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What is FRP? : Merits and demerits of FRP
. . . v Hi x
e Fibers (high strength and stiffness) i X Mochancal damage
embedded in a resin matrix. Transport of plates
i . . Versatile design of systems
e A viable alternative to classical types of Reduced mechanical fixing
reinforcement, offering many potentials. Paariity of strengthening
. . Reduced risk of
e Externally bonded FRP is used in freeze/thaw damage
strengthening of structures shangthanine System
Reduced construction
perio
Ability to prestress
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Background : History of composites :
e Structural Materials e Wood, bone
o Metals e Man-made composites
e Polymers « Straw reinforced clay bricks used by the Israelis
o Ceramics recorded in Old Testament

o Composites

Composites are used as they have desirable
properties which could not be achieved by either of
the constituent materials acting alone.

o Use of fiber plants in pottery by the early natives
of South and Central America

o Steel-reinforced concrete and polymer reinforced
fibers
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The relative img of metals, pol and ceramics as a function of

time. The diagram is schematic and describes neither tonnage nor value, The time scale is
nonlinear. {From Ashby [1.1})

Fibrous Reinforcement

e Advantage: Most materials are much stronger
and stiffer in fiber form then they are in bulk
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Fibrous Reinforcement

e Disadvantage: Fibers alone cannot support
longitudinal compressive loads and their
transverse properties are not so good.

e Fibers are generally useless unless held
together in a structural unit with a binder or
matrix material

Fiber composites

e Geometrical configuration of fibers is very effective in
interacting with matrix (binder)

e Matrix protects fibers from external damage and
environmental attack.

Platzlet

FIGURE 1.3

Surlace area-o-volume ratio A/V of

a cylindrical partile of given volume

plotted  vi particle  aspest  ratio

0 @ = Ifd. {From MeCrum et al [1.5]
o0 ol ] 10 100 1000 Copyright £ 1988 by Oxford Univer-

i (log scale) ity Prese)

Types of fiber reinforced
composites

(b} Woven fiber compasite
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Composite sandwich
structures

e High flexural stiffness-to-weight ratio

High strength
i /7 compasite laminate
Film adhesive bonds facings

facings 1o core

Low density
honeycomb core




Growing use of composite
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Constituent materials for
composites

e Fiber materials
o Glass
e Carbon
o Aramid
e Matrix and filler materials

1. Fiber Materials

10,000 = 1] ?
8,000 - {8
? Pmdnﬁinnﬂpariky,"
£ ool g,
& o H
g AR
g 4000k S 8¢
H (g
& 2o} {8
______ 2
1970 1975 i-ylw l9jﬂ5 1990
FIGURE 19 T

PAN-base carbon fibers are the major reinforcement used in today's advanced polymer
matric composites. Fiber cost has and will continue 10 drop as production capacity and

demand increases. (From Reinfhard 1.8].)

Matrix and filler materials s

e Matrix:

« Holds the fibers together in a structural unit

« Protects from external damage

o Transfers and distributes the applied load to fibers

« Contributes to ductility, toughness, or electrical insulation
o Filler materials:

¢ Reduce weight

¢ Reduce cost

» Protection against ultra-violate rays

Temperature issues

e Epoxy - 150°C

e Advanced thermoplastics - 315-370°C
e Light wt. metals (aluminum) - 1250°C

o Higher strength, stiffness and ductility
o Higher density

e Ceramic matrix - 1650°C
e Poor tensile strength, brittle

e Carbon Matrix - 2760°C

Applications

e Consumer products
o Skis
e Golf clubs
o Tennis rackets
e As structural elements
o Automotive
o Aerospace
e Marine
o Civil engineering structures
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Advanced Composites Applications
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Composite applications on the Boeing 767 airliner. {Conrtesy of Boeing.)
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Fabrication process

— Gel coat

Wax coating on mald

(or mold release)

= Mold FIGURE 1.20{a)

Open mold, hand lay-up com-
posite fabrication.

Chopper-spray gun

Mold

FIGURE 1.20(b)
Open mold, spray-up composite fabrication.
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FIGURE 1.21

Hot-melt prepregging process. [Courtesy of Suppliers of Advanced Composite Materials
Association (SACMA).]
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FIGURE 1.23
Lay-up sequence for autoclave-style press molding.
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Machine for producing sheet-molding compound (SMC). (From Reinharr et al. [1.12).
Reprinted by permizsion of ASM f L)
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Filament winding process.
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Pultrusion process.




Mechanical behavior of
composites

MICROMECHANICS MACROMECHANICS
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Reinforcing
fibers

FRP plates

e Primarily used in retrofitting by bonding it on
the surface of structural members.

e Started in 1984 at the Swiss Federal

Laboratory

Market of strengthening

e Structures are deteriorating

Changes in use or imposed loading
Minimize disruption during repair

Extend useful life in minimizing capital outlay
Evaluation of whole life cost of solutions

Table 1.1 Applications for

compaosite plate bonding

Structural
nesd/deficiency

Corrosion of
reinforcament in
reinforced concrete

Inadeguate flexural
capacity of reinfarced
concrate

Lost prestress due to
corrosion in prestressed
concreia

Safety net to cover
uncanain durability of
prastrassed concrete

FRP composite plate

bonding solution

Replacemant of lost
reinforcement by plates of
equivalent effect

Design FRP composite
plate bonding solution to
add tensile alemants

Replace prestress that has
been lost with stressed
COmposites

Add plates, olther stressed
or unstrassed, to ansurs
safety. Particularly

Damaged concrata
must be roplaced
without impairing
behavieur of plates

Extent of strengthening
limited by capacity of
concrete in
compression. Plates
anchared by bond or
mechanically at their
ends

Nead to ensure no
overstress of concrote
in the short term

Mathod may ba
particularly appropriate

appropriate if corrosion
unlikely but possible

manitaring system

Inadequate stiffness
or serviceability of
cracked rainforced
concrete struclure

Potential overstress
due to required
structural alteration

Avoidance of sudden
failure by cracking of
cast iron

Increase in structural
capacity of timbar
structures

Enhancement of
shear capacity

Add external prestress by
means of a stressed
composite plate

Analyse stresses due to
alteration, and design
composite reinforcemant
before removing load-
bearing members

Addition of FRP composite
plate bonding, either
stressed or unstressed, to
tensile face

Increase in stiffness and
ultimate capacity by plate
bonding

Enhanced by external
bonding of stressed plates,
or by web reinforcemant

Particularly appropriate
with historic structures

Web reinforcement
techniques little
rasearched

Mechanical properties

Unidirection Fiber Density Longitudinal Tensile
al composite content (kg/m3) tensile strength
(% by modulus (MPa)
weight) (GPa)
GFRP 50-80 1600-2000 20-55 400-1800
CFRP 65-75 1600-1900 120-250 1200-2250
AFRP 60-70 1050-1250 40-125 1000-1800
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Shear strengthening

e Selection of strengthening scheme
o Accessibility of the site
o Strengthening requirements (monotonic, reversed
cyclic)
o Amount of increase required in the shear capacity
o Availability of FRP materials
o Economic considerations

Design philosophy (JSCE)

e Considered similar as an internal shear
reinforcement

e Truss analogy with the 45° crack angle is
used

e An additional shear reinforcing efficiency ‘K’
is used in design
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e Limitation: Can be used only for full-wrapping

e Why?: for side bonding and U-wrapping,
debonding leads to the fractional utilization of
FRP strength

What is debonding?

FRP is highly stressed near crack.
The stress is transferred to concrete due to bond
Once the bond stress exceeds the bond strength
debonding occurs.
If there is no proper anchorage (side plates, U-
wraps) the strengthening becomes ineffective.
Bond failure generally occurs in the concrete
adjacent to adhesive-concrete interface.

Bond Strength of FRP to
Concrete Joints

Direction of Fiber ~ Vinyl Tape

e

COMpPrEsIvE | -
Specimen IBDDT(J!I ﬁ%‘%ﬁr strength of mlmw Failure mode | Average Bcnd
eng concrete strength
ond Length Steel Bar (mm) (MPa) (kN) (MPa)
Fig.1 Specimen 1 75 1 40.8 11.6 | CFS delamination 1.67
2 150 1 40.8 18.4 | CFS delamination 1.23
3 300 1 433 23.9 | CFS delamination 0.80
4 75 1 424 20.0 | Concrete fracture 2.67
5 150 1 424 14.6 CFS breakage 097
6 65 2 42.7 19.1 | Concrete fracture 294
7 150 2 427 32.5 | CFS del 217
8 700 1 4.7 200 | CFS del 0.31
Fig.2 Armangement of strain gages
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Fig.3 Relationships between bond length and ultimate load

Fig.4 Relationship between bond length
and average bond strength
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Mechanical Anchorage
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Shear Strengthening with
mechanical anchorage

Table 2 Details of experimental specimens

“Specimen T L Pers | Anchor ¥, Failure

=1 = (%) (%) (%) (KN} mode
No.1 32 03 079 1] wio 199 DT
No.2 328 035 079 015 wio 23 P
NoJd 328 035 079 .15 with 264 P
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