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Abstract: In this paper, a robust adaptive fuzzy controller 
for non affine-in-control systems subject to external 
disturbances is presented. Firstly, a Takagi-Sugeno system is 
used to construct a fuzzy affine-in-control model. Then, an 
adaptive algorithm is used to adjust the parameter vector and 
hence to accurate the approximation level. The proposed 
approach guarantees that the system output tracks a given 
bounded reference trajectory, the tracking errors converges to 
a small variable neighbourhood of zero, and the closed loop 
system is robust despite the presence of external disturbances 
thanks to H∞ technique. A simulation example is presented to 
evaluate the performances of the proposed approach 
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I. INTRODUCTION 
 

In recent years, controller design for systems having 
complex nonlinear dynamics is being an important and 
challenging topic. Based on the advances in geometric 
nonlinear control theory, feedback linearization has been 
widely used [KAH, 96]. However, they can be used only in 
the case of the exact knowledge of the plant nonlinearities. 
In order to relax some of the exact model-matching 
restrictions, several adaptive schemes have recently been 
used to solve this problem [JAN, 96] [KAN, 91] [KAN, 92] 
[MAR, 93a] [MAR, 93b]. 
According to the universal approximation theorem [WAN, 
94], many important adaptive fuzzy-based control schemes 
have been developed to incorporate the expert information 
directly and systematically, and various stable performance 
criteria are guaranteed by theoretical analysis [MAR, 95] 
[SPO, 96] [WAN, 96]. The major advantages in all these 
fuzzy-based control schemes are that the developed 
controllers can be implemented without any precise 
knowledge about the structure of the entire dynamic model. 
Based on the same idea some adaptive schemes using 
neural networks and wavelet have been presented in the 
literature [LEU, 99] [POL, 92] [CHE, 98]. However, the 
influence of both fuzzy logic approximation errors and the 
external disturbances can not be eliminated with these 
approaches. In this sense, several robust adaptive fuzzy 
controller using the H∞ technique has been developed 
[BOU, 01] [CHA, 01] [CHE, 96] [ESS, 02a] [ESS, 02b] 
[HAM, 02]. These approaches are based on adding an H∞ 
control signal to attenuate the effects of both the external 
disturbances and the approximation errors to a prescribed 
level. Other techniques combining sliding mode control and 
adaptive fuzzy algorithms are also presented in the 
literature [LIN, 02] [MAN, 03] [WANG, 97] [YOO, 98]. 

However, all these approaches can be used only in the case 
of affine-in-control process. To overcome this constraint, 
some methods based on the decomposition of the fuzzy 
system to sub-systems to deduce the control law have been 
presented in the literature [YOO, 01] [BOU, 03]. These 
approaches are based on adding a control signal to ensure 
the stability of the closed loop system in Lyapunov sense. 
However, only the disturbances free systems are treated 
and some assumptions on the upper bounds of the 
approximation errors must be satisfied. 
In this paper, we propose to synthesise a robust adaptive 
fuzzy controller for a non affine-in-control process (Fig.1). 
Indeed, based on a specific formulation of a Takagi-
Sugeno (TS) fuzzy system with singleton conclusion, the 
feedback controller is constructed. To obtain good 
approximation level, an adaptation law is used for tuning 
on-line the conclusion part of fuzzy system. To ensure the 
robustness of the closed loop system and to attenuate the 
effects of the external disturbances and the approximation 
errors, an H∞ signal is introduced in the control law. The 
global stability of the closed loop system is studied used 
the Lyapunov theory. To evaluate the performances of the 
proposed controller, a simulation example is presented. 
 

II. PROBLEM STATEMENT 

 
Consider a single-input single-output (SISO) nonlinear 
system: 

( ) ( ) ( )( ) duyyyfy 1n1n += − ,,...,,     (1) 
where ℜ∈y  is the measured output, ℜ∈u the control 

input, ( ) ( )n21iy i ,...,,=  the i-th time derivatives of the 

output y, and ( ) ℜ→ℜ +1nf :.  is an unknown nonlinear 
function.  
If we note the state vector as follows 

[ ] ( ) ( )[ ]T1n1T
n1 yyyxxx −== ,...,,,..., , the system can be 

represented in the state space by: 
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The aim is to synthesise a control law allowing to force the 
output of the system y  to track a bounded reference 
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Fig. 1. Control scheme of the proposed controller 

 
trajectory ry , and to guarantee the robustness of the closed 
loop system. In the case where the system is affine, on can 
use the input-output linearization to obtain a direct and 
simple relation between the system output and the control 
input, which allows to use some robust controllers for 
uncertain and disturbed systems developed in the literature. 
To overcome the Linearisation problem, we propose to use 
a TS fuzzy system to approximate the unknown the 
function ( ).f . Based on a specific representation of the 
fuzzy system, we can obtain an affine control description of 
the plant.  
 

III. FUZZY REPRESENTATION 
 
Takagi-Sugeno (TS) Fuzzy systems have been widely used 
in the literature due to: i) the numerical value of its 
conclusion part, which allows to establish the stability 
analysis and to use some kinds of conventional control 
theory [HAM, 04] [ESS, 03] [WAN, 97]; ii) it was 
demonstrated in the literature that the fuzzy systems are 
universal approximators: a fuzzy system can approximate 
any nonlinear continuous function on a compact set to an 
arbitrary accuracy level [WAN, 94]. 
Based on the previous arguments, we use a TS fuzzy 
system to approximate the unknown function ( ).f , which 
can be constructed from a collection of fuzzy rules with 
singleton conclusion in the form: 
( )mjjj n21 ,,...,,  the rule : 
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where  

{ }ii p21j ,...,,∈ , { }n1,2,...,i ∈ , { }M21m ,...,,∈  

( ) { }ii p
i

2
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1
ii

j
i AAAxTA ,...,,=∈ , ( ) { }m21m BBBuTB ,...,,=∈ . 

ip  and M  represent respectively the number of the fuzzy 
sets of the state variable ix  and u  respectively. 

The index ij  of ij
iA  in (3) denotes the th

ij  element of the 

set ( )ixT , ( )mjjj n21 ,,...,,θ  is a parameter to be determined.  
Using the singleton fuzzifier, the centre average 
defuzzification and the product inference engine, the output 
of the TS fuzzy model (3) is given by [WAN, 94]: 
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where ( )ux ,Ψ  is a Mppp n21 ×××× ...  dimensional 
vector with its ( )mjjj n21 ,,...,,  element given by:  
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and ( ) ( )[ ] MpppTMppp1111 n21n21Θ ××××ℜ∈= ...,,...,,,,...,, ,...,θθ . 
The membership functions of linguistic variables of 
u have the form of a triangle and are placed evenly 
throughout the whole defined space uU  as illustrated in 
Fig. 2. 
The space uU  can be decomposed into several subspaces 

( )1M21U u −= ,...,,αα . If u exists in subspace α
uU , all 

membership functions of linguistic variable of u  are given 
by: 
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where ma  is a constant satisfying ( ) 1amBm =µ . 
Substituting (9) in (7) and considering that u exists in 
subspace α

uU , we obtain: 
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Therefore, the fuzzy system can be decomposed into M-1 
subsystems, which allows obtaining an affine-in-control 
structure [LI, 97] [LI, 99]. 

 
VI. ROBUST ADAPTIVE FUZZY CONTROLLER DESIGN 

 
After have defining a canonical model, given by (10), based 
on the fuzzy system decomposition, our task in this section 
is to synthesise a suitable control law, which allows to 
guarantee the good tracking performances and the 
robustness of the closed loop system. To attain this 
objective, we propose the following control law: 

( ) ( ) ( )[ ]s
n

r
T uyekx

x
1u −++−= Θφ

Θφ
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α ,
, 1

2

   (11) 

where [ ]Tn1 kkk ,...,=  is the feedback gain vector calculated 
such that the corresponding polynomial is asymptotically 
stable, ( )n

ry  is nth time derivative of the reference trajectory, 

and ( )[ ] ( )( )[ ]1n
rr

1nT yyyyeee −− −−== ,...,,...,  the tracking 
error vector. The term su  denotes the additional signal 
guaranteeing the robustness of the closed system by 
attenuating the effects of both the external disturbances and 
the approximation errors to a prescribed level. 
Using equations (2) and (11), the dynamic error can be 
given by: 
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which can be written as: 
( ) ( ) ( ) fs

Tn wduekuxfuxfe +−+−−= ** ,,ˆ,,ˆ ΘΘ        (13) 

where ( )** ,,ˆ Θuxf  is the optimal value of ( )Θ,,ˆ uxf , and 

( ) ( )uxfuxfwf ,,,ˆ ** −= Θ . 
The dynamic error equation (13) can be reformulated as: 

( )[ ]wuuxBeAe s
T +++= ,~ ΨΘ&                    (14) 

with *~ ΘΘΘ −= , dww f −= ,  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−

=

n321 kkkk

0100
0010

A

L

LLLLL

L

L

, 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1

0
0

B
M

. 

A  is a stable matrix, thus it can be associated with the 
following algebraic Riccati equation which has a unique 
symmetric positive definite solution, P , if and only if 
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where Q is a positive definite matrix given by the designer, 
r  a positive constant and ρ  the attenuation level. 

To synthesise the adaptation law of the adjustable 
parameter vector Θ  and the additional control signal su , 
we consider the following Lyapunov equation: 

ΘΘ ~~TT

2
1ePe

2
1V

γ
+=                    (16) 

with γ  is a positive constant. 
The differentiation of (16) along (14) gives 
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Using the Riccati equation (15) and the fact that ΘΘ && =
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if we chose the following control signal  

ePTB
r
1us −=      (19) 

and the following adaptation law for updating on-line the 
parameter vector Θ  

( )uxPBeT ,ΨγΘ −=&      (20) 
then equation (18) becomes 
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After some manipulations, we can write 
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Integrating the above inequality from t=0 to the system 
response time τ , and after some simplification we can 
obtain the following H∞ criterion: 

( ) ∫∫ +≤
ττ

0

2
2

0

T dtw
2
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Then the proposed approach allows to ensure the 
convergence of the tracking error toward a closed value 
despite the presence of both (bounded) external 
disturbances and approximation errors.  
Remark:  
i) In the case where we have enough information about the 
dynamic behaviour of the plant, we can use them to 
improve the convergence of the adaptive algorithm as 
illustrated in [ESS, 02a]. Indeed, these information are 
used to obtain the initial values of the adjustable 
parameters, which allows to attain quickly their optimal 
values.  
ii) Generally, the ranges of the state variables are well-
known. Hence, based on (2), we can have the maximal 
value of the dynamic function ( )u,xf . This allows to use 
the projection algorithm given in [ESS, 02a] to guarantee 



     

the convergence of the adaptive algorithm despite the 
arbitrary choice of the initial value of the adjustable 
parameters. 
 

V. SIMULATION EXAMPLE 
 
An example is used to illustrate the effectiveness of the 
proposed adaptive controller for unknown non affine 
nonlinear systems. Consider the following nonlinear plant 
[YOO, 01]: 
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It appears clearly that this nonlinear system is non affine-in-
control. In this case, the proposed approach can be used. 
The control objective is to design a controller so that the 
closed loop system output y follows the desired trajectory: 

( ) ( )ttyr sin=  and the closed lop system is robust despite 
the presence of external disturbances assumed in the form 

( ) )cos(.)sin(. t250t50td += . The initial state is x(0) = 
[0.6,0.5]. The universe of discourse of the inputs 1x , 2x  
and u  are respectively [ ]5252 ..  − , [ ]5252 ..  −  and [ ]6 6− . 
For each variable, we have defined respectively 5, 5 and 6 
linguistic sets. 
To synthesise the feedback controller, we choose, k1=2, 
k2=1 and Q=diag(10,10). Furthermore to simplify the 

calculation, we choose 22r ρ=  and ρ=0.2.  
The figures 2 and 3 gives the evolution of the state 
variables 1x  and 2x  together with the corresponding 
reference signals. One can note the good tracking 
performances and the convergence of the system to the 
desired trajectories as illustrated on figure 4. This can be 
justified by the good approximation level assured by the 
adaptive algorithm as shown in figure 5. The applied 
control signal to attain our objective is given by figure 6. 
Comparing the obtained results with those presented in 
[YOO, 01] [BOU, 03], we remark that the proposed 
approach guarantees better tracking performances despite 
the presence of external disturbances in our case.  
 
 

6. CONCLUSION 
 
In this work, a robust adaptive fuzzy controller applied to 
non affine nonlinear systems was presented. To exploit the 
feedback linearisation technique, a Takagi-Sugeno fuzzy 
system is used to approximate the system model. The 
numeric nature of its conclusion part allows us to construct 
an affine-in-control fuzzy model of the studied plant. In 
order to increase the approximation level, an adaptation 
algorithm is adopted to adjust on-line the parameter vector 
of the fuzzy system. The robustness of the closed loop 
system is assured by an additional control signal deduced 
from the H∞ technique. To show the efficiency of the 
proposed approach, a benchmark example was presented. 
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Figure 2: System output with corresponding reference 
signal 
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Figure 3: State variable dy/dt with corresponding reference 
signal 
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Figure 4: Tracking error 
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Figure 5: Evolution of the nominal function ( )uxf ,  and 

its approximation 
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Figure 6: Control input signal 
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