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ABSTRACT

In this paper we attempt to gain an understanding of the behaviour
of users in a multipoint, interactive communication scenario. In
particular, we wish to understand the dynamics of user participa
tion at a session level. We present wide-area session-level traces
of the popular multiplayer networked games Quake and Half-Life.
These traces were gathered by regularly polling 2256 game servers
located all over the Internet, and querying the number of players
present at each server and how long they had been playing. We
analyse three specific features of the data: the number of playersin
a game, the interarrival times between players and the length of a
player’s session. We find significant time-of-day and network ex-
ternality effects in the number of players. Player duration times
fit an exponentia distribution, while interarrival times fit a heavy-
tailed distribution. The implications of our findings are discussed
in the context of provisioning and charging for network quality of
service for multipoint and multicast transmission. Thiswork ison-
going.
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1. INTRODUCTION

In spite of being an active research areafor over adecade, multicast
has yet to see large-scal e deployment. Thismay be due to anumber
of factors, such as the lack of compelling multicast applications,
or the lack of a method for multicast service providers to charge
for a multicast service [10]. We are in the process of developing
a pricing scheme which allows efficient and predictable charging
for multicast (initial details of this scheme are described in [15]).
One problem with attempting to charge for multiple-source applica-
tions, however, isthe need for predictable prices. If users share the
cost of a multiuser transmission, and the number of users changes
as usersjoin and leave the session, the price paid per user will also
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change. We therefore need to understand how users behave in mul-
tiuser scenarios if we are to engineer pricing schemes that will pro-
vide stable and predictable prices. Models for user behaviour are
also useful in designing pricing schemes for maximising objectives
such as aggregate utility or network utilisation, and for understand-
ing and providing for network Quality of Service (QoS).

In asomewhat “chicken and egg” situation, the limited deployment
of multicast also means that there are few sources of data from
which a model for user behaviour can be determined. A feature
of our intended pricing scheme is that it should be independent of
the underlying network protocols. Thus, there is no reason why a
model for multipoint user behaviour need be determined from IP
multicast sessions. From an end-user viewpoint, there is no func-
tional difference between an |P multicast session and severa uni-
cast streams, and so user behaviour should be similar in both of
these multipoint situations. There may be a difference in cost and
this may be used as an incentive for the use of multicast.

With theremoval of the absolute requirement for native | P multicast
sessions in order to provide multipoint communications, the prob-
lem of creating a model for multipoint behaviour becomes more
tractable. There are many existing, and popular, multipoint applica-
tions that use unicast routing, for example, online chat applications
such as Internet Relay Chat (IRC), or multiuser networked games
such as Quake. We have chosen to examine the latter to determine
user behaviour, and thus to determine the requirements for pricing
this behaviour and provisioning network resources.

This paper is structured as follows. We discuss our motivation for
choosing games as an application and note previous work in Sec-
tion 2. Section 3 describes the methodology used for gathering
data and summarises our results. Sections 4, 5 and 6 analyse three
particular aspects of the data, namely session membership, session
duration and user interarrival times respectively. Finally, Section 7
concludes the paper and discusses possibilities for future research.

2. MOTIVATION

Multiplayer networked games are contributing to an increasingly
large proportion of network traffic [22]. Such network usage is
likely to increase further now that consol es such asthe Sega Dream-
cast and Sony Playstation 2 feature Ethernet and modem connec-
tions. Games players are aready willing to pay extrato get anim-
provement in their playing experience, as evidenced by specialist
gaming hardware such as joysticks, mice, mousepads and even fur-
niture. Game publishers have proposed charging players per-game
via network delivery, rather than the current practice of charging
a one-off fee for the software [25], or by charging a fee per game



with the opportunity for playersto win money or prizes[29]. More
interesting, from a networking point of view, is the existence of
modems marketed as being specially optimised for games [1], and
software designed to determine network characteristics of potential
games servers such asdelay [13]. These developmentsindicate that
games players are interested in network QoS, and would be willing
to pay for the ability to improve it.

The games that we study here are of the type commonly referred
to as FPS (First Person Shooter) games. Players connect to a cen-
tral server using unicast UDP (or occasionally TCP) flows. The
maximum number of players that can connect to a server is set ar-
bitrarily by the server administrator, according to the amount of
network traffic and CPU time they wish the game server to con-
sume (for the games studied here, this figure is typically set to 16
or 32 players). Players' actions are transmitted first to the central
server, which calculates and maintains the overall state of the game
and then transmits this state back to the players. The general objec-
tive of most of these games is to explore a common virtua world
and kill as many of the other players as possible.

2.1 Previouswork

Almeroth and Ammar [2] study multicast sessions on the MBone;
these sessions are all single-source. There is a long history of
network and Internet traffic analysis (see [24] for a survey). The
majority of this, however, looks at packet-level and network-level
traces. In particular, Bangun et al. [3] and Borella[5] both study the
traffic patterns of multiplayer gameson aLAN, but not the session-
level user dynamics that we examine here. Although there may be
interesting relationships between the data at the packet and session
levels, for instance in terms of self-similarity, we do not consider
these in this study, but leave them for possible future work.

3. METHODOLOGY

Almeroth and Ammar [2] show that the monitoring of P multicast
sessions is possible through joining a session and then watching
other session members join and leave. Thisisimpractical for net-
worked games, however, sinceto join agame implies participation.
Asmost people are only capable of playing one game at atime, and
only for acertain number of hours aday, thislimitsthe scope of any
data collection. Although it is possible to simulate a user through
a script or program, such “bots’ are frowned upon by many game
server operators and generally lead to the user in question being
barred from that server. Furthermore, thereis a data integrity prob-
lem in that user behaviour might depend on the number of players
in agame, and so by joining a game to monitor it, we might affect
the results.

Some game servers offer a querying mechanism, whereby specific
variables about game status can be retrieved. Since joining and
continuously monitoring games seemed impractical, polling and
querying games servers at regular intervals was determined to be
the next best option. By polling servers and determining the num-
ber of players at each poll, an approximation of user behaviour can
be obtained. Many networked games also alow the querying of
such variables as players nicknames and the amount of time that
they have been playing, and so the duration of each users’ session
can also be estimated. The accuracy of this method depends on the
frequency of polls. If the polls are too far apart, then any userswho
join and leave between polls will be missed. If the polls are too
frequent, the amount of network traffic might have an effect on the
servers and perhaps affect user behaviour.

Data were collected using the QStat tool [27], which is a program
designed to display the status of games servers, and which supports
alarge number of online multiplayer games. Of these games, the
game Half-Life [14] was determined to be the most popular game,
and was aso one of the games which supports the reporting of a
player’s connection time, and so it was chosen to concentrate on
players of this game.

A list of 2193 IP address/port pairst of machines running the Half-
Life daemon was obtained from a“ master server” athal f- 1 i f e.
west . won. net . Thislistiscomposed from submissions by server
administrators and/or automatic registration by servers (depending
on the game). This list may also be queried by users through the
application itself, or through the use of some of the aforementioned
programs for determining the closest or quickest-responding game
Server.

Servers were polled using QStat at regular intervals (Figure 1). At
each poll, the number of players, their chosen nicknames and the
number of seconds that each player had been connected were re-
trieved (example output from QStat is shown in Figure 2). If a
response was not received from a server, group membership was
assumed to be the same as at the previous successful poll. Since
polling took place at the application level, we could not detect such
events as unsuccessful join attempts, as these do not register in
the game. We were also limited in that polling takes place from
acentral machine at UCL, and so any network failures that existed
solely between UCL and the game servers (but not between the
game server and the players) would affect our resullts.

Servers | Game Frequency | Duration
O-l 2193 Half-Life 30min 1 week
Ol | 35 Half-Life 5min 3 days
O-lll | 22 Quake 5min 1 week
O-lvV | 3 Half-Life 5min 2 months
oV |3 Quakelll Arena | 5min 2 months

Table 1: Observations

Several sets of observations were taken; the differences between
these, and the labels that are used in this paper to refer to them, are
shown in Table 1. Thefirst set O-1 used the master list of Half-Life
servers. From this, the 35 most popular servers were selected for
more detailed observation over one weekend in O-l1.

Set O-111 used 22 Quake servers, the addresses of which were also
obtained by querying a master server. Quake is an older game, in-
troduced in 1996, which is why the number of serversis so much
lower than Half-Life, which first went on sale in 1998. Quake,
however, is one of the few games to alow the querying of play-
ers |P addresses, which may be useful for determining the net-
work topologies and spatial analysis of games. The sourcecode for
the game is freely available, so this set of observations may prove
useful for future work.

The last pair of observations, O-1V and O-V, come from two sets
of serverswhich Microsoft Research have been running at their site
in Cambridge, UK. Using a public list of servers proved to have
difficulties, since some of the | P addresses on the list were dynami-

11t is not uncommon for a single machine to run severa serverson
different ports; of our list of 2193 servers, there were 1725 unique
|P addresses.
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NAME: Merlin TIME 5710
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NAME: MagNETo [FH TIME 2176
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NAME: [DEM Guybrush T. TIME: 8575
NAME: [.HoF.]Ben Kenobi TIME 1177
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NAVE: TDMI_Silvan TI ME: 1540

NAME: Cul zak TIME: 874

NAME: [ DBK] Hanni bal TC TI ME: 954
NAME: [ STANDARD] Kill Denon TIME 1085
NAME: - =Phoeni x=- TIME: 5593

Figure 2: Example QStat output

caly allocated (for instance, users running game servers on dia-up
machines). It would appear that the master list does not update fre-
quently enough to eliminate these, and so many polls would end up
targeting machines which were no longer running the game server.
Of the original list of 2193 addresses, we found that 265 of these
were never running the server during the course of our polls. The
game used in O-V, Quake Il Arena, does not alow the querying
of player duration. For this set of data we assume that each player
joined at the time of the poll at which they are first noticed; this
figure thus has an inaccuracy of up to two poll periods.

3.1 Summary of observations

We observed atotal of 1,757,539 individua sessions (i.e., individ-
ual users joining and then leaving a game). Table 2 shows some
of the overall aspects of the data. We were interested in examin-
ing three specific features: the number of participants in a game,
the interarrival time between participants, and how long a player
remained in agame.

4., SESSION MEMBERSHIP

Figure 3(a) shows the total number of players for all the servers
in O-1 and O-111 to O-V, aggregated to a one-week period. Fig-
ure 3(b) shows the number of players for one server from O-IV,
again scaled to one week. It can be seen that the number of partici-
pants in a game exhibits strong time-of-day effects, peaking in the
middle of theday. Thestrong sinusoidal pattern in the correlograms
in Figures 3(c) and 3(d) also indicates seasonal variation.

It can be seen from Figure 3(a) that mid-Tuesday is an outlier, with

Total joins Average Median interar-
joing/server/hr rival (sec)

O-l 1510445 4.65 225

O-1l | 69961 27.76 70

O-Ill | 37037 10.01 118

O-1V | 23559 4.19 115

O-V | 5872 1.04 300
Max interarrival | Median dura- | Max  duration
(sec) tion (sec) (sec)

O-l 246171 1576 3165999

O-11 | 17309 1098 66738

O-11l | 51706 618 410699

O-1V | 77843 612 2614737

O-V | 76800 901 403201

Table2: Summary of results

an unusualy low number of players. This might have been due,
for instance, to a break in network connectivity. This outlier was
removed by replacing the data with the average of the samples 24
hours before and 24 hours after.

Since thetime-of-day effect isso clearly evident, it ispossibleto do
a simple seasona decomposition by subtracting each observation
from the mean value for all the observations taken at that time of
day [7]. Theresults of this are shown in Figure 4, where the higher
solid line represents the time-of -day effect, the lower solid line the
remainder, and the dashed line the observed data. Three days are
higher than the others; these, as one might expect, are Friday to
Sunday.

4.1 Network externalities

It is accepted that the value of a group activity to an individual par-
ticipant may be related to the number of participants in that group.
This has been quantified conjecturally by engineers as Metcalfe's
Law (the value of a network is proportional to r?, where n is the
number of users[23]), or more recently as the Group-Forming Law
(the value of the Internet is proportional to 2" [28]). Economists,
however, generally refer to these effects as “positive consumption”
or “network externalities’: for example, Katz and Shapiro define
network externalities as “products for which the utility that a user
derives from consumption of the good increases with the number of
other agents consuming the good.” [18] Network externalities have
most commonly been studied in terms of standardisation and com-
patibility (e.g., the take-up and acceptance of fax machines [11]),
although Henriet and Moulin [16] present a cost allocation scheme
for networks where users share costs according to the network ex-
ternalities that are accrued.

One would expect that multiplayer games would also exhibit net-
work externalities. The purpose of a networked multiplayer game
isto participate with other people; if a user wishes to play against
electronic opponents there would be less need for the networked as-
pect of the game (unless, for example, auser wished to play against
afar more powerful computer such asthe famous chess matches be-
tween Kasparov and IBM machines). In general, however, itisrea
sonable to assume that a given participant in a networked game is
taking part because they wish to interact with other remote, human
users, and, therefore, that their utility is derived, to some extent,
from the existence and number of these other users.
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Figure 5 shows the temporal ACF (autocorrelation function) of the
corrected data from Figure 4, after removing the time-of-day ef-
fect; this shows the degree to which the number of playersin a
subsequent time period depends on the session membership in the
previous period. It can be seen that the level of autocorrelation is
high, even for alarge number of time periods. Thus, as expected,
there appear to be some network externality effects.

Having observed the time-of-day and network externality effects,
we analysed the session membership data using time-series analy-
sis. ARIMA (Autoregressive Integrated Moving Average) models,
introduced by Box and Jenkins [6] are a popular means of mod-
elling time series data. An autoregressive process is defined as a
serially dependent process whereby elements in a time series can
be described in terms of previous elements:

X=X 1+ X o+ @K 3+ +¢E 1)

A moving average process is where each element in atime seriesis
affected by past errors, independent of the autoregressive process:

X =U+&—05 1—6,5 ,—056_5—... 2

An ARIMA model incorporates both the autoregressive and mov-
ing average processes. Such modelsarereferredtoasARIMA(p,d,
where p isthe autoregressive parameter, d the number of differenc-
ing passes required to make the input series stationary, and q the
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Figure5: Temporal autocorrelation in number of players

moving average parameter. |f the time series has a seasonal com-
ponent, additional seasonal parameters are required, and the model
isreferred to asan ARIMA(p,d,q) x (P,D, Q)s model, where P, D
and Q repesent the ARIMA parameters of the seasonal component,
and sisthe period of the seasonality.

For the aggregate session membership data from Figure 4, there
is little to choose between a (1,1,1) x (0,1,1),g and a(2,1,1) x
(0,1,1),5 model (Figure 6 shows the diagnostic output for the lat-
ter). Applying these two models to individual servers data, how-
ever, showed thata(2,1,1) x (0, 1, 1), model isthe most appropri-
ate. Figure 7 shows the diagnostics for one server; the Box-Pierce
statistic indicates a high goodness of fit.

A (2,1,1) x (0,1,1),4 model incorporates both network externali-
ties, since the autoregressive component means that the number of
players up to an hour prior to a player joining has an effect on a
player’s decision to join, and aso includes the time-of-day effect
through the seasonal (0,1, 1), component.

Proportional fairness has become a popular metric for allocating
bandwidth between flows on a congested link [19]. This relies
on the assumption of users having logarithmic utility functions. It
is unclear, however, whether this same unicast logarithmic utility
function should be assumed for a multicast or multipoint transmis-
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sion. Chiu [8] shows that proportional fairness may produce an
“unfair” outcome in the multicast case, and proposes a weighted
proportionally fair solution, where multicast flows receive a band-
width share weighted according to the aggregate utility of the down-
stream receivers. Legout et al. [20] suggest that this bandwidth
share might relate either linearly or logarithmically to the number
of downstream receivers. The data presented here supports the lat-
ter suggestion, since they imply that it might be more appropriate
to assume individua utility functions which incorporate network
externalities.

Time-of-day pricing is commonly used for pricing utilities such as
electricity and telephone service, and has been proposed as a sim-
ple, if suboptimal, method for pricing Internet traffic [21]. The
time-of-day effects observed here mean that this might be appro-
priate on a per-application basis, at least for games. This might
also have implications for network provisioning, whereby a net-
work designed for games would want to be able to deal with the
peaks.

5. USER DURATION

Game serverstend to run continuously, with usersjoining and leav-
ing asthey wish. Assuch it isnot meaningful to discuss the overall
session duration, i.e., awhole game. Instead we examine the dura-
tion of each individual session, i.e., auser’s game. Figure 8 shows
the duration of users’ individual sessions from O-11: it can be seen
that these durations vary quite widely, and that many game dura-
tions are lower than our polling period of five minutes. This might
be due to dropped connections, or users browsing games by start-
ing a session to see what is going on and deciding that a particular
game is not to their liking. At the other end of the spectrum, there
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Figure 8: Duration of user's game

are severa long game durations of over 24 hours. These might be
“hardcore” gamers, automated players/bots or users who have mis-
takenly left their connections active.

In Figure 9 we fit the user duration data for two individual servers
to a set of randomly generated exponentially-distributed data. The
Quantile-Quantile plots show that thisisan appropriate model. This
agrees with the findings for multicast sessions in [2]. It is aso
known that some single-user applications, such as voice telephone
calls [4] fit an exponential distribution.
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Figure 9: Fitting an exponential distribution to user duration
data

Since we had already observed network externdlity effects in the
number of players, we expected to find a correlation between the
duration of a player's session and the number of players in that
game; a game with more players might be likely to lead to players
enjoying the game more, which should lead to them staying longer.
Surprisingly, there appears to be no evidence for this. Figure 10(a)
shows a boxplot of the number of players at the start of a player’s
session against the duration of their session. There does not seem
to be a correlation, and the median duration is relatively constant
irrespective of the number of players. Comparing the duration to
the average number of players over the first hour of a session (Fig-
ure 10(b)) showed a dlight correlation, but this was insignificant.
This might indicate that the absolute number of playersin asession
isnot necessarily a determinant of when a player decidesto leave a
session; it may be the behaviour or skill of the specific players that
is more important, or acompletely unrelated factor.
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6. INTERARRIVAL TIMES
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Figure 11: Interarrival times

Figure 11 showstheinterarrival times between playersfor one server.
As for duration, there is large variation. Unlike the duration data,
interarrival times do not appear to fit an exponential distribution, as
shown in Figure 12.

Interarrival times between users for single-user applications have
been found to fit a Poisson distribution [12, 26]. Thisisunlikely to
be the case for multiuser applications, however, where the presence
of other users may alter user behaviour. Borella [5] finds that for
games, packet interarrival times are highly correlated. Figure 13
shows that this is also true for player interarrivals; there is signifi-
cant autocorrelation at short lags, which implies that the arrival of
some users will lead to others arriving. Thus, the interarrivals do
not fit the independent arrivals of the Poisson distribution.

Heavy-tailed distributions have been observed for Internet usage
behaviour, for example in World Wide Web usage [9] and aggre-
gate Ethernet traffic [30]. One method for visualising a heavy-
tailed distribution is alog-log complementary distribution (LLCD)
plot, where the complementary cumulative distribution is plotted
on logarithmic axes. Linear behaviour in an LLCD plot indicates a
heavy-tailed distribution. Figure 14(a) shows such aplot for the in-
terarrival times, and linear behaviour can be observed for the larger
observations (Figure 14(b)).

A more rigorous test for heavy-tailed distributions is the Hill esti-
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mator [17]. A distribution of variable X is heavy-tailed if
PX>X ~Xx % asx— o 0<a<2 €)
The Hill estimator can be used to calculate a
i=k—1

-1
Gn = (1/k Zo (109X, —IogX(n_k))> 4

where n is the number of the observations, and k indicates how
many of the largest observations have been used to calculate ap.
Figure 15 shows that & is approximately 1.15.

Comparing the interarrival times to the number of playersin a ses-
sion shows some evidence of an inversely proportional relationship
(Figure 16); as the number of players in a session increases, the
interarrival times decrease. This supports the hypothesis that the
number of players is a determinant in other players decisions to
join asession.

The high variation in user duration and interarrival times have sev-
eral implications for price stability and provisioning if the mem-
bers of a multicast group are to share the overall cost of a session
amongst themselves. The autocorrelation in the number of play-
ers and interarrival times means that if the users are sharing the
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costs of a session, this cost will snowball; new users joining will
be followed by other usersjoining (and users will join faster as the
number of users increases), leading to rapid decreases in the cost
per user, and vice versa for when users leave. This could be rec-
tified, for example, by only changing the price for each user on a
periodic basis rather than with each join or leave. The autocorre-
lation seemsto exist for large lags, however, which means that the
periods of price reevaluation would also have to be large, and this
could impede the efficiency of any pricing scheme.

Cost sharing may also change the behaviour of players, since we
have observed that the number of playersin asessionisnot alarge
factor in the utility received from a game. Once network pricing
or QoS are a feature of networks, then users will need to choose
between network flows depending on the value that they receive
from each application; in other words, they will attempt to max-
imise their utility given their individual budgets. The price of a
session thus becomes a factor in user behaviour, and if the cost of
a session is shared amongst session members, then the number of
playersin asession will become afactor, sinceit will be a determi-
nant in the price of the session. Additionally, the number of users
in a session might affect the QoS, which would become a further
factor for users’ behaviour.
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7. CONCLUSIONSAND FUTURE WORK

There has been little study of session-level user behaviour in large-
scale multiple-source scenarios. In this paper we have presented
statistical analysis of several session-level traces of popular multi-
player networked games. We have found that the number of players
exhibits strong time-of-day and network externality effects, and we
have fitted an appropriate ARIMA model. Players’ duration times
fit an exponentia distribution, while interarrival times fit a heavy-
tailed distribution. The number of players in a session appears to
have a greater effect on players' decisions to join a session rather
than leave. In many respects we have observed similar behaviour
to that seen for multicast applications, despite the unicast nature of
these games. This implies that in the absence of appropriate mul-
ticast data, unicast multipoint applications are an appropriate sub-
stitute. We have discussed how these results could impact potential
multicast pricing policies and network provisioning.

Thereismuch future work that needs to be carried out. Understand-
ing user behaviour is but one stage in creating appropriate pricing
policies. It does not, for example, help us explain what users de-
sire or require. Future work will investigate the QoS requirements
for networked games, in particular, concentrating on how the re-
quirements change depending on the composition of a session and

group.

We also intend to look at packet-level traffic statistics. Some of
the results presented here have been similar to those of previous
packet-level games studies, and it will be interesting to conduct si-
multaneous analysis at the packet and session levels, to determine
whether there is any relationship between the behaviour at both
levels. This is important, for example, if QoS provisioning is to
take place through congestion pricing, i.e., charging users for the
network congestion that they cause. Most of the game server op-
erators and ISPs that we have spoken to do not log many of the
appropriate statistics, and so we intend to operate our own server in
order to collect packet-level data.

The study presented here has only looked at one type of game, the
FPS. Other types of games such asthe MMORPG (Massively Mul-
tiplayer Online Role-Playing Games) might exhibit different user
behaviour, since they may be dlightly slower paced, and can in-
volve thousands of users connecting to a single server, rather than
the large number of small groups in FPS games.
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