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ABSTRACT

Based on the Elastic Continuum Theory[1] a new model of photon wave packet  has been
proposed in this paper. In the process of computation of strain energy contained in the wave
packet, the origin of Planck’s constant  ‘h’ has also been brought out. Due to a conceptual
mistake[3] in the potential energy term of the Schrodinger’s wave equation, Quantum Mechanics is
considered unsuitable for describing the detailed dynamic behavior of individual  micro particles.
From the conservation of field energy and angular momentum,  a detailed model of Hydrogen
Orbitals has been developed for describing the instant to instant motion of the electron in elliptical
orbits.  The model also describes the detailed orbital transitions during photon emission. The
angular momentum  quantisation  has been explained on the basis of  photon emission  recoil
phenomenon.

Keywords.    Photon;  Planck’s constant;  Induced field;  Orbital transitions;  Momentum quantisation.

Photon :   All these fifty years of conscious brooding have brought me no nearer to the answer to
the question 'What are light quanta ? Nowadays every Tom Dick and Harry thinks he knows it, but
he is mistaken.
                                                                                                                 Albert Einstei n
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1.  INTRODUCTION

1.1     To develop a clear mental picture of electron orbits in Hydrogen atom, the
fundamental concepts of  electron must be very clear and well understood beforehand.  In
order to visualize the instant to instant motion of an electron orbiting a proton, we must
understand as to how exactly the two charges interact to release potential energy, where
the K.E. is stored and how the photon is created. Hence based on the Elastic Continuum
Theory[1] our basic approach in this paper will be to first make use of some of the most
fundamental concepts about electron, nature of charge, field energy and field interaction,
already introduced  in  ‘The Electron Structure and Coulomb Interaction’[2].  From the
study of electron motion and motion induced fields, the concept of emitted field wave
packets or photons is developed.  Based on the Elastic Continuum Theory,  a new model
of  Photon wave packet  is  then developed. With these revised fundamental concepts, we
shall analyze the energy balance of an isolated  proton-electron system and develop the
electron trajectory by using the  energy and  angular momentum  conservation principle.

1.2    We shall derive a relation from purely classical considerations that by emitting a
photon at angular frequency  ω, the angular momentum of orbiting electron is changed by
! due to mechanical recoil action.  This fact will form the basis for quantisation of
angular momentum and hence total energy in Hydrogen orbitals.  Further we shall retain
the use  of quantum numbers  n, ", m as usual.  However on the considerations of
restricting the change in angular momentum to !,  we shall associate quantum number  "

with angular momentum of  ("+½).!  instead of  √("("+1)) . !.   This will lead to all
elliptical electron orbits.  During emission of photon, the elliptical orbit transitions at
constant angular frequency ω  will also be computed and plotted.

 1.3   As per the ECT, our familiar space-time continuum, with characteristic
properties  of  permittivity ε0  and permeability  µ0,  behaves as  a perfect isotropic Elastic
Continuum, with elastic constant  1/ε0  and inertial constant  µ0 . The equilibrium
equations of elasticity written in terms of displacement vector U in this Continuum turn
out to be identical to the vector wave equation in electromagnetic theory. These equations
in vector and tensor form are given below,

         ∂2U/∂x2  + ∂2U/∂y2  + ∂2U/∂z2  =  ∇2U   = (1/c2) ∂2U/∂t2               ………...(1)

         g11ui
,11 +  g22ui

,22 +  g33ui
,33   =  gjjui

,jj  =  (1/c2) ∂2ui/∂t2                    ……….. (2)

where the displacement vector components  ui are functions of space & time coordinates
referred to a coordinate system (y1, y2, y3) with metric tensor components gij . The
following correlation exists between displacement vector field U or the corresponding
temporal and spatial strain components and the electromagnetic field vectors  E and B ,

                               E = - (1/ε0).(1/c).∂U/∂t                                 ……………….   (3)

                                     B =    (1/c).(1/ε0). (∇×U)                               ……………….  (4)

 That means, the electromagnetic field in the so called ‘vacuum’ comes out to be a
dynamic stress-strain field in the corresponding Elastic Continuum. Further, as per the
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ECT, one of the spherically symmetric solutions of equilibrium equations (2) represent
the electron and positron strain bubbles as consisting of a small ‘core’ of standing strain
wave oscillations, surrounded by propagating phase wave type ‘strain wave field’ or the
‘electrostatic field’.  The Coulomb interaction between two charge particles is effected
through superposition of their strain wave fields.  Positive interaction energy between two
similar charges implies transfer of a portion of their kinetic energies to their combined
field energy.  Negative interaction energy between two dissimilar charges implies transfer
of a portion of their combined field energy to their kinetic energies.  Of course the total
energy and momentum of the system is conserved in both cases.  Without going into the
internal details of the electron structure, let us examine the effect of motion on the overall
strain wave field or the displacement vector field U of the electron.

1.4    Motion  Induced  Fields  and  Kinetic  Energy.     Let us consider uniform
motion  of an electron along   + x axis, at velocity  v .  Due to finite velocity  c  of the
phase waves ψ,  the complete wave field of the electron will get deformed.  This field
deformation may be considered either through the concept of  retarded time and retarded
position vector leading to motion induced change in amplitude and direction of phase
waves at any particular point.  Or we may examine the transformation of  field strain
components through the motion induced  Lorentz transformation of  coordinates.  Since
the kinetic energy of the moving particle will be stored in its deformed field, most of the
field strain components are expected to be increased. Let us say that the original field
displacement vector U, is deformed to  U′ through Lorentz transformation of coordinates.
Then  U′ - U  =  A   may be defined as motion induced displacement field, which will
vanish when the particle velocity becomes zero.  The motion induced electric and
magnetic fields of the moving particle can now be derived from the time derivative and
curl of this induced displacement field by using equations (3) and (4)  as,

           E= -(1/ε0c).∂(U′-U)/∂t  = -(1/ε0c).∂A/∂t =   (v/ε0c).∂(U′-U)/∂x        …….. (5)

and            B = (µ0.c).[∇×A] .                                                 ………………………. (6)

Under certain conditions of motion, some part of the induced fields could be dissociated
from the moving particle, whereas the bound field given by U can never be dissociated
unless the particle itself gets annihilated.  Normally, the induced fields are an integral part
of the moving particle system and it is a matter of interpretation whether the particle
motion controls the induced fields or the induced fields govern the particle motion. We
shall use these concepts for developing  electron orbits in Hydrogen. Due to a conceptual
mistake[3] in the potential energy term of the Schrodinger’s wave equation, Quantum
Mechanics is considered unsuitable for describing the detailed dynamic behavior of
individual  micro particles.

2.  THE  PHOTON  WAVE  PACKET

2.1    Induced  Field  Emission.     If under certain conditions,  part of the motion
induced fields ( E and B fields) accompanying the electron tend to get separated from the
electron system, the separated part of the field must independently satisfy Maxwell’s field
equations, vector wave equation, the boundary conditions and also satisfy the overall
energy and momentum conservation.  For the separated or released field designated by
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Ep and  Bp  the field conditions will require that  |Ep| ∝ |Bp|  and that their strength &
spatial spread will be governed by their time rates of change.  This implies that provided
all other conditions are met, the angular frequency  ω = kc  of induced / released field
variation will govern the intensity as well as spatial spread of  Ep & Bp .  The released
field wave packet is the familiar photon wave packet with finite energy content which is
proportional to ω.

2.2   The  Photon.    As an electromagnetic wave packet, the electric and magnetic
field vectors within a photon must satisfy Maxwell’s  vector wave equation, must account
for a finite energy content and must vanish at the boundaries of the packet or at infinity.
In terms of displacement vector field representation for the photon, the vector field  Up

must satisfy the above conditions. Therefore, as a tentative model based on the Elastic
Continuum Theory[1], the displacement vector components of  a  photon wave packet
propagating along +X axis may be given as,

uy = a.e.k.[exp(-k.(1+ L�).|y|) . exp(-k.(1- L�).|z|) . exp(-k.(1+ L�).|x-ct|)]          ……. (7)

      ux = -a.e.k.[exp(-k.(1+ L�).|y|) . exp(-k.(1- L�).|z|) . exp(-k.(1+ L�).|x-ct|)]        ……. (8)
      uz =  0                                                                                                    ............…(9)

 from which we can compute the elements of the strain tensor. Here the real and
imaginary parts of the above complex solution are independently valid solutions of the
vector wave equation or the equilibrium equations of elasticity.  With the notation   ux

y =
∂ux/∂y  and  uxt = (1/c).∂ux/∂t   etc.   the energy density  in the photon wave packet,  is
given by :

      Wph = (1/2ε0).[|ux
x|2 + |ux

y|2 + |ux
z|2 + |ux

t|2 + |uy
x|2 + |uy

y|2 + |uy
z|2 + |uy

t|2 ]

              = (1/ε0).8.a2.e2.k4.exp(-2k.(|x| + |y| + |z| )                                     ................(10)

 2.3   Origin  of  Planck's  constant   h.     Finally the total energy content in the
wave packet is computed from the volume integral of  Wph  taken over the entire region
of spatial extension of photon.  With  ω = k.c ,  this total energy  works out  to :

Eph = 8×a2.e2.k /ε0  = (8/ε0c).a2.e2.ω  = (h/2π).ω  =  !.ω                        ...............(11)

Where the factor involving constant terms  ε0, c, a  and  e is equated with an important
universal constant  h/2π .  Non dimensional constant  'a' can now be evaluated from this
relation  and works out to be 1.167 approximately.  Origin of Plank’s  constant  h  is thus
linked with the computation of total strain energy in the photon wave packet.   Although
such a wave packet is emitted from the spatially extended induced field of the electron
under certain characteristic conditions, this emission can not be instantaneous due to
finite recoil forces exerted by finite strength fields.  It can thus be seen from the spatial
extension of equations (7) and (8) that the photon wave packet is essentially just a small
sinusoidal pulse of displacement vector field Up with exponentially decaying amplitude.
In other words, the photon may be viewed as a sinusoidal pulse of electromagnetic field
Ep & Bp with exponentially decaying amplitude and ‘significant’ spatial extension of just
about one wave length in all directions.
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2.4   The  Photon  Interaction.    Here it may be appropriate to point out that just
like computation of Coulomb Interaction[2], mutual interaction of two or more photons
separated by distance ‘d’ along any  Cartesian coordinate axis, can be easily computed.
This is done by superposition of the strain tensor components of two interacting photons
separated by distance  d  along any coordinate axis  and referred to a common Cartesian
coordinate system.  The strain energy of the superposed or combined field can then be
easily computed. The computation results show that the interaction energy for two
photons of  same frequency depends on functions of the type  2!.ω.exp(-k.d).cos(k.d).
That is, any two photons of same frequency ω,  will tend to get mutually coupled at
certain optimum separation of the order of ‘odd number of half wave lengths’.  Their
interaction energy will change from negative to positive if their separation along any
coordinate axis is changed by about one half wave length, resulting in their mutual
repulsion. This may account for the conventional interference and dispersion effects
encountered in a stream of photons of the same frequency.

3.  HYDROGEN   ORBITALS

3.1    Isolated  Proton - Electron  System.      Let us now consider an  isolated
proton - electron system with the proton located at the center of  chosen   coordinate
system.  Neglecting the motion of proton as too small, we consider the constrained
motion of the electron under conservation of system energy and angular momentum.
Initially when the electron is far removed from the proton, let its kinetic energy (T) and
electrostatic potential energy  (-V) be negligible or zero. We  adopt a sign convention that
all symbols like T, V, E etc. representing energy will always be positive.  Conventionally
the total system energy -E, with electron far removed, is considered zero (-E = -V+T = 0).
But in reality we know that the total energy of the system does include the mass energies
of the two particles as discussed earlier.  When the electron is brought to a finite radial
distance  r  from the proton, without any external work, the conventional -ve potential
energy (-V) of the system (not of electron alone) gradually changes from zero to  -e2/4πε0r
or  say  -η/r  where η=e2/4πε0 is a constant.  Simultaneously the kinetic energy T of the
electron increases from zero to η/r. That is, the interaction energy released by the system,
keeps getting converted to kinetic energy of the electron on instant to instant basis.
Henceforth we shall no longer use the term negative potential energy (-V) but only refer
to field interaction energy released (V)  by the system.  If a small part (En) of this energy
is now radiated out as a photon, then system total energy will become -En and remaining
K.E. of the electron  given by  T = V - En .

3.2    Time Invariant  Orbital  Parameters.     Corresponding to conventional total
energy of  -En , let dn  be the radial distance at which K.E. of the electron (mass me)
becomes zero (i.e. V= En ), as shown in figure 1.   A  sphere of radius  dn  may be referred
as the bounding sphere for the electron  and  all possible electron orbits  for  angular
momenta  k.!, must be located well within this sphere characterized by principle quantum
number  n.  Let us therefore examine the shape and size of all possible orbits for given
orbital quantum numbers  n  and  " .  There is one unique circular orbit of radius  ac= dn/2,
angular momentum  Lc = n.!,  with following other main parameters,
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Tc =  V - En = η.(1/ac - 1/dn)  =  η/dn   =  En                               .....................    (12)

Lc
2 = (me.vc.ac)

2 = 2me.ac
2.Tc  =  2me.ac

2.En                                 .....................    (13)

vc  = 2Tc /mevc = (η/!n)    &  also     vc
  = Lc / me.ac = (n.!/acme)       .............     (14)

which give    ac = n2.(!)2/meη      and      En =η/2ac = (me/2n2).(η/!)2
        .….…...... (15)

Figure- 1.
Interaction energy released (V) by the Electron - Proton system  vs.  their relative radial distance  R.  In the
elliptical orbital motion of the electron, the relative radial distance oscillates between  OC and  OB with
corresponding K.E. varying between  C1C'  and  B1B'.

3.3  However with the same total energy, there could be many elliptical orbits with
their angular momentum  Le = k.! < Lc and differing from each other in steps of  !.  Since
Le=0 will correspond to head on collision and annihilation of electron, it can’t correspond
to any valid orbit. Therefore as mentioned earlier, we shall take  k=("+½)  instead of
("("+1))½.  Let the two vertices B and C  (fig. 2) of the ellipse be identified by subscripts
1 and 2  e.g. radius R1, R2  etc.  Then, at the vertices

Le = k.! = me.vi.Ri                      ( for  i = 1, 2    and  no summation on i)

Ti = ½ .me .vi
2 = η.(1/Ri - 1/dn) = En.(dn/Ri  - 1)            which gives

Ri =  En.dn /(Ti+En)  =  2 ac.En /(Ti+ En)                              ..........................        (16)

and  Le
2 = 2me.Ti.Ri

2 = 8me.ac
2.En

2.Ti /(Ti+En)
2 = 4Lc

2.En.Ti /(Ti+En)
2

    O   R

   V

 B  A  C  D

En
En
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C1
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 B1
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      RADIAL            DISTANCE

  E
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which after substituting  Le/Lc = k/n simplifies to a quadratic in Ti    as

      Ti
2 - 2[2(n/k)2-1].En.Ti + En

2 = 0                                          ……………......       (17)

that yields two values of  Ti ,  that is  T1  and  T2  as given below

T1 =  En.[(2(n/k)2-1) + 2(n/k).((n/k)2-1)½]                           ..........................       (18)

T2 =  En.[(2(n/k)2-1) - 2(n/k).((n/k)2-1)½]                            ..........................       (19)

and from equation (16),  R1 & R2 can now be computed.  Further from these values of
R1, R2, T1, T2 we can easily compute maximum and minimum values of velocity ( v1, v2)
and angular frequency ω1= v1/R1,  ω2= v2/R2.  It can also be easily shown that ellipse
major diameter = R1+R2= dn and that eccentricity of the ellipse is  ek = (R2 - R1)/dn .

Figure - 2.  In the orbital motion of the electron as its relative radial distance from the Proton O varies
from  OC  to  OB the angle β increases from 0 to π radians.  Major dia. dn = R1 + R2  of the ellipse is
governed by quantum number n and the eccentricity by the quantum number "" .

3.4    Dynamic   Orbital   Parameters.     After determining the major diameter  2ac

the eccentricity  ek  &  R2, v2, ω2  etc. as above for the given quantum numbers  n, " ,  we
are now in a position to compute the instant to instant motion of the electron on this orbit.
For this purpose let us superimpose a Cartesian coordinate system X-Y with origin Q at
the center of major dia BC as shown in fig.2.   Of course the radial position vector  r  will
still be measured from O, the principal focus of the ellipse (proton location).  At time t =0
let us start from the outer vertex C  where  r = R2 ,  x = ac ,  y = 0 ,  β = 0 ,  vβ = v2 , vr =0
and  ω = ω2 .  For numerical computations with the aid of a digital computer, we may
divide the major diameter BC into N (say 1000) equal parts such that δx= dn/N. To
compute the next position (subscript n) parameters from the old position (subscript o)
following relations could be used.
            xn = xo - δx rn = ac + ek.xn

yn = (1 - ek
2)½.(ac

2 - xn
2)½ βn = Sin-1(yn /rn)

R1 R2

   x

 X

 Y
 P

   O    Q  P′  B     C   β

 y

  r
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vβ = (k.!)/mern ωn = vβ/rn  = (k.!)/mern
2

δβ = βn - βo δt = δβ/ωn

tn = to + δt vr = ek. δx/δt

     v = (vr
2 + vβ

2)½                                                                    ......................  (20)

3.5      Repeating these computational  steps, we can obtain instant to instant
variation of all dynamic parameters like  v, β, ω, r, etc. and plot them against time.  For
convenience in computations, it is preferable to use non-dimensional form of these
parameters by dividing with corresponding parameters of first circular Bohr orbit. A few
typical curves showing  v and ω  verses time for certain elliptical orbits are placed at
appendix 'A'.  The results show the variation of these parameters to be far from sinusoidal
and hence indicate the necessity of reviewing our concepts about orbital stationary states

in Quantum Mechanics.  By assuming separable temporal part exp(-L� En.t/!) in the wave
function, basically circular electron orbits get implied in the concept of stationary states,
whereas in reality the quantum numbers n and "  yield all elliptical orbits.  Salient orbital
parameters for Hydrogen are given below at Table - 1.  One very important parameter to
be noted from this table is the time period of the orbital motion, which is independent of
" .  That is  for a given  n the time period of all elliptical orbits is the same as that of a
corresponding circular orbit. This may explain why equivalent circular orbits could be
implied in the concept of stationary states.

Table - 1.  Salient  Orbital  Parameters

Orbit
No.

Total
Energy

Eccen-
tricity

Time
Period

Vertex  -  Radii
Min.          Max.

K.E.  at  Vertices
Max.          Min.

Angular Frequency
Max.            Min.

   ev ×10-15 s         × 10-10 m             ev      ×  1015 rad/s
1s - 13.60 0.866 0.1520 0.071 0.988 189.44 0.977 1151.15 5.93

2s - 3.40 0.968 1.2164 0.067 4.167 210.77 0.055 1280.73 0.33

2p - 3.40 0.661 1.2164 0.717 3.518 16.69 0.693 33.80 1.40

3s - 1.51 0.986 4.1052 0.067 9.461  214.59 0.011 1303.95 0.06

3p - 1.51 0.866 4.1052 0.638 8.889  21.05 0.109 42.64 0.22

3d - 1.51 0.553 4.1052 2.130 7.397  5.25 0.435 6.38 0.53

4s - 0.85 0.992 9.7308 0.066 16.871  215.92 0.003 1312.03 0.02

4p - 0.85 0.927 9.7308 0.618 16.319  22.45 0.032 45.47 0.07

4d - 0.85 0.781 9.7308 1.858 15.080   6.90 0.105 8.39 0.13

4f - 0.85 0.484 9.7308 4.369 12.569  2.45 0.296 2.12 0.26

3.6    Photon  Emission  -  General  Conditions.      As per the  discussions  of
paras 1.4 to 2.2 above, we may visualize the emission of a photon wave packet from the
vicinity of orbiting electron, under following general conditions.
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(a)    The angular frequency  ω = kc, will govern the spatial extension as well as the
energy content of the photon wave packet.

(b)    The angular frequency ω should remain constant throughout the spatial  and
temporal extension of the wave packet.

(c)    A photon of angular frequency  ωp may be emitted from the induced field of
orbiting electron when the instantaneous angular frequency ω of the orbital
motion matches ωp  and remains constant throughout the emission process.

(d)    The photon may be emitted from a finite region around the middle of the relative
position vector r  of the orbiting electron.

(e)    The photon will be emitted in the orbital plane of the electron and along a line
perpendicular to the relative position vector r .

(f)     The strength and time rate of change of induced  E and B fields must be above
certain minimum values, to enable the emission of a photon wave packet of
certain minimum energy content.

(g)     The strength of induced  E and B fields in the region around  r /2, will be
governed by vr and vβ components of the electron velocity respectively. The
time rate of change of these fields may be governed by instantaneous angular
frequency ω of the orbiting electron.

(h)    The direction of emission of the photon may get reversed if the relative phase of
induced E field is opposite at the time of emission.  That is, the photon will be
emitted in the direction of  vβ if the electron is approaching the nucleus (vr  -ve)
and in a direction opposite to vβ if the electron is receding (vr  +ve) from the
nucleus at the time of emission.

(i)     During the photon emission process, the conservation of overall system energy
and momentum must be ensured at every instant.

3.7    Photon  Emission  -  Recoil.    Let us consider a body A with kinetic energy E
and another body B with negligible K.E., both located on and moving along X-axis.  Let
the body A act on body B for a small distance  δs  to transfer a small fraction δE of its
K.E. to body B.  We may assume that the action force F exerted by body A and the
reaction force -F exerted by B, remains constant throughout this energy transfer
interaction between A and B. Then the energy transferred from A to B will be given by
δE = F.δs .  If this interaction process lasts for a very small interval of time δt, then a
momentum impulse of  Ip = F.δt will be imparted to both A and B in opposite directions
along X-axis.  This momentum impulse will imply a small change in momentum  δp such
that,

δp = Ip = F.δt = (δE/δs).δt  = δE / (δs/δt)                          ..........................       (21)

Now,  let us imagine that the body A mentioned above is the orbiting electron and body B
is the photon being emitted.  The recoil impulse experienced by the electron while
transferring a small fraction δE of its K.E. to the photon is therefore given by equation
(21). Since, as mentioned above, the photon is emitted in a direction perpendicular to the
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position vector r , the distance traveled by the electron  δs may be given by  r.δβ  so that
δs/δt = r.ω .  The corresponding change in angular momentum of the orbiting electron is
therefore given by   |δL| = r×δp = r.δE/rω = δE / ω  .   Hence the total change in angular
momentum  ∆L, when a photon of total energy content  ∆E = ω.! is emitted, will be

          |∆L|  = ∆E / ω =  ω.!/ ω  =  !                                    ........................          (22)

3.8     This is an important result which forms the basis of angular momentum
quantisation  and hence total energy quantisation in sub-atomic phenomena. The photon
emission  recoil phenomenon is unique in two respects.  Firstly the actual recoil
interaction between the electron and the photon is effected through the action of released
photon fields Ep and Bp on the bound  -ve electrostatic field of the moving electron.  At
the same time the released photon fields Ep and Bp will act on the bound  +ve electrostatic
field of the nucleus to produce an opposite linear momentum change.  The presence of the
nucleus will thus ensure that a total momentum of  ∆p = ∆E/rω is not carried by the
photon  but only a small fraction  ∆E/c is carried off.  Secondly, the emission
phenomenon is unique in the sense that depending on the relative phases of  Ep and Bp

fields, the photon may be emitted by the moving electron either in forward direction or in
rearward direction.  The photon will be emitted in forward direction when at the time of
emission, the electron is approaching the nucleus on its elliptical orbit and the total
angular momentum of the electron will reduce by  !.  The photon will be emitted in
rearward direction when the electron is receding from the nucleus and the total angular
momentum of the electron will increase by   !.

4.  Orbital  Transition  Parameters

4.1    Let us consider the electron transition from orbit A specified by (n1, "1) to orbit
B specified by (n2, "2),  such that   n1 > n2   and   "2 = "1 -1,  then  E1 = (me/2n1

2).(η/!)2 ,
d1 = η/E1 , E2 = (me/2n2

2).(η/!)2 , d2 = η/E2   and the angular frequency of the photon to
be emitted  is   ωp = (E2 - E1)/!.   Angular momentum for orbit  A  is  La = ("1 + ½ ).!  and
for B is Lb = ("2 + ½).!. The emission will take place when the electron is approaching
the nucleus.  Complete orbital parameters for 'A'  and  'B' can be worked out as per
procedure outlined at paras  3.3  and  3.4 above.  The radius  Ra  in orbit  'A',  at which
the photon emission process will commence,  can be computed  from the  condition

         ω = ωp  =  La/meRa
2

or      Ra = (La /meωp)
½       and similarly        Rb = (Lb /meωp)

½            ..................(23)

While computing the dynamic parameters of orbit  'A', we may extract the values of
salient parameters at the instant when  r = Ra  and designate them with subscript  'o'  as
βo,  To  and  to=0,  ro = Ra,   Lo = La    and  Eo = E1 .  Similarly from orbit  'B' we may
extract  βb when  r = Rb .  To compute the transition trajectory from 'A' to 'B' we may
divide this path into  N (say 1000 or more) equal steps.  With   δL = !/N       and    δE =
(E2 - E1)/N, following relations may be used for step by step computation of transition
trajectory.

Ln = Lo - δL En = Eo + δE
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rn  = (Ln /meωp) Tn = η/rn  - En

vβ = rn.ωp v  = (2Tn/me)
½

vr = (v2 - vβ
2)½ δr = rn - ro

δt = δr/vr tn  = to + δt

δβ = ωp.δt βn = βo + δβ                       ............... (24)

After repeating these steps  N times, let the final values of  tn  and  βn  be  tf  and  βf

respectively.  For plotting the transition trajectory along with orbits  'A'  and  'B', the
major axis of orbit 'B' will have to be rotated through  ∆β = βf - βb .  A few plots of some
typical orbital transitions are placed at  appendix B, showing original  & new orbits in the
same plane  and  the direction of photon emission. The photon emission time for various
transitions is generally found to be of the order of  10-16 seconds which appears to be too
small for the actual spatial extension of the photon.  This is due to the fact that the photon
is not 'created' from a single point in space, but 'released'  from the spatially extended
induced field of the electron and 're-forms' to its characteristic shape in accordance with
the vector wave equation.

5.  SUMMARY   &   CONCLUSION

5.1    In this paper we have attempted to develop a new model,  a new methodology,
to compute the detailed instant to instant motion of individual electrons in Hydrogen
atom, based on the principle of conservation of energy and momentum.  For this a
number of new basic concepts have been used to develop a better insight and fundamental
understanding of the sub-atomic phenomenon.  The new concepts include the structure of
the electron[2] , Coulomb interaction, potential energy etc.  In the process a few of our
fundamental concepts about the Photon wave packet and Planck's constant h have also
been explained. We have also shown that whenever a photon is emitted from an orbiting
electron the angular momentum of that electron is changed by   !.  This may be seen as
the origin of various quantisation rules.  After introducing several new fundamental
concepts, the electron trajectories in the form of elliptical orbits, have been developed
and their transitions plotted.  The linear velocities, angular velocities, K.E., radial
distance r  and angle β have been computed for the instant to instant motion of the
electron in various Hydrogen orbitals.  It is hoped that the procedure for computation of
electron trajectories outlined in this paper, will pave the way for large scale computer
simulations of the sub-atomic phenomenon.

References

[1]    Elastic Continuum Theory of  Electromagnetic Field  & Strain Bubbles             by       the  Author

[2]   The Electron Structure and Coulomb Interaction                                                            ,,

[3]    A Fresh Look at Fundamental Concepts of Quantum Mechanics                                    ,,



(ODVWLF�&RQWLQXXP�7KHRU\ %\ *�6�6DQGKX

xii

Appendix A

Figure - A1

Figure - A2



(ODVWLF�&RQWLQXXP�7KHRU\ %\ *�6�6DQGKX

xiii

Appendix A

Figure - A3

Figure - A4



(ODVWLF�&RQWLQXXP�7KHRU\ %\ *�6�6DQGKX

xiv

Appendix A
Figure - A5

0 0.2 0.4 0.6 0.8 1

x 10
-14

0

5

10

15

20

25
Orbital Kinetic Energy vs. Time  for n = 4 and l = 1

TIME  in  seconds

K
in

e
tic

 E
ne

rg
y 

 in
  

e
v 

Figure - A6

0 2 4 6 8 10 12 14
0

5

10

15

20

25
Orbital Kinetic Energy vs. Angle beta  for n = 4 and l = 1

Angle in radians

K
in

e
tic

 E
ne

rg
y 

 in
  

e
v 



(ODVWLF�&RQWLQXXP�7KHRU\ %\ *�6�6DQGKX

xv

Appendix B

Figure - B1

                        a0

                                                                                 1 s

                                              Photon

                                                                                           2 p

Figure - B2

                       a0

                                                                      Photon

                                            3 s

                                                                             2 p



(ODVWLF�&RQWLQXXP�7KHRU\ %\ *�6�6DQGKX

xvi

Appendix B

Figure - B3

Figure - B4

Photon

a0


