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A simple algorithm for spectral line deconvolution
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Abstract

The objective of this work is to develop a numerical procedure to subtract the instrumental function
from a measured spectral line pro0le. The measuring device (for example, a Fabry–Perot Interferometer)
distorts the spectral line pro0le and the experimentally measured one is a convolution of this pro0le and
the instrumental function. Restoring the spectral line pro0le is strongly a5ected by numerical instabilities
and the problem has been overcome by using the Tikhonov regularization method. The approach is very
simple and easy for programming and it is particularly useful for “noisy” experimental data. ? 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The subtraction of the instrumental function from a measured spectral line pro0le plays an
important role in low-temperature plasma diagnostics. A spectral line with frequency pro0le
z(!), passing through a measuring device with instrumental function A(!), is recorded exper-
imentally as u(!). By de0nition, u(!) is a convolution of the instrumental function and the
spectral line pro0le:∫ ∞

−∞
A(!−!′)z(!′) = u(!): (1)

The instrumental function has a normalization
∫∞
−∞ A(!) d!= 1. There are no limitations re-

garding the experimental pro0le, but for convenience it is assumed to be
∫∞
−∞ u(!) d!= 1.

The spectral line pro0le z(!) may be a singe line or several closely lying lines, which may
be poorly separated. Such a situation may occur, for example, if the spectral line belongs to
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element with rich isotope structure. The instrumental function will blur the distinction between
these lines and the deconvolution becomes highly desirable.

To solve Eq. (1) can be a formidable task. The experimentally measured spectral line pro0le
u(!) is recorded with certain precision and the error associated with these kind of measurements
often exceeds 5–10%. From mathematical point of view the solution of (1) is considered as
unstable, which means that small changes in the right-hand side of (1) u(!) potentially lead to
huge changes in the solution z(!). This is in fact a multi-valued solution, because u(!) usually
represents non-exact, “noisy” experimental data and variation of u(!) within the limits of its
uncertainty � generates a family of solutions whose di5erences signi0cantly exceed �. It is not
multi-valued if only we restrict the class of admissible solutions, using a priori information.
The integral equation (1) is an ill-posed problem and can be treated by using the Tikhonov’s
regularization method [1–3]. The stability of Eq. (1) is of utmost concern and a whole class
of di5erent methods for a variety of situations has been developed. A summary of the most
frequently used numerical techniques is given in a recent article [4].

2. Tikhonov’s regularization method

2.1. Tikhonov’s regularization method

The general algorithm for solving the inverse problem

A(!) ∗ z(!) = u(!) (2)

has been proposed by Tikhonov [1,2]. “A” is usually a linear operator acting on z. The regular-
ization method aims to obtain a single-valued, though an approximate solution. Single-valued
(stable) solution means that small variation of the right-hand side of Eq. (2) leads to compa-
rable variation of the solution. The concept is to arti0cially add a stabilizing term to Eq. (2)
in order to make it stable. This is achieved indirectly, by introducing the so-called smoothing
function

M�[z; u�] =	2(A ∗ z; u�) + �
[z]:

Tikhonov proved, that the problem of getting a single-valued (stable) solution is equivalent to
the problem of minimizing the smoothing function M�

minM�[z�; u�] (3a)

with the restriction

	(A ∗ z�; u�) = �: (3b)

The fundamental idea of Tikhonov’s regularization method is that Eqs. (3) generate a stable
(single-valued) solution and the uncertainty of this solution does not exceed the uncertainty of
the right-hand side u(!) [1–3]. Eq. (3a) introduces a new variable �, called regularization pa-
rameter, which must be determined from Eq. (3b). The right-hand side of (3b) is the uncertainty
of u(!), a good measure of which is the experimental error. The de0nition of 	(a; b) = ‖a− b‖
depends on the particular case and 
[z] is the stabilizing operator. z�(!) is the function, for
which M� has minimum.
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The Tikhonov’s regularization method is applied to solve Eq. (1), keeping in mind that the
right-hand side of (1) is actually a set of discrete experimental values. Let us have n discrete
values uk = u(!k), k= 1 : : : n. The integral can be easily handled, if for all k= 1 : : : n it is
replaced by a sum. Thus (1) reduces to a linear system of algebraic equations

Ẫz= ũ �: (4)

Eq. (4) is conveniently written in vector form. Vector ũ � comprises the set of experimental
data uk , k= 1 : : : n. Analogously, z̃ comprises the set of discrete values zk , k= 1 : : : n: Written
explicitly, Eq. (4) reads

∑n
m=1 Akmzm = uk with matrix elements Akm de0ned as

Akm =A(!k −!m)N!m; N!m =




(!2 −!1)=2; m= 1;
(!m+1 −!m−1)=2; 26m6 n− 1;
(!n −!n−1)=2; m= n;

where N!m are the integration coeOcients. The center of the instrumental function is assumed to
be at != 0. Unfortunately, Eq. (4) is an ill-posed problem, remedy for which is the Tikhonov’s
regularization method. Function 	 must be explicitly de0ned. For matrix operator, 	2(A∗z�; u�) ≡
‖Ẫz � − ũ �‖2. A simple and eOcient stabilizing operator 
[z] = ‖̃z‖2 =

∑n
k=1 z

2
k has been sug-

gested by Tikhonov. With this choice of 	 and 
 the smoothing operator M� can be constructed:

M� [̃z; ũ �] = ‖Ẫz − ũ �‖2 + �‖̃z‖2: (5)

The solution is vector z̃ �, for which M� reaches minimum. The most straightforward approach
to minimize M� is to set the derivative of M� zero:

@
@̃z

M� [̃z; ũ �]̃z=z̃ � = 0;

which leads to Â
T
Ẫz � − ÂT

ũ � + �̃z � = 0 [3]. With a little rearrangement, it takes form,

(Â
T
Â+ �Î)̃z � = Â

T
ũ �; (6a)

where Î is the unity matrix. Eq. (3b) readily reduces to

‖Ẫz � − ũ �‖= �: (6b)

Eqs. (6) are written in vector form. Written explicitly, (6a) and (6b) read
∑n
m=1 Bkmz

�
m = vk and√∑n

k=1
∑n
m=1 (Akmz�m − u�k)2 = �; respectively. Eq. (6a) is a system of linear algebraic equations

with matrix B̂= Â
T
Â+�Î. Matrix B is composed of matrix A multiplied by its transpose matrix

AT, plus � added to each diagonal element. The right-hand side of (6a) is a one-dimensional
vector ṽ = Â

T
ũ �, i.e. vk =

∑n
m=1 Amkum. Both the solution z�k , k= 1 : : : n; and the regularization

parameter � are calculated from (6a,b).
Further insight into the Tikhonov’s regularization method can be achieved by comparing

Eqs. (4) and (6). If the linear system of algebraic equations (4) is multiplied by the transposed
matrix Â

T
, one gets

Â
T
Ẫz= Â

T
ũ �: (7)
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The only di5erence between (6a), derived from the regularization method, and (7), is that � has
been added to the matrix diagonal elements of (6a). This is the concept of the regularization
method: by adding � to all diagonal matrix elements ATA, the system of linear algebraic equa-
tions (6a) becomes stable (single-valued). But since the term �̃z �, resulting from the smoothing
operator 
, has been added to Eq. (6a), the norm of the error ‖Ẫz � − ũ �‖ is no longer zero
(see Eq. (6b)). In contrast, ‖Ẫz− ũ �‖ is exactly zero for Eq. (7). Obviously, Eq. (6a) (slightly)
di5ers from the originally derived equation (7) and solving (6a) will provide a solution z�(!),
di5erent than the solution z(!) of Eq. (7). But due to the constraint (6b), Eq. (6a) gener-
ates a solution z�(!); whose error does not exceed the error � of u(!). Thus, the Tikhonov’s
regularization method provides an approximate, but single-valued solution, which depends on
� through the parameter �. Note that in the limiting case �→ 0; Eq. (6a) approaches (7).

2.2. Numerical procedure

The numerical procedure starts with an appropriate choice of �. The matrix elements of B
are calculated according to B̂= Â

T
Â + �Î and the system of linear algebraic equations (6a) is

solved. The solution z�k is obtained and the left-hand side of (6b) is calculated:

’(�) =

√√√√ n∑
k=1

n∑
m=1

(Akmz�m − u�k)2: (8)

If |’(�) − �|6 �, the numerical procedure stops and z�k is the solution. If not, another value
for � is chosen and the aforementioned steps are repeated until (6b) is ful0lled. Fortunately,
’(�) is a monotonic function of � [1,2] (Fig. 1) and the equation ’(�) − �= 0 can be solved
without problems.

The numerical procedure described needs � as an input parameter. By de0nition, � is the
uncertainty with which u(!) is known. Its value depends on the particular situation, but the
experimental data u(!) often suggests the choice of �. For example, if the experimental error

�exp is equal for all !, one may simply put �= �exp‖̃u‖= �exp

√∑n
k=1 u

2
k . If �exp depends on !,

one may set as �exp the experimental error at the center of the experimental spectral line pro0le,

Fig. 1. A typical dependence of ’(�) − �.
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Fig. 2. A simulation of instrumental and “experimental” functions and the solution of Eqs. (7a), and Eqs. (6b).

since the values there are among the largest and give the major contribution to the uncertainty
of the experimental data. The initial choice of � is easy, since the parameter of regularization
� is closely related and depends on the experimental error �. One may start with initial guess
�= �.

2.3. Advantages and limitations of the numerical approach

The main advantage of applying the Tikhonov’s regularization method is that a single-valued
solution is guaranteed. Otherwise, “noisy” experimental data would “blow up” the solution if
Eq. (4) or (7) are solved (Fig. 2). Raw experimental data may be readily used; there is no
need to smooth or approximate these data. The experimental data need not be equidistant. The
matrix B is symmetric and positively de0ned; a good advantage when solving a system of
linear algebraic equations. The solution is usually smooth in spite of the “noisy” character of
the experimental data. Deconvolution with 1000 experimental points can easily be performed
on a regular PC. There are few limitations regarding the experimental points. One of them is
that at both ends they must be much smaller compared to the maximal value.

3. Results and discussions

The Fabry–Perot Interferometry is a very good tool for plasma diagnostics. The spectral line
pro0les provide information about the electron density, electron and gas temperature. Fortunately,
the Fabry–Perot Interferometer has a well-known instrumental function. Fig. 2a illustrates sim-
ulated instrumental and “experimental” functions as well as the solution of Eq. (7). Without
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Fig. 3. A simulation of instrumental: (a) test and noisy “experimental” functions and; (b) comparison of the test
function with the deconvoluted function.

applying the Tikhonov’s regularization method the solution of (7) is practically meaningless.
One can compare this solution with the solution of Eqs. (6) (Fig. 2b), when the Tikhonov’s
regularization method has been applied.

Fig. 3 displays a test of the numerical procedure. A spectral line, which consists of two
overlapping components, has been chosen as a test pro0le (Fig. 3, dashed line). To simulate
the experimental function, a convolution with an appropriately chosen instrumental function
(dotted line) has been performed and a background “noise” of pexp = 10% has been additionally
applied (each value has been multiplied by a random number between 1−pexp and 1+pexp). The
simulated experimental points are equidistant with di5erence between them N!. The result is
illustrated in Fig. 3a with full circles. The two spectral line components are hard to distinguish
and the deconvolution is a real challenge. Fig. 3b shows a comparison of the deconvoluted

function obtained by solving Eqs. (6) with �= 0:10�exp

√∑n
k=1 u

2
k and the test function. The

spectral line components are now clearly visible. The minor di5erence between the test function
and the deconvoluted one is due to the background noise applied to the experimental function.
Apart from that, the deconvolution has been successful.

4. Other applications

The plasma probe is widely used to measure the electron energy distribution function (EEDF).
From the experimentally measured high-energy part of the EEDF in the late afterglow the rate
coeOcient for superelastic collisions, hemiionization, Penning ionization, etc. can be determined.
But the modulating voltage tends to broaden the EEDF and the real EEDF can be calculated by
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solving an inverse problem similar to (1), which has been demonstrated in [5]. The technique
can be applied to other problems, which can be reduced to Eq. (1).

5. Conclusions

A numerical technique to subtract the instrumental function from “noisy” experimental data
has been developed by using the Tikhonov’s regularization method. The technique has been
tested; a deconvolution has been performed and the test spectral line pro0le has been successfully
restored. The numerical technique is simple; its essential part is a solution of a system of linear
algebraic equations. There are very few limitations regarding the spectral line pro0le and the
technique works in most practical cases.
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