks with respect to different populations obtained using
some depth function. Jornsten, Vardi and Zhang (2002) and Jornsten (2004) used that idea to develop
nonparametric methods for clustering and classification based on L; depth (also known as spatial depth)
function (see e.g., Vardi and Zhang, 2000; Serfling, 2002). Along with L; depth, Ghosh and Chaudhuri
(2004) used other depth functions to construct their maximum depth classifiers. However, for classifying
a new observation, these classifiers need to calculate its depths with respect to different competing
populations, and for that the full training sample have to be stored. Moreover, it is difficult to generalize
these classifiers for unequal prior cases (see Ghosh and Chaudhuri, 2004). On the other hand, the depth
based classifiers proposed in this article require less storage and computing time for classifying future

observations, and at the same time it provides a good lower dimensional view of class separabiltiy.

Both of traditional LDA and QDA, are motivated by the assumption of normality of the data, and as
we have amply demonstrated in preceding sections, violations in this assumption may lead to rather poor
performance of these traditional methods. More recent methods like regularized discriminant analysis
due to Friedman (1989) and logistic discriminant analysis (see e.g., Hand, 1981; Hastie et. al., 2001) are

also motivated by specific distributional models for the data. The depth based classifiers, on the other
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hand, are totally distribution free in nature, and they use only the empirical geometry of the data cloud
to estimate the optimal separating surface for the competing classes. Traditional LDA, QDA as well as
regularized discriminant analysis use the first and the second order moments of the training sample to
construct the discrimination rule. This makes these methods highly sensitive to outliers and extreme
values. On the other hand, use of half-space and regression depths in the construction of the classifiers
makes the discriminant functions more robust against the presence of possible outliers in the case of

heavy-tailed distributions.

For nonlinear classification, the depth based methods project the observations into a space of functions
to find a separating hyperplane there. Well-known nonparametric methods like those based on neural
nets (see e.g., Ripley, 1996) and support vector machines (see e.g., Vapnik, 1998 — henceforth we will
write SVM as an abbreviation for this) also adopt a similar strategy for nonlinear classification. However,
instead of minimizing the empirical misclassification rates as it is done in the case of depth based methods,
these classifiers are formed by minimizing some smooth penalty functions. Other techniques like flexible
discriminant analysis due to Hastie, Tibshirani and Buja (1994) and the classifier recently proposed by
Zhu and Hastie (2003) also optimize some smooth cost or likelihood type functions to determine the

discriminant function.

We conclude this section with an illustrative example taken from Christmann (2002). This is a
simulated example on a four class problem where the classes are completely separated (see figure 7.1).
An observation (z1,z2) in the square [—1, 1] x [—1, 1] is assigned to class-1 if z9 —x1 > 0.75 and to class-2
if x% + x% < 0.15. An observation (z1,z9) satisfying xo — z1 < 0.75 and x% + m% > (.15 is assigned to

class-3 or class-4 depending on whether 22 + 22 < 0.60 or > 0.60 respectively.

Christmann (2002) generated 250 different training samples each of size 700 and test samples each
of size 300 to compare the performance of SVM with that of traditional QDA. In this example, SVM
(with radial basis function) produced a much higher average error rate of 36% than QDA having average
misclassification rate of 20.9%. We have generated 250 samples of the same sizes as used by Christmann

(2002) to compare the performance of the depth based classifiers. In our experiment, QDA produced
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Figure 7.1 : A four class problem for comparing different classifiers

almost similar performance (error rate = 20.72 %) as reported by Christmann (2002) but the quadratic
versions of both of the depth based classifiers performed quite well. H-depth and R-depth based classifiers
on this example led to an average test set error rate of 1.58% (standard error = 0.03%) and 2.81%

(standard error = 0.17%) respectively.

8 Appendix : Proofs

In order to prove Theorem 3.1, we will need the following result, which follows directly from the proof

of Lemma A of Serfling (1980), p. 200.

Result 8.1 : If Y is a bounded random variable with E(Y) = g and P(0 <Y < 1) =1, then

E{e’Y 1) < e*’/% for any s > 0.

Proof of Theorem 3.1 : (i) Un(a) is a generalized U-statistic (see e.g., Serfling, 1980) having the
bounded kernel function h(a/zl, a/ZQ) = I{a/zl > a/zQ} (0 < h <1). Now, without loss of generality,

let us assume that ny < n9 and define

ni
W(’il,’ig, e ,inl) = nl_l Z h(Ot Z1j, O ZQZ']-)
j=1
for some permutation (iy,49,...,i,) of n; objects from {1,2,...,n9}. For this definition of W, Un(a)

can be expressed as

Ny —nq)! o .
Un(a) = (2717'1) Z W (i1,42, ..., in,)s
2. (ilﬂl?v---ﬂ‘nl)elp
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where P denotes the set of all possible permutations (i1, 49, ..., iy, ) of the elements of the set {1,2,... ,no}.

Now, using Jensen’s inequality on the convex function e¢”, we get

ng —ny)! i
sUn(Q) < (n2 —n)! Z e*Wiizeing) for every s > ()

719! =
2 (21,12,---72711)673

= E{esUn(a)} < E{esW(il,ig,...,z‘nl)} < [E{esh(a’zll,a’zﬂ)/nl}]m

(using the fact that the terms in the sum defining W are independent and identically distributed)
N E{es[Un(a)fU(a)]} < [E{es[h(a’zu,a’zzl)fU(a)}/m}}"1 < {ns/n)¥™, say.
Now, it is quite easy to see that
E{Un(a)} = E{W (i1,ig, ... in,)} = E{h(a'z1,a'23)} = P{a'zy; > &'22,} = U(a), and
using Result 8.1, we get for any ¢ > 0,

32
P{Un(a) — U(a) >t} < B{efSUn(@)-U(@)~th < o=stry, (o /p ) 3™ < o * 87

Minimizing the above expression with respect to s, we get P{Un(a) — U(a) >t} < e=2%", Using
similar arguments, it can be shown that for any positive £, P{Un(a)—U(a) < —t} < e~2"1*. Combining

these two results, we obtain

P{‘Un(a) — U(a)‘ > t} < 2e72M8 for every ¢t > 0.

Now, the set of hyperplanes in V = {y : oy = 0} in R™, which pass through the origin has VC
dimension m (see e.g., Pollard, 1984; Vapnik, 1998). So, the sets of the form {y : 'y > 0} has a
polynomial discrimination with m being the degree of the polynomial. Therefore, using the results on
probability inequalities on such sets (see e.g., Vapnik and Chervonenkis, 1971; Pollard, 1984; Vapnik
1998), we get

P {sup |Un(a) —U(a)| > t} <2 (nlng)me_%l1t2 for every t > 0.
a

Now, using the fact that ny/N — A (0 < A < 1) as N — oo, and Z N?Me=eN < o0 for any ¢ > 0, it
N>1
follows from Borel Cantelli lemma that sup |[Un(a) — U(a)| — 0 almost surely as N — oo.
a
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Let ay be a maximizer of Un(a) and aj; be that of U(e) (not necessarily unique). Now, we have
|Un(apn) —U(ag)] 50 and |Un(ady) — Uledy)| 250 as N — oo.

Again, from the definition of ay and aj;, U(ajy) > U(ay) and Un(ag) > Un(ajy) for every n. Hence,
|Un(am) — max U(a)| = |Un(ag) —U(edy)] 5 0 as N — oco. Consequently, |U(az) — max Ua)| &5
0 as N — oo.
1 & /
(ii) For some fixed o and 3, — Z I{o z1;+ 5 < 0} is an average of i.i.d. bounded random variables.
n

=1

Therefore, from Hoeffding’s (see Hoeffding, 1963) inequality, we have

]. il / !
P{‘n—ZI{a z1,+ <0} —Plazn+0< 0}‘ > 6/2} < 2e ™2 for every € > 0.
Li=1

= P{An(@.f) - M) > < P

ni
%ZI{a z1; + <0} — P{a z11—|—ﬁ<0}‘ >e/2}
i=1

+ P

na
%ZI{a z9; + 5 >0} — Plazo + 3 > 0}‘ > 6/2}
i=1
< 2(6—n162/2 + e—n262/2).
Now, using similar arguments on VC dimension of hyperplanes in R™ as before and using the results

(see e.g., Pollard, 1984) on sets having polynomial discrimination, we get

P {sup |An(e, 8) — A(e, B)] > 6} < 2(ny + 712)””1(67"162/2 + 6771262/2).

a,p

Then, using the fact that Z N™ e N < o for any ¢ > 0, it follows from Borel Cantelli lemma that
N>1

sup |An(a, 8) — A(e, 8)| = 0 almost surely as N — oo.

a’ﬂ

Following similar arguments as used in the end of the proof of (i), it is now easy to verify that |A(ég, fr)—

min A(a, )| = 0 and |Ap (&g, fr) — IaligA(a,ﬁﬂ — 0 almost surely as N — oc.

) )

Let us next assume that the maximizer aj, of U(a) is unique. We have already shown U(ay)
converges to U(aj;) as N — oo on a set of probability one. Consequently, on the same set, if ay
converges, it has to converge to a; in view of the uniqueness of a}; and the continuity of the function
U(a). Since ay always lies in the compact surface of the unit ball in R™ (see Sections 2.1 and 4.1), any
subsequence of the sequence of this estimate will have a further convergent subsequence converging to

a’; on that set of probability one. Hence, ay must converge to a; almost surely.
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Next, let (a, f%) be the unique minimizer of A(e, ). Since we have already shown A(&R,BR)
converges to A(aj, ) almost surely, using arguments which are virtually same as those above, it

follows that as N — oo, (&R,BR) Rt (ak, BR)-

Proof of Corollary 3.1 : In Theorem 3.1, we have proved that |A(ég, fr) — IaligA(a,ﬂH -0
almost surely as N — oo. Note that A(ag, B r) is the conditional average misclassification probability for
a future observation given the current training sample. Taking expectation of A(ag, ¢ r) over the current

training sample, the proof of this corollary follows by a simple application of dominated convergence

theorem using the fact that A is a function bounded between 0 and 1.

Lemma 8.1 : Suppose that the population densities fi and fo of the two competing classes are
elliptically symmetric with a common scatter matrix ¥. Also assume that f;(x) = g(x — ;) (i = 1,2)
for some location parameters p, and a common elliptically symmetric density function ¢ satisfying
g(kx) > g(x) for every x and 0 < k < 1. Further, assume that the prior probabilities of the two

competing classes are equal. Then,
(i) there exists an optimal Bayes classifier, which is linear and

(ii) @ = B (uy — py) is a maximizer of U(a) as well as a minimizer A(e, 3) for a proper choice of 3.

Proof of Lemma 8.1 : (i) Because of elliptic symmetry with location shift, the density functions

f1 and fy can be expressed as
F1(x) = Cal B 72h{ (¢ — py) B (x — )} and fi(x) = Col BV 2h{(x — pa) = (x — o)},

where Cy is a constant (depends on dimension d) and h is a monotonically decreasing function on [0, c0).
Now, in the equal prior case, an optimum Bayes rule classifies an observation to class-1 if and only if
fi(x) > fo(x) & (x—py) B (x = py) < (x = po) T (x — o)
& (1 —p2) B x> 5 [Nl =y - 271#2] :
This proves that an optimal linear classifier is a Bayes classifier and o = 7' (pu; — po) is a minimizer

of A(a, ) with a proper choice of .
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(ii) As the distributions have a common elliptically symmetric form with location parameters g, and

Mo and common scatter matrix X, their characteristic functions are of the form

b, (t) = et iy (t'St) and ¢, (t) = et B2p(t'St)  for some common scalar function .

Now define Y = o' {(X;1 — Xa) — (1, — po)}/(a'Za)'"”

, where X ~ f; and Xy ~ fo. It is easy
to see that the characteristic function of Y is given by ¢y (t) = {4(t?)}2. Clearly, the distribution of

Y is symmetric about 0, and it is free from population parameters like the p’s and the 3. Therefore,

P{a(X; — X3) > 0} can be expressed as

PLa (X1 = Xo) > 0} = Py ([{ed (uy = o) a'Se 7).

where Fy is the c.d.f. of the distribution of Y. So, P{a'(X; — X3) > 0} gets maximized for some a if

that o maximizes {a (@, — o) }? /@' Bex. This implies that o = X' (p; — ps) is a maximizer of U(a).

Proof of Corollary 3.2 : Lemma 8.1 implies that, under the given conditions, the linear classifier
with o = 37 (g — py) and B = (uoX 'y — ;X' ) /2 is a Bayes classifier. Consequently, it follows
from Corollary 3.1 that the average misclassification error of the regression depth based linear classifier
converges to the optimal Bayes risk. Further, when this Bayes classifier is unique, it follows from the
second half of Theorem 3.1 that the regression depth based linear classifier itself converges almost surely

to that Bayes classifier.

When U(a) has a unique maximizer o = X' (u; — py) (e.g., when the distribution function Fy
in the proof of Lemma 8.1 is strictly increasing), it follows from Theorem 3.1 that &y converges almost

surely to a* as n — oc.

Let us now consider two independent random vectors X; ~ f; and X9 ~ fo both of which being
completely independent of the current training sample (i.e. they are like future observations). Using
these random vectors define Y1 n = &’HXl, Yon = a/HXg, Y, = a¥X; and V3 = a* Xo. Then, in
view of almost sure convergence of ay to a*, we get (Y1 n,Y2n) L, (Y1,Y5) almost surely as N — oo.

Since both of Y7 and Y5 are continuously distributed, and weak convergence to a continuous distribution
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implies uniform convergence, we have sup |A(ay, 8) — A(a*, 5)] — 0 almost surely as N — oc.

On the other hand, from the proof of (ii) in Theorem 3.1, it is quite clear that sup |An(am, ) —
B
A(am,B)] — 0 almost surely as N — oo. Hence, sup |An(ag, ) — A(a*,8)] — 0 almost surely as
B

N — oo.

It now follows from arguments similar to those used in the proof of Theorem 3.1, |An(au, BH) —
mﬂinA(a*,ﬁ)| = |An(&H,BH) - IgiélA(a,,BN — 0 almost surely as N — oo. Also, we must have
|An(&H,BH) — A(&H,BH)| — 0 almost surely as N — oo. Hence, A(&H,BH) converges almost surely

to raligA(a, B), which is the Bayes risk in this case.

Once again, note that A(ay, B 77) is the conditional average misclassification probability for a future
observation given the current training sample. Taking expectation of A(ay, B 1) over the current training
sample we get the unconditional average misclassification probability of the linear classifier based on
half-space depth. The proof of the convergence is now complete by a simple application of dominated

convergence theorem using the fact that A is a function bounded between 0 and 1.

Now, to prove the almost sure convergence of the linear classifier based on half-space depth, we only
need to show that B 1 converges almost surely to an appropriate constant. In order to prove that let us
first recall a simple fact about the optimal Bayes classifier. In the equal prior case with two competing
populations, it is easy to verify that the optimal Bayes risk is strictly smaller than 0.5 unless the two
populations are statistically indistinguishable in the sense that they have identical distributions. We have
already shown that A(ay, B 1) converges to the Bayes risk and ay converges to a* as N — oo on a set
with probability one. So, on this set B 7 must remain bounded as otherwise in view of the convergence of
ap toa*, A(ay, BH) will converge to 0.5 along a subsequence along which |BH| — ocas N — oo. On the
other hand, whenever B converges to a real number J (say), in view of the continuity of A, A(ay, BH)
must converge to A(a*,3) on that set of probability one. Since any bounded sequence must have a
convergent subsequence, it is now obvious that Sz must converge to 8*, where A(a*,p*) = rgin A, ),

which is same as the Bayes risk in this case.

For prior probabilities 71 and 79 (71 not necessarily equal to 73), and for two competing normally
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distributed populations with parameters (@, X) and (pq, X),

-1

M%) > mofo(x) & m |BTY2 e sE) BT S B2 o 3K p) BT (X )
S (% — o) BTN (x — o) — (x — ) BT (x — py) > C, where C =2 log (m2/m).
& 2x 3 (g — pa) > {7y — X o} + C.

Therefore, the optimum Bayes rule is indeed unique, and it is linear in nature. Finally, as U and A are

both continuous functions in this case of multivariate normal distribution, the proof of the corollary is

complete.

Proof of Corollary 3.3 : It suffices to show that under the given conditions, the optimum quadratic
classifier is the unique Bayes classifier. When the two competing population distributions are multivariate

normal with location and scatter parameters (pu;, 1) and (uq, Xo),
MUX) > Tofa(x) & m S| 7H2 e 5O B X)) 5 13,712 o 500 ) T (X )

@(X—l@)z Hx = py) — (X—Hl)z "x—p) >C,

. 1/2 . .. . .
where C = 2 log <%> Therefore, the optimum Bayes rule is indeed unique and quadratic in
1 2

nature.

Probability density function f(x) of a d-dimensional elliptically symmetric Pearson type VII distri-
bution is given by

fo)=Ca|B[ P14+ M (x—p) B (x—p)} Y
where p and I are the location and scatter parameters, v > 0, 6 > d/2 and C; = (7v) %?T(0)/T'(6 —
d/2). Now, consider two Pearson type VII distributions, which are of the same form except possibly for
their location and scatter parameters. Let p, and 3; be the location parameter and the scatter matrix
for the i-th (i=1,2) population, and 7; be its prior probability. Then, 7 f1(x) > 79 f2(x)

& mIZ T L4 v = ) BT (x = )} > m BT L v (x ) 2y (x — )}

— / 0
{1+V "(x— 11(X—N1)} >Kf0rK:7r2|22

) > |—1/2
L v (x = ) S5 (x — pay) 1B |1/
(x
(x

v+ (x—p) BT (x - )
—L <C=KY°
v (x = po) 25 (x — po)

S (x— ) BT (x— py) = Clx — py) T (x — py) — (C = 1) < 0.
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Clearly, the left hand side of last inequality above is a quadratic function of x. Therefore once again the

optimum Bayes rule is unique, and it turns out to be a quadratic classifier.
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