MATHEMATIC LANGUAGE
OF THE GENES
Today's science exercises a lot of effort to discover
the essence of genetic processes. Realization of project "GENOME"
is taking place at the very moment. That is one of the biggest scientific
projects in history of humankind. However science hasn't been able to
achieve noticeable results in that field of exploration yet. These results
are not being achieved due to not using of regularities from God's formula
for creation of the World. And these are, in the front of all: regularities of
sequencing of molecules in shape of number 931.
P R O T E I N E
Experimental research of existence or non
existence of amino acid code performs in science for a longer period, but that phenomenon
is still not completely explained. Scientists, first able investigate
possibility that genetic code has a stereo chemical origin (D. Grafstein,
Anderson, Jukas, Yoshiyki Kuchino, Yamao, Cribbs, etc.) While that, they
do not pay enough attention o. program cybernetic and information
lawfulness in genetic processes. And, that it is necessary to explore that
aspect of those problems points the discoveries, which we discovered in
that researches of schedule of periodic in biochemical process. Detailed
analysis of periodic schedule of genetic code tells us that periodicity is
accomplished by sequencing of molecule and is based
on a mathematical law.
Example:
Amino acids
|
Amino acid 1 |
|
|
|
Amino acid 2 |
|
å |
|
ß |
|
å |
|
æ |
HNH |
|
COOH |
|
HNH |
|
COOH |
ß |
|
ß |
|
ß |
|
ß |
1,7,1 |
|
6,8,8,1 |
|
1,7,1 |
|
6,8,8,1 |
Connection |
|
Connection |
|
Connection |
|
Connection |
ß |
|
ß |
|
ß |
|
ß |
171 |
|
6881 |
|
171 |
|
6881 |
æ |
|
æ |
|
å |
|
å |
|
|
|
14104 |
|
|
|
|
|
å |
ß |
æ |
|
|
931+931+931 |
931 |
931+931+931 |
139| |
931 |
931+931+931 |
931 |
931+931+931 |
(171 + 6881 + 171 + 6881) = 14104;
14104 = [
(931+931+931+931+931+931+931)+ (139+931) +
+(931+931+931+931+931+931+931)]
;
.............................................................
Peptide the
chain
|
Amino acid1 |
|
|
|
Amino acide2 |
|
å |
|
æ |
|
å |
|
æ |
HNH |
|
CONH |
|
COOH |
|
HOH |
ß |
|
ß |
|
ß |
|
ß |
1,7,1 |
|
6,8,7,1 |
|
6,8,8,1 |
|
1,8,1 |
Connection |
|
Connection |
|
Connection |
|
Connection |
ß |
|
ß |
|
ß |
|
ß |
171 |
|
6871 |
|
6881 |
|
181 |
æ |
|
æ |
|
å |
|
å |
|
|
|
14104 |
|
|
|
|
|
å |
ß |
æ |
|
|
931+931+931 |
931 |
931+931+ 931 |
139| |
931 |
931+931+ 931 |
931 |
931+931+ 931 |
(171+6871+6881+181) = 14104;
14104 = (931+931+931+931+931+931+931+ (139+931) +
+(931+931+931+931+931+931+931);
……………………………………………….
etc.
PERIODICITY AND
COMPLEMENTARITIES
IN THE AMINO
ACID MATRIX CODE
The functioning pf genetic code is not completely
resolved.
The confuss on exists in amino acids code which would be analogue
to nucleotide and how to classify amino acids.
Mathematical analysis of
"Gray code" model which was completed not long ago discovers
that in that model we can classify amino acids into 16 complementary and
corresponding groups. The criteria for this classification is the number of
atoms in those amino acids. When we do this we will discover that
mathematical base of periodical law really exists. We are going do
discover that sequences of molecules in genetic process is
possible, according
to the program systems, cybernetic systems, information systems and
according to the laws. These are concrete results:
There is no doubt and there should never be a doubt. The
processes in genetics are not only the matter of physical-chemical issue
of objective material relationship. First of all it is matter of
mathematical , program, cybernetic and information system and lawfulness.
DECODING SCHEME
ATGC = ( C1, H11, O4, N15 )
(S1 + S11 + S4 + S15) = (1 + 66 + 10 + 120) =
197;
-----------------------------------------------
ATGC = 4 nucleotides; Analog code = 40;
A = 7 atoms; Analog code = 70;
T = 9 atoms; Analog code = 90;
G = 6 atoms; Analog code = 60;
C = 9 atoms; Analog code = 9o;
Amino acid Code Matrix = 20 amino acids;
= 382 atoms; Analog code = 283;
(4+40+7+70+9+90+6+60+9+90+20+382+283)= 1070 =(139
+ 931)
----------------------------------------------------------------
ATGC = (A = 7 atoms; T = 9 atoms; G = 6 atoms; C = 9
atoms;)
(S7 + S9 + S6 + S9) = (28 + 45 + 21 + 45) = 139;
139 ½
½ 931
…………………………………………………
In amino acid Matrix Code has 64 codons an 20 amino
acids.
Connecting 64 and 20 = 6420;
6420 = (139 +
931 + 139 + 931 + 139 + 931 + 139 + 931 + 139 + 931 +139 + 931);
--------------------
Analog code in amino acid Code Matrix = (Number of atoms
in codons +
+Number of atoms in amino acid)
Amino acid Code Matrix:
C=107; Analog code = 701:
H=197; Analog code = 791;
O=48; Analog code = 84;
N= 28; Analog code = 82;
S=2; Analog code = 20;
( 701 + 791 + 84 + 82 + 20 ) = 1678;
------------------------------
Number of atoms in codons = 1296;
Number of atoms in amino acids= 382;
(1296 + 382) = 1678;
--------------------
(701 + 791 + 84 +82 + 20) = (1296 + 382);
1678 = 1678;
---------------------------------------
(107+701+197+791+48+84+28+82+2+20)= 2060;
2060= (197 +
719) + ( 74 + 139 + 931);
-------------------
Atomic numbers of the chemical elements in amino acids:
107x6= 642; 197x1=197; 48x8=384; 28x7=196; 2x16=32;
(642+197+384+196+32)= 1451;
Analog code= (246+791+483+691+23)= 2234;
2234 = (139 + 139 + 1678 + 139 + 139);
139 ½
½ 931
-------------------
(2234+1451) = 3685
3685 = [ (197 + 719) + (A1 +
A2 + A3) + (719 + 197)] ;
A1 = Number of amino acids = 20;
A2 = Number of atoms in amino acids;
A3 = Number of protons (and electrons) in amino acid;
3685 = [ (197 + 719) + (20 +
382 + 1451) + (719 + 197)] ;
--------------------------------------------
These are only some of
the fragments from matrix code in genetic processes. Those processes are
sequenced with numbers: 19, 7 and 931.
By using these regularities we can discover in a very short period the
essence of these processes and find explenation for all the secrets from
the field of genetics. It can be expected that great changes in that
particular science are going to take place.
WHAT IS SO
ESSENTIAL ABOUT THIS DISCOVERY:
This discovery, according to our opinion, will
have great impact on the future development of biology, chemistry,
physics, medicine, and especially genetic biochemistry. Now, it is going
to be possible to use completely new strategy of research in all sciences,
so we can expect rapid development of such fields especially genetics,
medicine, and nuclear physics. This discovery will also have an impact on
human nature because we will no longer be able to talk about some
coincidental cases in the creation of our material world. With
mathematical language, the nature is telling us that everything that
exists - is pure physical-chemical determination.
MATHEMATIC
LANGUAGE OF THE NUCLEOTIDES
Introduction
The subject under this discussion is research of the
cybernetic and information lawfulness in nucleotide code matrix.
The scientific-research results that we
found during our research of the phenomenons in genetics is conditioned and arranged not only with
chemical and biochemical, but also with program-cybernetic and information
lawfulness too.
The modern science is seeking for periodical law and
periodical code. The question is does that code exists and how
it looks like? During this scientific research
of the phenomenons in genetics we find out some of
those secrets. With this content we wish to inform
scientific
public with program-cybernetics lawfulness in nucleotide matrix
code .
Methods
of research
In our scientific-research work, we use some new methods
and techniques, which are not applied in contemporary science till now. It
is a question of the following: for the sequences from the phenomenons,
which we research, we fix a corresponding numerical value. In this manner,
we expressed this phenomenons in numbers. After that, we research, if
these numbers in this phenomenons are arranged according to corresponding
lawfulness. In fact, we research program, cybernetic, information and
systematic characteristic of this phenomenon. The main role in this new
scientific method has lawfulness of groups of numbers
The pairs of
nucleotides
Codes key of nucleotide Code Matrix are numbers: 7, 19,
and 931. These numbers are the alphabet of genetic language. When these
“letters” connect in words we get computer relations of a different
kind, and fundamental one is a sequencing of these phenomenon's in the sign
of number 77.
Pair AT
Adenine (A) = 37 electrons (and protons)
Timin (T) = 40 electrons (and protons)
A + T = 77 electrons and protons
--------------------------------------------------
Pair GC
Guanine (G) = 46 electrons (and protons)
Cytosine (C) = 31 electrons (and protons)
G + C = 77 electrons and protons
---------------------------------------------------
Well, Adenine (A) and Timin (T) represent a couple of
nucleotides with 77 electrons, and the same number of protons. Guanine (G)
and Cytosine (C) represent a couple of nucleotides with 77 electrons and
protons too. In this example, the chemical balance in distribution of
electrons and protons is achieved. This is the key to the matrix mechanism
in biochemical information channels: DNA Þ Dna,
DNA Þ RNA, and DNA Þ
RNA Þ protein.
We can see that
from the next scheme:
Code ATGC
Nucleotides |
Number of electrons, and protons |
Total |
T - A |
40 – 37 |
77 |
A - T |
37 – 40 |
77 |
Total |
77 |
154 |
G - C |
46 – 31 |
77 |
C - G |
31 – 46 |
77 |
Total |
77 |
154 |
etc.
Analog
code
Every phenomenon in Nature has it's arithmetical
expression, and analog arithmetical expression. This means that in matrix
code of the Nature there is another analog code existing. Example: Analog
code of code 197 is number 791. Analog code of code 931 is number 139,
etc.
Analog code ATGC
Nucleotides |
Code |
Analog code |
Total |
T - A |
40 – 37 |
04 – 73 |
77 |
A - T |
37 – 40 |
73 – 04 |
77 |
Total |
77 |
77 |
154 |
|
|
|
|
G - C |
46 – 31 |
64 – 13 |
77 |
C - G |
31 – 46 |
13 – 64 |
77 |
Total |
77 |
77 |
154 |
etc.
As we can see these pairs of nucleotides are coded with
analog codes.
Connecting electrons
TA Þ 40 and 37; Connection Þ
4037;
AT Þ 37 and 40; Connection Þ
3740;
(4037 + 3740) = 7777;
*************************
Analog code
TA Þ Code = 40 and 37;
Analog code = 04 and 73;
Connection of analog code = 04 and 73 = 0473;
AT Þ Code = 37 and 40;
Analog code = 73 and 04;
Connection of analog code = 73 and 04 = 7304;
(0473 + 7304 ) = 7777;
**********************************
GC Þ 46 and 31; Connection Þ
4631;
CG Þ 31 and 46; Connection Þ
3146;
(4631 + 3146) = 7777;
*************************
Analog code
GCCG
GC Þ 46 and 31;Analog code =
64 and 13; Connection Þ 6413;
CG Þ 31 and 46; Analog code
=13 and 64; Connection Þ 1364;
(6413 + 1364) = 7777;
**********************************
etc.
GENETIC
MATRIX CODE
|
|
U |
C |
A |
G |
|
U |
1
2
3
4 |
UUU
UUC
UUA
UUG |
UCU
UCC
UCA
UCG |
UAU
UAC
UAA
UAG |
UGU
UGC
UGA
UGG |
U
C
A
G |
C |
5
6
7
8 |
CUU
CUC
CUA
CUG |
CCU
CCC
CCA
CCG |
CAU
CAC
CAA
CAG |
CGU
CGC
CGA
CGG
|
U
C
A
G |
A |
1
2
3
4 |
AUU
AUC
AUA
AUG |
ACU
ACC
ACA
ACG |
AAU
AAC
AAA
AAG |
AGU
AGC
AGA
AGG |
U
C
A
G |
G |
5
6
7
8 |
GUU
GUC
GUA
GUG |
GCU
GCC
GCA
GCG |
GAU
GAC
GAA
GAG |
GGU
GGC
GGA
GGG |
U
C
A
G |
Number of atoms
in Genetic Matrix Code
|
|
U |
C |
A |
G |
Total |
|
U |
1
2
3
4 |
UUU=15
UUC=16
UUA=17
UUG=19 |
UCU=16
UCC=17
UCA=18
UCG=20 |
UAU=17
UAC=18
UAA=19
UAG=21 |
UGU=19
UGC=20
UGA=21
UGG=23 |
67
71
75
83 |
U
C
A
G |
|
Total |
67 |
71 |
75 |
83 |
|
|
C |
5
6
7
8 |
CUU=16
CUC=17
CUA=18
CUG=20 |
CCU=17
CCC=18
CCA=19
CCG=21 |
CAU=18
CAC=19
CAA=20
CAG=22 |
CGU=20
CGC=21
CGA=22
CGG=24
|
71
75
79
87 |
U
C
A
G |
|
Total |
71 |
75 |
79 |
87 |
|
|
A |
1
2
3
4 |
AUU=17
AUC=18
AUA=19
AUG=21 |
ACU=18
ACC=19
ACA=20
ACG=22 |
AAU=19
AAC=20
AAA=21
AAG=23 |
AGU=21
AGC=22
AGA=23
AGG=25 |
75
79
83
91 |
U
C
A
G |
|
Total |
75 |
79 |
83 |
91 |
|
|
G |
5
6
7
8 |
GUU=19
GUC=20
GUA=21
GUG=23 |
GCU=20
GCC=21
GCA=22
GCG=24 |
GAU=21
GAC=22
GAA=23
GAG=25 |
GGU=23
GGC=24
GGA=25
GGG=27 |
83
87
91
99 |
U
C
A
G |
|
Total |
83 |
87 |
91 |
99 |
|
|
|
Total |
296 |
312 |
328 |
360 |
1296 |
|
In this example sequencing is conditioned with number of
atoms in triplet of codons. In this table, mathematics legality in
compression of amount of atoms is very obvious.
Correlation of
triplet
Example 1
UGU, UAU, UCU, UUU = 19, 17, 16, 15 atoms,
UUU, UCU, UAU, UGU = 15, 16, 17, 19 atoms,
Connection:
(19,17,16,15) and (15,16,17,19) = (19171615 –
15161719) = 4009896;
********************
UGC, UAC, UCC, UUC = 20, 18, 17, 16 atoms,
UUC, UCC, UAC, UGC = 16, 17, 18, 20 atoms.
Connection:
(20,18,17,16) and (16,17,18,20) = (20181716 - 16171820)
= 4009896;
********************
UGA, UAA, UCA, UUA = 21¸, 19, 18, 17 atoms,
UUA, UCA, UAA, UGA = 17, 18, 19, 21 atoms,
Connection:
(21,19,18,17) and (17,18,19,21) = (21191817 - 17181921)
= 4009896;
********************
UGG, UAG, UCG, UUG = 23, 21, 20, 19 atoms,
UUG, UCG, UAG, UGG = 19, 20, 21, 23 atoms,
Connection:
(23,21,20,19) and (19,20,21,23) = (23212019 - 19202123)
= 4009896;
********************
etc.
Example 2
UUU, UUC, UUA, UUG = (15, 16, 17, 19); Connection =
15161719;
UGU, UGC, UGA, UGG = (19, 20, 21, 23); Connection = 19202123;
Total 34363842
***********************
UCU, UCC, UCA, UCG = (16, 17, 18, 20); Connection =
16171819;
UAU, UAC, UAA, UAG = (17, 18, 19, 21); Connection= 17181921;
Total 33353741
*************************
( 34363842 – 33353741 ) = 1010101;
----------------------------------------------------------------------
CUU, CUC, CUA, CUG = (16, 17, 18, 20); Connection =
16171820;
CGU, CGC, CGA, CGG = (20, 21, 22, 24); Connection =20212224;
Total 36384044
**********************
CCU, CCC, CCA, CCG = (17, 18, 19, 21); Connection =
17181921;
CAU, CAC, CAA, CAG = (18, 19, 20, 22); Connection = 18192022;
Total 35373943
**********************
( 36384044 – 35373943 ) = 1010101;
----------------------------------------------------------------------
etc.
Example 3
UUG, UUA, UUC, UUU = (19, 17, 16, 15); Connection =
19171615;
UGG, UGA, UGC, UGU = (23, 21, 20, 19); Connection = 23212019;
Total 42383634
************************
UCG, UCA, UCC, UCU = (20, 18, 17, 16); Connection=
20181716;
UAG, UAA, UAC, UAU = (21, 19, 18, 17); Connection = 21191817;
Total 41373533
**********************
( 42383634 – 41373533 ) = 1010101;
---------------------------------------------------------------------
CUG, CUA, CUC, CUU = (20, 18, 17, 16); Connection =
20181716;
CGG, CGA, CGC, CGU = (24, 22, 21, 20); Connection = 24222120;
Total 44403836
************************
CCG, CCA, CCC, CCU = (21, 19, 18, 17); Connection =
21191817;
CAG, CAA, CAC, CAU = (22, 20, 19, 18); Connection = 22201918;
Total 43393735
************************
( 44403836 – 43393735 ) = 1010101;
---------------------------------------------------------------------
etc.
Example 4
UUU, UCU, UAU, UGU = (15, 16, 17, 19); Connection =
15161719;
GUG, GCG, GAG,GGG = (23, 24, 25, 27); Connection = 23242527;
Total 38404246
************************
UUG, UCC, UAC, UGC = (16, 17, 18, 20); Connection =
16171820;
GUA, GCA, GAA, GGA = (21, 22, 23, 25); Connection = 21222325;
Total 37394145
************************
( 38404246 – 37394145 ) = 1010101;
---------------------------------------------------------------------
UUA, UCA, UAA, UGA = (17, 18, 19, 21); Connection=
17181921;
GUC, GCC, GAC,GGC = (20, 21, 22, 24); Connection = 20212224;
Total 37394145
************************
UUG, UCG, UAG, UGG = (19, 20, 21, 23); Connection =
19202123;
GUU, GCU, GAU, GGU = (19, 20, 21, 23); Connection = 19202123;
Total 38404246
*************************
( 38404246 – 37394145 ) = 1010101;
---------------------------------------------------------------------
Example 5
Groups of atoms: 67, 71, 75, 83; Connection = 67717583;
Groups of atoms: 83, 75, 71, 67; Connection = 83757167;
(83757167 – 67717583) = 16039584;
************************
Groups of atoms:71,75, 79, 87; Connection = 71757987;
Groups of atoms: 87, 79, 75, 71; Connection = 87797571;
(87797571 – 71757987) = 16039584;
************************
Groups of atoms:75,79, 83, 91; Connection = 77798391;
Groups of atoms: 91, 83, 79, 75; Connection = 91837975;
(91837975 – 75798391) = 16039584;
************************
Groups of atoms: 83, 87, 91, 99; Connection = 83879199;
Groups of atoms: 99, 91, 87, 83; Connection = 99918783;
(99918783 – 83879199) = 16039584;
************************
etc.
In this examples, mathematics legality in comparation
of amount of atoms is very obvious.
That mathematics legality can be seen from the following
squares:
Binary
code
This text is dealing with proofs of the binary
arrangement rule for the characteristics of genetic code units.
Example 1:
Table 1 Binary code (Fragment 1777776)
(0) |
000000 |
UUU |
F |
|
(0) |
001000 |
UCU |
S |
(1) |
000001 |
UUC |
F |
|
(1) |
001001 |
UCC |
S |
(2) |
000010 |
UUA |
L |
|
(2) |
001010 |
UCA |
S |
(3) |
000011 |
UUG |
L |
|
(3) |
001011 |
UCG |
S |
(4) |
000100 |
CUU |
L |
|
(4) |
001100 |
CCU |
P |
(5) |
000101 |
CUC |
L |
|
(5) |
001101 |
CCC |
P |
(6) |
000110 |
CUA |
L |
|
(6) |
001110 |
CCA |
P |
(7) |
000111 |
CUG |
L |
|
(7) |
001111 |
CCG |
P |
Total |
000444 |
|
|
|
Total |
008444 |
|
|
(0) |
010000 |
AUC |
I |
|
(0) |
011000 |
ACU |
T |
(1) |
010001 |
AUU |
I |
|
(1) |
011001 |
ACC |
T |
(2) |
010010 |
AUA |
I |
|
(2) |
011010 |
ACA |
T |
(3) |
010011 |
AUG |
M |
|
(3) |
011011 |
ACG |
T |
(4) |
010100 |
GUU |
V |
|
(4) |
011100 |
GCU |
A |
(5) |
010101 |
GUC |
V |
|
(5) |
011101 |
GCC |
A |
(6) |
010110 |
GUA |
|
|
(6) |
011110 |
GCA |
A |
(7) |
010111 |
GUG |
V |
|
(7) |
011111 |
GCG |
A |
Total |
080444 |
|
|
|
Total |
088444 |
|
|
(0) |
101000 |
UGU |
C |
|
(0) |
100000 |
UAU |
Y |
(1) |
101001 |
UGC |
C |
|
(1) |
100001 |
UAC |
Y |
(2) |
101010 |
UGA |
* |
|
(2) |
100010 |
UAA |
¨ |
(3) |
101011 |
UGG |
W |
|
(3) |
100011 |
UAG |
¨ |
(4) |
101100 |
CGU |
R |
|
(4) |
100100 |
CAU |
H |
(5) |
101101 |
CGC |
R |
|
(5) |
100101 |
CAC |
H |
(6) |
101110 |
CGA |
R |
|
(6) |
100110 |
CAA |
Q |
(7) |
101111 |
CGG |
R |
|
(7) |
100111 |
CAG |
Q |
Total |
808444 |
|
|
|
Total |
800444 |
|
|
(0) |
111000 |
AGU |
S |
|
(0) |
110000 |
AAU |
N |
(1) |
111001 |
AGC |
S |
|
(1) |
110001 |
AAC |
N |
(2) |
111010 |
AGA |
R |
|
(2) |
110010 |
AAA |
K |
(3) |
111011 |
AGG |
R |
|
(3) |
110011 |
AAG |
K |
(4) |
111100 |
GGU |
G |
|
(4) |
110100 |
GAU |
D |
(5) |
111101 |
GGC |
G |
|
(5) |
110101 |
GAC |
D |
(6) |
111110 |
GGA |
G |
|
(6) |
110110 |
GAA |
E |
(7) |
111111 |
GGG |
G |
|
(7) |
110111 |
GAG |
E |
Total |
888444 |
|
|
|
Total |
880444 |
|
|
Total |
1777776 |
|
|
|
Total |
1777776 |
|
|
In this table, mathematics legality in comparation of
amount of binary units is very obvious.
Table 2 - Binary
code (Fragment UCAG)
|
|
|
|
Atoms |
Total |
|
|
|
Atoms |
Total |
|
(0) |
000000 |
F |
UUU |
5,5,5 |
15 |
001000 |
S |
UCU |
5,6,5 |
16 |
(0) |
(1) |
000001 |
F |
UUC |
5,5,6 |
16 |
001001 |
S |
UCC |
5,6,6 |
17 |
(1) |
(2) |
000010 |
L |
UUA |
5,5,7 |
17 |
001010 |
S |
UCA |
5,6,7 |
18 |
(2) |
(3) |
000011 |
L |
UUG |
5,5,9 |
19 |
001011 |
S |
UCG |
5,6,9 |
20 |
(3) |
(4) |
000100 |
L |
CUU |
6,5,5 |
16 |
001100 |
P |
CCU |
6,6,5 |
17 |
(4) |
(5) |
000101 |
L |
CUC |
6,5,6 |
17 |
001101 |
P |
CCC |
6,6,6 |
18 |
(5) |
(6) |
000110 |
L |
CUA |
6,5,7 |
18 |
001110 |
P |
CCA |
6,6,7 |
19 |
(6) |
(7) |
000111 |
L |
CUG |
6,5,9 |
20 |
001111 |
P |
CCG |
6,6,9 |
21 |
(7) |
Total |
000444 |
|
|
4854 |
138 |
008444 |
|
|
4934 |
146 |
|
(0) |
011000 |
T |
ACU |
7,6,5 |
18 |
010000 |
I |
AUC |
7,5,6 |
18 |
(0) |
(1) |
011001 |
T |
ACC |
7,6,6 |
19 |
010001 |
I |
AUU |
7,5,5 |
17 |
(1) |
(2) |
011010 |
T |
ACA |
7,6,7 |
20 |
010010 |
I |
AUA |
7,5,7 |
19 |
(2) |
(3) |
011011 |
T |
ACG |
7,6,9 |
22 |
010011 |
M |
AUG |
7,5,9 |
21 |
(3) |
(4) |
011100 |
A |
GCU |
9,6,5 |
20 |
010100 |
V |
GUU |
9,5,5 |
19 |
(4) |
(5) |
011101 |
A |
GCC |
9,6,6 |
21 |
010101 |
V |
GUC |
9,5,6 |
20 |
(5) |
(6) |
011110 |
A |
GCA |
9,6,7 |
22 |
010110 |
V |
GUA |
9,5,7 |
21 |
(6) |
(7) |
011111 |
A |
GCG |
9,6,9 |
24 |
010111 |
V |
GUG |
9,5,9 |
23 |
(7) |
Total |
088444 |
|
|
6934 |
166 |
080444 |
|
|
6854 |
158 |
|
(0) |
100000 |
Y |
UAU |
5,7,5 |
17 |
101000 |
C |
UGU |
5,9,5 |
19 |
(0) |
(1) |
100001 |
Y |
UAC |
5,7,6 |
18 |
101001 |
C |
UGC |
5,9,6 |
20 |
(1) |
(2) |
100010 |
¨ |
UAA |
5,7,7 |
19 |
101010 |
¨ |
UGA |
5,9,7 |
21 |
(2) |
(3) |
100011 |
¨ |
UAG |
5,7,9 |
21 |
101011 |
W |
UGG |
5,9,9 |
23 |
(3) |
(4) |
100100 |
H |
CAU |
6,7,5 |
18 |
101100 |
R |
CGU |
6,9,5 |
20 |
(4) |
(5) |
100101 |
H |
CAC |
6,7,6 |
19 |
101101 |
R |
CGC |
6,9,6 |
21 |
(5) |
(6) |
100110 |
Q |
CAA |
6,7,7 |
20 |
101110 |
R |
CGA |
6,9,7 |
22 |
(6) |
(7) |
100111 |
Q |
CAG |
6,7,9 |
22 |
101111 |
R |
CGG |
6,9,9 |
24 |
(7) |
Total |
800444 |
|
|
5014 |
154 |
808444 |
|
|
5174 |
170 |
|
(0) |
111000 |
S |
AGU |
7,9,5 |
21 |
110000 |
N |
AAU |
7,7,5 |
19 |
(0) |
(1) |
111001 |
S |
AGC |
7,9,6 |
22 |
110001 |
N |
AAC |
7,7,6 |
20 |
(1) |
(2) |
111010 |
R |
AGA |
7,9,7 |
23 |
110010 |
K |
AAA |
7,7,7 |
21 |
(2) |
(3) |
111011 |
R |
AGG |
7,9,9 |
25 |
110011 |
K |
AAG |
7,7,9 |
23 |
(3) |
(4) |
111100 |
G |
GGU |
9,9,5 |
23 |
110100 |
D |
GAU |
9,7,5 |
21 |
(4) |
(5) |
111101 |
G |
GGC |
9,9,6 |
24 |
110101 |
D |
GAC |
9,7,6 |
22 |
(5) |
(6) |
111110 |
G |
GGA |
9,9,7 |
25 |
110110 |
E |
GAA |
9,7,7 |
23 |
(6) |
(7) |
111111 |
G |
GGG |
9,9,9 |
27 |
110111 |
E |
GAG |
9,7,9 |
25 |
(7) |
Total |
888444 |
|
|
7174 |
190 |
880444 |
|
|
7014 |
174 |
|
Total |
1777776 |
|
|
23976 |
648 |
1777776 |
|
|
23976 |
648 |
|
In this example sequencing is conditioned with
number of atoms in triplet of codons.
Table
3
Binary
code (Fragment CGTA)
|
|
|
Number of atoms |
Total |
|
Number of atoms |
|
Total |
|
(0) |
000000 |
C,C,C |
6,6,6 |
18 |
001000 |
C,G,C |
6,9,6 |
21 |
(0) |
(1) |
000001 |
C,C,A |
6,6,7 |
19 |
001001 |
C,G,A |
6,9,7 |
22 |
(1) |
(2) |
000010 |
C,C,G |
6,6,9 |
21 |
001010 |
C,G,G |
6,9,9 |
24 |
(2) |
(3) |
000011 |
C,C,T |
6,6,9 |
21 |
001011 |
C,G,T |
6,9,9 |
24 |
(3) |
(4) |
000100 |
A,C,C |
7,6,6 |
19 |
001100 |
A,G,C |
7,9,6 |
22 |
(4) |
(5) |
000101 |
A,C,A |
7,6,7 |
20 |
001101 |
A,G,A |
7,9,7 |
23 |
(5) |
(6) |
000110 |
A,C,C |
7,6,9 |
22 |
001110 |
A,G,G |
7,9,9 |
25 |
(6) |
(7) |
000111 |
A,C,T |
7,6,9 |
22 |
001111 |
A,G,T |
7,9,9 |
25 |
(7) |
Total |
000444 |
|
5742 |
162 |
008444 |
|
5982 |
186 |
|
(0) |
011000 |
C,T,C |
6,9,6 |
21 |
010000 |
C,A,C |
6,7,6 |
19 |
(0) |
(1) |
011001 |
C,T,A |
6,9,7 |
22 |
010001 |
C,A,A |
6,7,7 |
20 |
(1) |
(2) |
011010 |
C,T,G |
6,9,9 |
24 |
010010 |
C,A,G |
6,7,9 |
22 |
(2) |
(3) |
011011 |
C,T,T |
6,9,9 |
24 |
010011 |
C,A,T |
6,7,9 |
22 |
(3) |
(4) |
011100 |
A,T,C |
7,9,6 |
22 |
010100 |
A,A,C |
7,7,6 |
20 |
(4) |
(5) |
011101 |
A,T,A |
7,9,7 |
23 |
010101 |
A,A,A |
7,7,7 |
21 |
(5) |
(6) |
011110 |
A,T,G |
7,9,9 |
25 |
010110 |
A,A,G |
7,7,9 |
23 |
(6) |
(7) |
011111 |
A,T,T |
7,9,9 |
25 |
010111 |
A,A,T |
7,7,9 |
23 |
(7) |
Total |
088444 |
|
5982 |
186 |
080444 |
6854 |
5822 |
170 |
|
(0) |
100000 |
T,A,C |
9,7,6 |
22 |
101000 |
G,T,C |
9,9,6 |
24 |
(0) |
(1) |
100001 |
T,A,A |
9,7,7 |
23 |
101001 |
G,T,A |
9,9,7 |
25 |
(1) |
(2) |
100010 |
T,A,G |
9,7,9 |
25 |
101010 |
G,T,C |
9,9,9 |
27 |
(2) |
(3) |
100011 |
T,A,T |
9,7,9 |
25 |
101011 |
G,T,T |
9,9,9 |
27 |
(3) |
(4) |
100100 |
G,A,C |
9,7,6 |
22 |
101100 |
T,T,C |
9,9,6 |
24 |
(4) |
(5) |
100101 |
G,A,A |
9,7,7 |
23 |
101101 |
T,T,A |
9,9,7 |
25 |
(5) |
(6) |
100110 |
G,A,G |
9,7,9 |
25 |
101110 |
T,T,G |
9,9,9 |
27 |
(6) |
(7) |
100111 |
G,A,T |
9,7,9 |
25 |
101111 |
T,T,T |
9,9,9 |
27 |
(7) |
Total |
800444 |
|
7822 |
190 |
808444 |
|
7982 |
206 |
|
(0) |
111000 |
G,G,C |
9,9,6 |
24 |
110000 |
T,C,C |
9,6,6 |
21 |
(0) |
(1) |
111001 |
G,G,A |
9,9,7 |
25 |
110001 |
T,C,A |
9,6,7 |
22 |
(1) |
(2) |
111010 |
G,G,T |
9,9,9 |
27 |
110010 |
T,C,G |
9,6,9 |
24 |
(2) |
(3) |
111011 |
G,G,G |
9,9,9 |
27 |
110011 |
T,C,T |
9,6,9 |
24 |
(3) |
(4) |
111100 |
T,G,C |
9,9,6 |
24 |
110100 |
G,C,C |
9,6,6 |
21 |
(4) |
(5) |
111101 |
T,G,A |
9,9,7 |
25 |
110101 |
G,C,A |
9,6,7 |
22 |
(5) |
(6) |
111110 |
T,G,G |
9,9,9 |
27 |
110110 |
G,C,G |
9,6,9 |
24 |
(6) |
(7) |
111111 |
T,G,C |
9,9,9 |
27 |
110111 |
G,C,T |
9,6,9 |
24 |
(7) |
Total |
888444 |
|
7982 |
206 |
880444 |
7014 |
7742 |
182 |
|
Total |
1777776 |
|
27528 |
744 |
1777776 |
|
27528 |
744 |
|
In this example sequencing is conditioned with number
of atoms in triplet of nucleotides.
It is the fact the genetic nucleotide code can be
reduced to a Gray code, using binary encoding scheme.
The mathematically basis of the periodic law can
be read directly out of table 1, 2 and 3.
AMINO ACID
MATRIX CODE
Number of atoms
Group A |
Group B |
Group C |
Group D |
Cys (C)=14 |
Gly (G)=10 |
Ser (S)=14 |
|
Thr (T)=17 |
Ala (A)=13 |
Pro (P)=17 |
Asn (N)=17 |
Val (V)=19 |
Asp (D)=16 |
Glu (E)=19 |
|
His (H)=20 |
Lys (K)=24 |
Gln (Q)=20 |
Met (M)= 20 |
Jle (J)=22 |
Arg (R)=25 |
Leu (L)=22 |
|
Phe (F)=23 |
Trp (W)=27 |
Tyr (Y)=23 |
|
115 |
115 |
115 |
37 |
In this table, amino acids are divided into three
corresponding groups with the same number of atoms.
Codes and analog
codes in Amino acids Matrix Code
Group
“A” |
Code |
Analog code |
Group “B” |
Code |
Analog
code |
Group “C” |
Code |
Analog
code |
Cys |
14 |
41 |
Gly |
10 |
01 |
Ser |
14 |
41 |
Thr |
17 |
71 |
Ala |
13 |
31 |
Pro |
17 |
71 |
Val |
19 |
91 |
Asp |
16 |
61 |
Glu |
19 |
91 |
His |
20 |
02 |
Lys |
24 |
42 |
Gln |
20 |
02 |
Jle |
22 |
22 |
Arg |
25 |
52 |
Leu |
22 |
22 |
Phe |
23 |
32 |
Trp |
27 |
72 |
Tyr |
23 |
32 |
Total |
115 |
259 |
|
115 |
259 |
|
115 |
259 |
In this example we have mathematical unity in atom
distribution of amino acids.
Atomic number
Group
“A” |
Atomic number |
Group “B” |
Atomic number |
Group “C” |
Atomic number |
Cys |
64 |
Gly |
40 |
Ser |
56 |
Thr |
64 |
Ala |
48 |
Pro |
62 |
Val |
64 |
Asp |
70 |
Glu |
78 |
His |
82 |
Lys |
80 |
Gln |
78 |
Jle |
72 |
Arg |
87 |
Leu |
72 |
Phe |
88 |
Trp |
108 |
Tyr |
88 |
Svega |
434 |
|
433 |
|
434 |
In this table, amino acids are divided into two corresponding groups
with same atomic numbers.
AMINO ACID
MATRIX CODE
(Code 719)
Gly (G)=10 |
Ala (A)=13 |
Ser (S)=14 |
Cys (C)=14 |
Total |
Asp (D)=16 |
Pro (P)=17 |
Thr (T)=17 |
Asn (N)=17 |
67 |
Val (V)=19 |
Glu (E)=19 |
Gln (Q)=20 |
Met (M)= 20 |
78 |
His (H)=20 |
Jle (J)=22 |
Leu (L)=22 |
Phe (F)=23 |
87 |
Tyr (Y)=23 |
Lys (K)=24 |
Arg (R)=25 |
Trp (W)=27 |
99 |
Total 88 |
95 |
98 |
101 |
382 |
Analog codes Þ 88 |
59 |
89 |
101 |
337 |
Total 176 |
154 |
187 |
202 |
719 |
In this table sequencing is conditioned with codes 7 and
19:
7 and 19 Þ connection =
719
Connection
of amino acids
Number of atoms in amino acid code matrix =
10, 13, 14, 14, 16, 17, 17, 17, 19, 19, 20, 20, 20, 22,
22, 23, 23, 24, 25, 27;
Connection = 1013141416171717191920202022222323242527;
1013141416171717191920202022222323242527 ={
(197 + [
(139+931)x
Y] } ;
In this example sequencing is conditioned with codes:
19, 7, 139 i 931.
Codon
form Gxx
This codon could be decoded with only
amino acids:
Val (V), Ala (A), Asp (D), Glu (E) i Gly (G).
First two are hydrophone and
others are hydrofoil, while Gly (G) is neutral amino acid. Those codons
and amino acids have responding number of atoms, so they depend on it, in
the origin code of amino acid, dispersed into complementary and
corresponding group. We can see that in the following examples:
Table 1
Fragment Gxx (1)
Codons |
Number of atoms
|
Amino acids |
Number of atoms |
Codons |
Number of atoms
|
Amino acids |
Number of atoms |
|
|
GROUP A |
|
|
|
GROUP B |
|
GUU |
19 |
Val (V) |
19 |
GUC |
20 |
Val (V) |
19 |
GCU |
20 |
Ala (A) |
13 |
GCC |
21 |
Ala (A) |
13 |
GAU |
21 |
Asp (D) |
16 |
GAC |
22 |
Asp (D) |
16 |
GGU |
23 |
Gly (G) |
10 |
GGC |
24 |
Gly (G) |
10 |
Total |
83 |
|
58 |
|
87 |
|
58 |
In this table amino acids are
divided into two corresponding groups with the same number of atoms. Also
there is mathematical lawfulness in distribution of atoms in a triplet
codons.
Table 2
Fragment Gxx(2)
Codons |
Number of atoms
|
Amino acids |
Number of atoms |
Codons |
Number of atoms
|
Amino acids |
Number of atoms |
|
|
GROUP C |
|
|
|
GROUP D |
|
GUA |
21 |
Val (V) |
19 |
GUG |
23 |
Val (V) |
19 |
GCA |
22 |
Ala (A) |
13 |
GCG |
24 |
Ala (A) |
13 |
GAA |
23 |
Glu (E) |
19 |
GAG |
25 |
Glu (E) |
19 |
GGA |
25 |
Gly (G) |
10 |
GGG |
27 |
Gly (G) |
10 |
Total |
91 |
|
61 |
|
99 |
|
61 |
In this example we have
mathematical unity in atom distribution of amino acids, as well as in
triplets.
Codon
form Cxx
This codon decodes the following
amino acids:
Leu(L), Pro(P), His(H), Arg(R) i Gln(Q).
The codons and amino acids,
also, in the table of genetic code are distributed into responding
complementary and corresponding groups:
Table 3
Fragment Cxx(1)
Codons |
Number of atoms
|
Amino acids |
Number of atoms |
Codons |
Number of atoms
|
Amino acids |
Number of atoms |
|
|
GROUP E |
|
|
|
GROUP F |
|
CUU |
16 |
Leu (L) |
22 |
CUC |
17 |
Leu (L) |
22 |
CCU |
17 |
Pro (P) |
17 |
CCC |
18 |
Pro (P) |
17 |
CAU |
18 |
His (H) |
20 |
CAC |
19 |
His (H) |
20 |
CGU |
20 |
Arg (R) |
25 |
CGC |
21 |
Arg (R) |
25 |
Total |
71 |
|
84 |
|
75 |
|
84 |
In this table, as
well as in table 1. and 2., we have mathematical unity in atom
distribution in amino acids and in triplets.
Fragment Cxx(2)
Table 4
Codons |
Number of atoms
|
Amino acids |
Number of atoms |
Codons |
Number of atoms
|
Amino acids |
Number of atoms |
|
|
GROUP G |
|
|
|
GROUP H |
|
CUA |
18 |
Leu (L) |
22 |
CUG |
20 |
Leu (L) |
22 |
CCA |
19 |
Pro (P) |
17 |
CCG |
21 |
Pro (P) |
17 |
CAA |
20 |
Gln (Q) |
20 |
CAG |
22 |
Gln (Q) |
20 |
CGA |
22 |
Arg (R) |
25 |
CGG |
24 |
Arg (R) |
25 |
Total |
79 |
|
84 |
|
87 |
|
84 |
In this example
corresponding groups of amino acids have the same number of atoms.
Codon form Axx
This codon decodes the
following amino acids:
Ile(J), Thr(T), Asn(N), Ser(S),
Lys(K), Arg(R) i Met(M).
Corresponding groups:
Fragment Axx(1)
Table 5
Codons |
Number of atoms |
Amino acide |
Number of atoms |
Codons |
Number of atoms |
Amino acide |
Number of atoms |
|
|
GROUP I |
|
|
|
GROUP J |
|
AUU |
17 |
Ile (J) |
22 |
AUC |
18 |
Ile (J) |
22 |
ACU |
18 |
Thr ( T) |
17 |
ACC |
19 |
Thr (T) |
17 |
AAU |
19 |
Asn (N) |
17 |
AAC |
20 |
Asn (N) |
17 |
AGU |
21 |
Ser (S) |
14 |
AGC |
22 |
Ser (S) |
14 |
Total |
75 |
|
70 |
|
79 |
|
70 |
In this table amino acids are
in sequences in two corresponding groups with the same number of atoms.
Also, there is mathematical lawfulness in distribution of atoms in a
triplet.
Codon form Uxx
This codon decodes the
folloving amino acids:
Phe(F), Ser(S), Tyr(Y), Cys(C),
Leu(L) i Trp (W)
These amino acids are
distributed in appropriate corresponding groups:
Fragment Uxx(1)
Table 6
Codons |
Total |
Amino acids |
Number of atoms |
Codons |
Total |
Amino acids |
Number of atoms |
|
|
GROUP K |
|
|
|
GROUP L |
|
UUU |
15 |
Phe (F) |
23 |
UUC |
16 |
Phe (F) |
23 |
UCU |
16 |
Ser (S) |
14 |
UCC |
17 |
Ser (S) |
14 |
UAU |
17 |
Tyr (Y) |
23 |
UAC |
18 |
Tyr (Y) |
23 |
UGU |
19 |
Cys (C) |
14 |
UGC |
20 |
Cys (C) |
14 |
Total |
67 |
|
74 |
|
71 |
|
74 |
From this table we can see
that similarity cannot be the only criteria for classification of amino
acids. For example: In amino acid code phenyl (F) and leucin (L) are
shown as really similar. But, even though, that they are similar, first
is aromatic, and the second is auphatic unit, so according to our opinion
they should be separated. The previous table of mathematical lawfulness
also represent verification for separation.
Table 7
BINARY ENCODING
SCHEME
|
Codons |
|
Atoms |
|
Codons |
|
Atoms |
|
Codons |
|
Atoms |
|
Codons |
|
Atoms |
(0) |
UUU |
F |
23 |
(1) |
UUC |
F |
23 |
(2) |
UUA |
L |
22 |
(3) |
UUG |
L |
22 |
(0) |
UCU |
S |
14 |
(1) |
UCC |
S |
14 |
(2) |
UCA |
S |
14 |
(3) |
UCG |
S |
14 |
(0) |
UAU |
Y |
23 |
(1) |
UAC |
Y |
23 |
(2) |
UAA |
ˆ |
|
(3) |
UAG |
Ž |
|
(0) |
UGU |
C |
14 |
(1) |
UGC |
C |
14 |
(2) |
UGA |
O |
|
(3) |
UGG |
W |
27 |
Total |
|
|
74 |
|
|
|
74 |
|
|
|
|
|
|
|
|
(4) |
CUU |
L |
22 |
(5) |
CUC |
L |
22 |
(6) |
CUA |
L |
22 |
(7) |
CUG |
L |
22 |
(4) |
CCU |
P |
17 |
(5) |
CCC |
P |
17 |
(6) |
CCA |
P |
17 |
(7) |
CCG |
P |
17 |
(4) |
CAU |
H |
20 |
(5) |
CAC |
H |
20 |
(6) |
CAA |
Q |
29 |
(7) |
CAG |
Q |
29 |
(4) |
CGU |
R |
25 |
(5) |
CGC |
R |
25 |
(6) |
CGA |
R |
25 |
(7) |
CGG |
R |
25 |
Total |
|
|
84 |
|
|
|
84 |
|
|
|
84 |
|
|
|
84 |
(0) |
AUU |
J |
22 |
(1) |
AUC |
J |
22 |
(2) |
AUA |
J |
22 |
(3) |
AUG |
M |
20 |
(0) |
ACU |
T |
17 |
(1) |
ACC |
T |
17 |
(2) |
ACA |
T |
17 |
(3) |
ACG |
T |
17 |
(0) |
AAU |
N |
17 |
(1) |
AAC |
N |
17 |
(2) |
AAA |
K |
24 |
(3) |
AAG |
K |
24 |
(0) |
AGU |
S |
14 |
(1) |
AGC |
S |
14 |
(2) |
AGA |
R |
25 |
(3) |
AGG |
R |
25 |
Total |
|
|
70 |
|
|
|
70 |
|
|
|
88 |
|
|
|
86 |
(4) |
GUU |
V |
19 |
(5) |
GUC |
V |
19 |
(6) |
GUA |
V |
19 |
(7) |
GUG |
V |
19 |
(4) |
GCU |
A |
13 |
(5) |
GCC |
A |
13 |
(6) |
GCA |
A |
13 |
(7) |
GCG |
A |
13 |
(4) |
GAU |
D |
16 |
(5) |
GAC |
D |
16 |
(6) |
GAA |
E |
19 |
(7) |
GAG |
E |
19 |
(4) |
GGU |
G |
10 |
(5) |
GGC |
G |
10 |
(6) |
GGA |
G |
10 |
(7) |
GGG |
G |
10 |
Total |
|
|
58 |
|
|
|
58 |
|
|
|
61 |
|
|
|
61 |
These are only fragments of
amino acids codes in GCAU(xx) codon form. From those examples we can see
clearly that mathematical base of periodical law exists. The proof for
that is the fact that amino acids in "Gray code" model are
really grouped in corresponding groups with the same number of atoms, and
also, there is mathematical lawfulness in distribution of atoms in
triplets. We have a few mode things to explain such as mathematical
lawfulness for grouping of some amino acids in codon forms Uxx and Axx but
those secrets will be resolved according to our opinion, really soon.
MATHEMATICAL
CONNECTION
OF TABLES OF
GENETIC CODE AND PERIODIC SYSTEM
Genetic matrix code (Fragment 70) Periodic System
|
Codons |
Amino acides |
Number of atoms |
|
Chemical of elements |
Atomic number |
(0) |
AUU |
Ile (J) |
22 |
(0) |
Li |
3 |
(0) |
ACU |
Thr (T) |
17 |
(0) |
Na |
11 |
(0) |
AAU |
Asn (N) |
17 |
(0) |
K |
19 |
(0) |
AGU |
Ser (S) |
14 |
(0) |
Rb |
37 |
|
Total |
|
70 |
|
|
70 |
Genetic matrix code (Fragment 74) Periodic System
|
Codons |
Amino acides |
Number of atoms |
|
Chemical of elements |
Atomic number |
(1) |
UUC |
Phe (F) |
23 |
(1) |
Be |
4 |
(1) |
UCC |
Ser(S) |
14 |
(1) |
Mg |
12 |
(1) |
UAC |
Tyr(Y) |
23 |
(1) |
Ca |
20 |
(1) |
UGC |
Cys(C) |
14 |
(1) |
Sr |
38 |
|
Total |
|
74 |
|
|
74 |
etc.
There is no
doubt and there
should never be a doubt. The processes in genetics are not only the matter
of physical-chemical issue of objective material relationship. First of
all it is matter of mathematical , program, cybernetic and information
system and lawfulness.
---------------------------------
These are only some of
the fragments from matrix code in genetic processes. Those processes are
sequenced with numbers: 19,
7 and 931.
By using these regularities we can discover in a very short period the
essence of these processes and find explanation for all the secrets from
the field of genetics. It can be expected that great changes in that
particular science are going to take place.
F,V,N,Q,H,L,C,G, S,H,L,V, E,A,L,Y,L,V,C,G,E,
R,G,F,F,Y,T,P,K,A
23,19,17,20,20,22,14,10, 14,
20,22,19, 19,13,22,23,22,19,14,10,19,
25,10,23,23,23,17,17,24,13
|