

Govinda R. Pandey, PhD JSPS Postdoctoral Fellow

Today's references

- Principles of Composite Material Mechanics RF Gibson
- Strengthening of Reinforced Concrete Structures using externally bonded FRP composites in structural and civil engineering – LC Hollaway and MB Learning

- FRP Strengthened RC Structures - JG Teng, JF Chen, ST Smith, L Lam
- Maeda T, Asano Y, Sato Y, Ueda T, Kakuta Y, "A Study on Bond Mechanism of Carbon Fiber Sheet", Non-Metallic (FRP) Reinforcement for Concrete Structures, 1997, Vol. 1 pp 279-286.
- Sato Y, Ueda T, Kakuta Y, Ono S, "Ultimate Shear Capacity of Reinforced Concrete Beams with Carbon Fiber Sheet" Non-Metallic (FRP) Reinforcement for Concrete Structures, 1997, Vol. 1 pp 499-506.

What is FRP?

- Fibers (high strength and stiffness) embedded in a resin matrix.
- A viable alternative to classical types of reinforcement, offering many potentials.
- Externally bonded FRP is used in strengthening of structures

Fibrous Reinforcement

- Disadvantage: Fibers alone cannot support longitudinal compressive loads and their transverse properties are not so good.
- Fibers are generally useless unless held together in a structural unit with a binder or matrix material

• Matrix:

- · Holds the fibers together in a structural unit
- Protects from external damage
- · Transfers and distributes the applied load to fibers
- Contributes to ductility, toughness, or electrical insulation

- Filler materials:
 - Reduce weight
 - Reduce cost
 - Protection against ultra-violate rays

Conceptual drawing of the proposed National Aero-Space Plane, which would make extensive use of high-temperature composites. (Courtesy of National Aero-Space Plane Joint Program Office.)

FRP plates

• Primarily used in retrofitting by bonding it on the surface of structural members.

• Started in 1984 at the Swiss Federal Laboratory

Market of strengthening

- Structures are deteriorating
- Changes in use or imposed loading
- Minimize disruption during repair
- Extend useful life in minimizing capital outlay

• Evaluation of whole life cost of solutions

Structural need/deficiency	FRP composite plate bonding solution	Comments
Corrosion of reinforcement in reinforced concrete	Replacement of lost reinforcement by plates of equivalent effect	Damaged concrete must be replaced without impairing behaviour of plates
Inadequate flexural capacity of reinforced concrete	Design FRP composite plate bonding solution to add tensile elements	Extent of strengthening limited by capacity of concrete in compression. Plates anchored by bond or mechanically at their ends
Lost prestress due to corrosion in prestressed concrete	Replace prestress that has been lost with stressed composites	Need to ensure no overstress of concrete in the short term
Safety net to cover uncertain durability of prestressed concrete	Add plates, either stressed or unstressed, to ensure safety. Particularly appropriate if corrosion unlikely but possible	Method may be particularly appropriate with segmental construction. May be combined with a monitoring system

Inadequate stiffness or serviceability of cracked reinforced concrete structure	Add external prestress by means of a stressed composite plate	:
Potential overstress due to required structural alteration	Analyse stresses due to alteration, and design composite reinforcement before removing load- bearing members	
Avoidance of sudden failure by cracking of cast iron	Addition of FRP composite plate bonding, either stressed or unstressed, to tensile face	
Increase in structural capacity of timber structures	Increase in stiffness and ultimate capacity by plate bonding	Particularly appropriate with historic structures
Enhancement of shear capacity	Enhanced by external bonding of stressed plates, or by web reinforcement	Web reinforcement techniques little researched

Mecha	anical p	properti	es	
Unidirection al composite	Fiber content (% by weight)	Density (kg/m3)	Longitudinal tensile modulus (GPa)	Tensile strength (MPa)
GFRP	50-80	1600-2000	20-55	400-1800
CFRP	65-75	1600-1900	120-250	1200-2250
AFRP	60-70	1050-1250	40-125	1000-1800

Table 2.1 Comparison of	characteristics of F	RC sheet produced	from different
Characteristics	Carbon	Aramid	E-glass
Tensile strength	Very good	Very good	Very good
Compressive strength	Very good	Inadoquate	Good
Stiffness	Very good	Good	Adequate
Long term behaviour	Very good	Good	Adequate
Fatigue behaviour	Excellent	Good	Adequate
Bulk density	Good	Excellent	Adequate
Alkaline resistance	Very good	Good	Inadequate
The second second second second			

- Limitation: Can be used only for full-wrapping
- Why?: for side bonding and U-wrapping, debonding leads to the fractional utilization of FRP strength

- FRP is highly stressed near crack.
- The stress is transferred to concrete due to bond

- Once the bond stress exceeds the bond strength debonding occurs.
- If there is no proper anchorage (side plates, Uwraps) the strengthening becomes ineffective.
- Bond failure generally occurs in the concrete adjacent to adhesive-concrete interface.

Specimen	Bond length (mm)	Number of CFS	Compressive strength of concrete (MPa)	Ultimate load (kN)	Failure mode	Average bond strength (MPa)
1	75	1	40.8	11.6	CFS delamination	1.67
2	150	1	40.8	18.4	CFS delamination	1.23
3	300	1	43.3	23.9	CFS delamination	0.80
4	75	1	42.4	20.0	Concrete fracture	2.67
5	150	1	42.4	14.6	CFS breakage	0.97
6	65	2	42.7	19.1	Concrete fracture	2.94
7	150	2	42.7	32.5	CFS delamination	2.17
	200	1	117	20.0	CES delamination	0.31

lech	anical	Anchor	age		
	Tab	le 3 Details of board	test specimen		
Specinion	Bond length (mm)	Concrete strength (MPa)	Ultimate load (kN)	Failure mode	
B1	50	24.8	10.3	Pealing of CFS	
B 2	100	24.8	13.7	Peeling of CFS	
0.3	50	24.8	21.3	Country splitting	
B4	100	24.8	21.9	Breakage of CPS	

