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Abstract—Efficient geometric routing algorithms have been
studied extensively for two-dimensional ad hoc networks, o
simply, 2D networks. They are not only efficient but have
also been proven to be worst-case optimal localized routing
algorithms. However, few prior works have focused on efficiet
geometric routing in 3D networks due to the lack of an efficiet
method to bound the search once the greedy routing algorithm
encounters a local minimum, like face routing in 2D networks In
this paper, we tackle the problem of efficient geometric rouing
in 3D networks. We propose routing on hulls, a 3D analogue
to face routing, and present the first 3D partial unit Delaunay
triangulation (PUDT) algorithm to divide the entire network

= greedy routing

space into a number of closed subspaces. Our proposed greedy — *"*** hull-based DFS ... single edge

hull-greedy (GHG) routing is efficient because it limits thelocal-

minimum recovery process on the hull of only one of these Fig. 1. An example of greedy-hull-greedy routing.

subspaces. Simulation results verify the efficiency of ourpposed

algorithms.

Index Terms—Delaunay triangulation, geometric routing, ad . . .

hoc networks, three-dimensional (3D) networks. routing protocols with the hop-counts of the resulting gath

bounded byO(d?), whered is the distance between the source
. INTRODUCTION and destination.

In this paper, we focus on efficient geometric routing However, the detection of the face requires a pIanarized
algorithms for three-dimensional ad hoc networks, or Synpmetwork graph which can only be constructed in 2D networks.
3D networks. Exploiting the geometry of the network td-ocalized planar graph constructions in 2D networks inelud
perform routing is a commonly-used approach for overcomirglative neighbor graph (RNG) [6], Gabriel graph (GG) [7],
the challenges posed by resource-limited ad hoc networnks. aAnd Delaunay triangulation (DT) [8], [9]. Few previous re-
important property of geometric routing a|gorithms is tﬁ‘my search works have attempted to discover a similar struature
are based on local information which can easily be refreshd® networks. In [10], Flury and Wattenhofer used virtual esib
to reflect unavoidable topology changes in mobile networkdg0 capture the surface of holes, and they used random walk

Most geometric routing protocols start with greedy forto recover from local minima. Their work proved the optimal
warding, which is simple and close to optimal. In greedyorst-case bound(d?) for localized routing algorithms and
forwarding, each node knows the positions of its neighbor@;OVided the first feasible solution for geometric routin@D.
and the node forwards each message to the neighbor thgwvever, the virtual cube approach is expensive (requising
is the closest to the message’s destination. However, gred®ps of information), and the random walk is inefficient.
forwarding is not always successful: it fails when a messageln this paper, we propose a low-cost, localized gartial
reaches docal minimumnode whose neighbors are all furthetinit Delaunay triangulationPUDT) algorithm for capturing
away from the destination than the node itself. For 2D ndfhe empty 3D network subspaces in order to perform an
works, face routing is the most prominent solution to recovefficient local-minimum recovery search. Our PUDT algarith
from local-minima. In the greedy-face-greedy (GFG) apphoarequires just over 1-hop of information.
and its variants [1], [2], [3], [4], and [5], @ message stuck Local recognition of the network subspaces and the nodes
in a local minimum is routed along the face intersecting tha each subspace is the main challenge. In this paper, (1) we
source-destination line (i.e. the empty network space éetw define a triangle as a small plane delimited by the three edges
the local-minimum and the destination) until it finds a nodef three connected nodes; (2) we divide the entire network
that is closer to the destination than the local minimum, apace into a number of subspaces delimited by these trigngle
which point it continues with greedy forwarding. [4] and [5)(3) analogous to the planar graph construction processhwhic
show that geometric routing protocols are not only efficiant removes intersecting edges, we use a PUDT algorithm which
the average case; they are also worst-case optimal lodalizemoves intersecting triangles (more precisely, an intgisg



triangle and edge); and (4) we define thdl of a subspace as algorithm, messages only need to ke€yl) routing state

a structure that contains the triangles shared by the awjaceformation; all other information is stored in the nodes.

subspace and thgingle edgegnone of which belong to any Other geometric routing protocols that can be extended to

triangle), and we devise localized algorithms to recoghizés  run in 3D networks include those that use virtual coordigate

and identify the triangles and single edges belonging tt eaend those that rely on virtual global structures [12], [13],

hull. [14], and [15]. The problem with all of these approaches
Analogous to face routing, once the message reaches a locatthat they require global operations on the network. Other

minimum, we use hull-based routing to constrain the localegionized approaches to improve routing performance and

minimum recovery search on the hull of a particular subspattgerate location errors include [16], [17], and [18].

instead of wandering aimlessly throughout the entire nekwo

It switches to greedy mode when a node that is closer to tBe Localized planar graphs in 2D networks

destination than the I_ocal-m|n|_mum_|s reached. (gmgdy- A planar graph construction is localized if every wireless
hull-greedy(GHG) routing contains this hull-based routing anﬁ’]odeu can determine the edges Gf incident onu using

is shown to be efficient through simulation. only the information of the nodes within a constant hop.

_ Ar_l example routing process of our GHG protocol is show\‘qhe relative neighborhood graph [6], denoted BV G(V),
in Figure 1, where greedy routing se_n_ds the message frafhqits of all edgesw such that|luv| < 1 and there is
node 55 (source) to 15. On local-minimum 15, hull-bas pointw such that|juwl|| < [luv|| and [[wo|| < [uv]. Let

routing sends the message from nodes 15 to 70 where gre 9%(%“) be the closed disk with diameten. The Gabriel

can be continued (since 70 is closer to 46 than 15). Final taph [7], denoted by7G(V'), consists of all edgesv such
greedy routing sends the message from 70 to 46 (destinatiqfy),, luv|| < 1 and the interior oflisk(u, v) does not contain

Our contributions in this paper are summarized as followgny other nodau.

« We first propose to use partial unit Delaunay triangulation pelaunay triangulatio®T' (V') [8], [9] for a setV of points

(PUDT) to define network hulls in 3D networks. in the plane is a triangulation such that the circumcircle of
o We present the first Ioca_hzed PUPT algorithm and a lovg triangle inDT (V) formed by three points i/ does not
cost local hull construction algorithm. contain vertices other than the three that define it.din

+ We devise a 3D geometric routing protocol, greedy-hullfimensional Euclidean space, a Delaunay triangulation is a
greedy (GHG), which efficiently recovers from localtriangulation DT'(V) such that no point in// is inside the
minima on a target hull. circum-hypersphere of any-simplex in DT(V'). Here, ad-

« We perform simulations to show that the overhead of odimplex is thed-dimensional analogue of a triangle. We are
low-cost PUDT is just over 1-hop of information, andnterested in 3-dimensional spaces where the 3-simplex is a
that our GHG protocol is efficient. tetrahedron. In Euclidean space, the Delaunay trianguiatf

This paper is organized as follows. Section Il introducéd corresponds to the dual graph of the Voronoi tessellation

some preliminaries and reviews related works. Section fior V.

covers the main ideas in this paper. Section IV proposes theA unique Delaunay triangulationXT") exists if V' is a set

low-cost PUDT algorithm. Section V presents the localizedf points in general position. That is, no three points aréhen

hull construction and target hull selection. Section VusH same line and no four are in the same circle for a set of points

trates the elements in the GHG routing algorithm. Simufaticon a 2D plane, or, no four points are on the same tetrahedron

evaluations are shown in Section VII. Finally, Section VIland no five points are in the same sphere for a 3-dimensional

concludes the paper with future research directions. set of points. To simplify the proofs, from now on we assume

that V' is a set of points in general position. Otherwise, a

Il. PRELIMINARIES & RELATED WORKS very small random perturbation to their coordinates alltives

A. Geometric routing assumption above without causing any problems in the actual

This paper considers an ad hoc network with all nod%etwork. Unit Delaunay triangulation(UDT) differs from

distributed in a 3D space. Following the traditional line o

re_search, all wweless_nodes havg dlstmcpve |_dent|tmh from UDT in that PUDT might contain extra edges and
wireless node knows its location information (i.e. through . : .
fewer triangles to guarantee routing delivery.

GPS receiver), and all wireless nodes have the same transmis
sion range which is normalized to one unit. Consequently, al
wireless nodesl() together define a unit-disk graghDG(V')

in a 2D network or aunit-ball graph UBG(V) in a 3D Our proposed geometric routing protocol starts with greedy
network. Several planar network topologies are proposddrwarding. Once the message is forwarded to a local-
including RNG [6], GG [7], and DT [8], [9], which can be minimum, a recovery process is started by searching nodes
used as the underlying structure facce routing in the subspace containing the segment between the local-

In [11], a depth-first-search geometric routing protocol iminimum and destination. Once the routing algorithm is veco

proposed, which is also applicable in 3D networks. In thisred from the local minimum (by forwarding the message to a

T in that UDT only contains the edges which are shorter
han onePartial unit Delaunay triangulatiof PU DT') differs

I1l. OUR PROPOSEDAPPROACH



node that is closer to the destination than the local miniju
it continues with greedy forwarding.

There are several challenges in this paper. The first chal-
lenge concerns dividing the network space into subspacges
so that we can limit the local-minimum recovery search i ?
one of these subspaces to improve recovery efficiency. In e
networks, faces are divided by non-crossing edges. Local-® e
minimum recovery consists of searching along consecutive (@) RNG (b) GG (c) PUDT
edges bordering a particular face. We first propose to use
triangles consisting of three connected nodes to divideihe
network space into subspaces. The entire network space is
divided by triangles into one outer subspace and a number
of inner subspaces. In Figure 1, the network consists of tflp The basic approach and its correctness
spherical inner subspaces and one outer subspace which fill&G and RNG are more popular than PUDT in 2D networks
the rest of the entire space. because they are simpler. However, in 3D networks, PUDT is

The second challenge concerns removing intersecting titie only feasible choice among the three because GG and
angles. In 2D planarization, crossing edges need to be RNG remove most of the triangles. As can be observed in
moved such that the network plane can be divided into facéise random network in Figure 2, PUDT conserves as many
Similarly, non-overlapping subspaces cannot be dividetth witriangles as possible while GG and RNG destroy most triangle
intersecting triangles. We propose a low-cost, localiz8®P because they remove excessive edges. It can be proved that
algorithm in Section IV to remove intersecting triangleseth RNG C GG C PUDT in terms of triangles as well as edges.
uses just over 1-hop of information. We denote nodes ag;,ps,..., an edge between nodes

The third challenge concerns identifying nodes in differem; and p» as edge(p1,p2), a triangle determined by three
subspaces since our local minimum recovery search is limitpoints not in a line asA(p1,p2,p3), a tetrahedron as
to the nodes within a particular subspace. This essentiallyp;,p2, ps,ps), and a ball determined by four points
consists of grouping the triangles and edges into differembt on the same plane akall(p1,p2,ps,ps). Note that
subspaces. We define a hull for a subspace as a structur&(p:, p2, ps, p4) is the circumsphere df (p1, p2, p3, p4)-
which contains the triangles bordering the subspace and th&Vhen the edges can be arbitrarily long, the result of
triangles and single edges (edges not belonging to amygtaan applying Delaunay triangulation to a set of vertexes is a
inside the subspace. We propose a local hull constructionspace uniquely divided into a number of non-intersecting
Section V in which each node locally groups its triangles andtrahedra and a single outer subspace. The rule is that only
single edges into different hulls. When distinguishing headhe tetrahedra without a fifth vertex inside its circumsgtisa
triangle by two sides, each triangle and single edge muatlid Delaunay tetrahedron. Two tetrahedra are intensgdti
belong to exactly one hull. there is a common point inside them. For example, in Figure

In Figure 1, the hull of the right-side inner subspace corstai3(a), 7'(p1, ps, pa, ps) and T'(p1, p2,ps, p4) are intersecting,
all of the triangles on the right-side ball and the singland Delaunay triangulation ensures that only one of them is
edge(p1s, pr1) inside the ball. Some triangles have their twoalid. In this exampleI'(p1, p2, ps, p4) is not valid sinceps
sides belonging to different hulls, and others have botbssidis insideball(p1, p2, p3, pa)-
belonging to the same hull. For example, both sides of theThe PUDT algorithm in 3D networks is analogous to planar
blue triangle belong to the outer hull (for the outer subspacgraph construction in 2D networks: the latter is used to
Each single edge belongs to only one hull. remove intersecting edges, while the former is used to remov

The last two important challenges deal with finding (Sedntersecting triangles. It can be proved that if there is no
tion V) and searching (Section VI) the target hull once thiatersecting edge and triangle, then there is no intersgcti
message is in a local-minimum. For a particular destinatiotetrahedra. This is because when two tetrahedra interseet,

a target hull is one of the local hulls of the local minimunef the four triangles on the first tetrahedron must intersect
which contains all or part of the segment between the locdfiangle on the second tetrahedron; moreover if two triasgl
minimum and the destination. Recovery from a local-minimumtersect, an edge of one of the triangles must intersect the
is guaranteed when searching the target hull. For enhancgher triangle. When the network is very dense, the non-
performance, we propose a hull-based connected dominatirgnoved triangles partition the network space into a number
set (CDS) in Section VI, to further limit the node in the locabf tetrahedra. Otherwise, there are some irregular polghed
minimum recovery search. Our basic PUDT algorithm logically removes the edges
and triangles, which are defined in Definition 1, and it is
IV. PARTIAL UNIT DELAUNAY TRIANGULATION (PUDT) jjystrated in Figures 3(a) and 3(b). Definition 1 guarastee

In a PUDT for 3D networks, intersecting triangles and edgéisat an edge and a triangle cannot exist at the same time if
are logically removed such that the entire network space ctey intersect. Note that we define edges and triangles as two
be divided into a number of subspaces. kinds of objects. Removing any of the three edges of a treang|

Fig. 2. Triangles in RNG, GG, and PUDT.



Proof: We can prove this theorem by proving: if
edge(p1, p2) intersectsA(ps, ps, ps), then either (1)p; or po
connects to all ops, p4, andps, or (2) ps, p4, OF p5 connects
to both p; and p,. The detailed proof can be found in the
Appendix. ]

(a) Case 1 (b) Case 2 Theorem 3:In UBG(V), if one of the three edges of a
triangle is invalidated by another triangle, then all sixtlo
vertexes are 2-hops away.

Proof: The proof can be found in the Appendix. =

results in removing the triangle. However, a triangle can b Theorgm 4:The connectivity of the network is conserved
F§ﬁter all invalid edges are removed.

removed while all of its three edges are retained in the gra
Proof: We need to prove that #dge(p1, p2) is invalidated

Definition 1 (Invalid edge & triangle):f edge(p1, p2) in-
: . ’ by A(ps,p4,ps5), bothp; and p. connect to at least one of
t tsA d tside ball , e ) :
erSeCtSA(ps, pa, ps) and py is outsideball(ps, ps, pa,ps) ps.pa, andps. This follows directly from Theorem 2. =

thenedge(p1, p2) is an invalid edge (invalidated b (ps, pa,
ps)). Otherwise, ifp is insideball(p1, ps, pa, ps), thenA(ps, B. A Low-cost PUDT algorithm

p1,p5) is an invalid triangle (invalidated bydge(p,p2))-  \ye have showed a basic PUDT algorithm in which the
A(ps,ps, p5) IS also invalid if any of its three edges ar% odes propagate 2-hops of position information and then
invalid or if there exists a vertex such that the radius of propag P P

ball( ) is greater than 1 remove all invalid edges anql tr_iangles. In this subse_c_tion,
au{t, P, P4, Ps5) 1S 9 ’ we will calculate the PUDT with just over 1-hop of position

The last constraint in the definition is required for guatinformation. In our low-cost PUDT algorithm, each node
anteeing delivery (in Theorem 5) which otherwise is n@ends its own position and might also send sadeertised
guaranteed in Delaunay triangulation [3]. Theorem 1 witsh information to its neighbors, which includes the positions
that invalid edges and triangles determined distribuyivele of some of a node’s 1-hop neighbors. The basic PUDT
consistent among the nodes. Theorems 2 and 3 will show t@gjorithm is a special case in which each node’s advertised
the position information of a 2-hop neighbor is sufficient foinformation includes the position information for all ofeth
the correctness of Theorem 1. Theorem 4 shows that netw@g{ghbors, while the low-cost PUDT algorithm includes as
connectivity is conserved when invalid edges are removed.ittle information as possible. Simulation results in SectVI

Theorem 1:If edge(p1,ps) intersectsA(ps,ps, ps), then shown that the average amount of advertised information is
invalid edges and triangles determined distributively @wa- less than 3% of 2-hop information and hence we say that it is
sistently among the nodes. just over 1-hop.

Proof: To prove this theorem, we need to prove that We have five rules on selecting advertised information. The

and p» make consistent decisions, which is to prove the fo\ei-rSt four rules are regarding edges invalidated by triangie

lows: (1) if ps is outsideball(py, ps, pa, ps), thenp, is outside triangles invalidated by edges. Figures 4(a) and 4(b) shew t
ball(ps, ps, pa, ps) as shown i’n F’igu’re é(a) and (2) jif, is two situations of connectivities between the five vertexeso

insideball(py, ps, pa, ps), thenpy is insideball (ps, ps, pa, ps) edge and a triangle that intersect each other. Other sihgti

as shown in Figure 3(b). The detailed proof can be found e impossible, as shown in the proof of Theorem 2. Rules 1-4
the Appendix m &€ illustrated as follows. In Figure 4(a) for rules 1 andf 2,i

. o is not connected with any af;, p4, andps, then (1)p, should
In case 1 (Figure 3(a)kdge(p1,p2) is invalid and there advertisep, t0 ps, ps, andps when edge(ps, p2) invalidates
are two tetrahedral'(pi,ps, pa,ps) and T(p2,p3,p1:P5)-  A(ps, ps,ps), and (2)p should advertisgps, pa, ps} t0 pa
In case 2 (Figure 3(0))A(ps;pa;ps) is invalid, and there \yhenA (p,, py, ps) invalidatesedge(ps, p). In Figure 4(b) for
are three tetrahedrd’(py, p, ps, pa), T'(p1, p2,P3,p5), @d  ryjes 3 and 4, ifp; is not connected withps, and p, is not
T(p1,p2,pa;p5). There are no intersecting triangles in eigonnected withpy, then (3)ps should advertisép:, p2} 10 ps
ther case:A(ps, pa,ps) is valid iff all of A(p1,p2,p3),  andp, when edge(p, p2) invalidatesA(ps, pa, ps), and (4)
A(p1,p2,p4), and A(p1, pa2, ps) are invalid, and vice versa. p5 should advertiséps, ps} t0 p1 andp, whenA(ps, pa, ps)
Nodes can determine invalid edges and triangles CO”%WalidateSedge(pl,pg).
tently only if they have sufficient information about the @th  The fifth rule is regarding triangles invalidated by other
nodes. To detect an invalid edge consistently, both of itkeso triangles. In Figure 4(c) for rule 5, if\(ps, ps, ps) invalidates
must know about any triangle invalidating this edge. To deteedge(pl’m) and pg is not connected with some vertexes in
an invalid triangleA consistently, all three of its nodes mush(pg’m’m)' thenp, should advertise these vertexespio
know of (1) any edge invalidating, and (2) any other triangle  Tq reduce the size of the advertised information, we opti-
invalidating any edge of\. mize the algorithm by (1) sending advertised informatiotyon
Theorem 2:In UBG(V), if an edge intersects a triangle when necessary, and (2) selecting minimized advertised-inf
then all five of the vertexes are at most 2-hops away. mation to send. For example, in Figure 4(a)\ifps, pa, ps) IS

Fig. 3. lllustrations for Theorem 1, whetedenotesp;.
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@
(@) Rules 1&2 (b) Rules 3&4 (c) Rule 5 @)

Fig. 4. lllustrations of our low-cost PUDT algorithm. Fig. 5. lllustrations of triangles and angles.

also invalidated by another, sayge(u,v), of which all of the of the triangles, it does not pass through any other triangle
three vertexes il (ps, p4, ps) are aware, then itis unnecessaryhat is, if A; and A, are neighboring triangles, then(1y;
for p, to advertise{u, v} to the vertex nodes i\ (ps, ps,ps). and A, have an angley, and (2) for anyAs; that also share
V. LoCAL HULLS AND TARGET HULL the common edge of\; and A,, if Az has an angled with

A1 (or Ap), theng > «.

dAfter tthel_cIjDUcljDT alg%r[{thm’ Ieacr'\ll rt\oilhe tknowz i" .Of S 1o group the objects into different local hulls, we first find
adjacent valid edges and triangles. Note that greedy faiwar the components, which consist of either a single edge or a set

uses all nodes in the network whereas hull-based rouuggneighboring triangles, then we group different compasen

only uses nodes on the valid edges and triangles. Therefqﬁzf) different hulls. An example of a component consistifig o
19

n thefsect:tlotrr:, only_ Va:'d edg((ajs and t(;la;n_glesl areTl;sed ?ﬁ] hboring triangles is shown in Figure 6(a). Startingrfro
we Teter to them simply as edges and triangies. The ent ﬁy triangle, sayA(p1, ps, p4), we can find a sequence of con-

network space is divided into subspaces by triangles. T@écutive neighboring triangles adjacentyta A(p1, pa, ps)
section will present the solutions to two problems: (1) ho ( e
p1,P5,06)s A(p1,p6,pr), and A(py, pr, p3), which are in

efaghﬁnodet Ioct?lly groups S||:1(jgjlet§d?es T?]d I:rla.mgles ‘,';ﬂe h component op;. We can find another component for node
o dirrerent subspaces (ie., iden .'fy ocal hulls); andl given p1 consisting of the opposite triangles in the first component.
a destination, how the target hull is selected. Note thatmg o : . .

identify local hulls si itis | ble to determi | The third component fop; is the single edgesdge(p1, p2).
iaentiy local huts since 115 IMpossibie 1o getermine Similarly, we can find two components fpg in Figure 6(b),

two objgctsarg on the same glolpal hull with I_ocal mformatlona d there are three components for thein Figure 6(c).
We define objects as either triangles or single edges. Local . ,
efore combining components, we define two concepts. (1)

hulls can be combined when messages are routing on the hH1

(in Section VI-B) which guarantees that every node in a globah € anglex between an ?dge (or a segment) and a trlgngle that
hull can be traveled to by messages. share a common vertex is defined as the follows. As illusirate

in Figure 5(b), letu be the intersection point afdge(p2, p3)
A. Construction of Local hulls and the projection of thedge(p1,t) on A(p1,p2,ps3). If u

To identify nodes in different subspaces consists essigntidS 0N edge(p2,p3), as in Figure 5(b), the angle is the
of identifying the triangles and edges in different subgsac angle betweesegment(pi,t) and its projectioredge(p1, u).
We define a hull for a particular subspace as a structure whigfherwise, as in Figure 5(cy is undefined. (2) The closest
contains the triangles bordering the subspace and theykeign Object to an edge (or segment)is a triangle or an edge
andsingle edgegedges not belonging to any triangle) insidéhat has the smallest angle with The closest object to
the subspace. First, we will present some concepts. segment(p1,t) in Figure 5(b) isA(p1, p2, p3), and the closest
We distinguish triangles by both vertexes and sides, andPBject tosegment(p1,t) in Figure 5(c) isedge(p1, ps3).
triangle with its side touching a subspace belongs to the hul The following rule determines whether two components
of the subspace. Two sides of a triangle can belong to eitfglong to the same hull. Once two components are determined
two different hulls or the same hull. In the following, we eef as belonging to the same hull, we combine them by putting
to a triangle as a triangle with a particular side. The sida oftheir objects together. (1) If two componerits andC> have
triangle is defined by the order of the vertexes using thetrighvo triangles that are opposite, these two components gelon
hand rule. In Figure 5(@)A(p1, p2, p3) is the triangle facing to different hulls (thoughC; andC> can belong to the same
upward, whileA(py, ps, p2) is the one facing downward.  global hull). (2) If C; and C> belong to the same hull and
We define the angle between two triangles as the angle(o and C3 belong to different hulls, thed; andC3 belong
flip one of the triangles along their common edge until theip different hulls. (3) For each edge (not necessarily alsing
are on the same plane and face-to-face. In Figure 5(d), #@ge) inC;, we select its closest object in the components that
angle between\(py, p2, p3) and A(p1, ps, p2) is a; the angle were not determined as belonging to different componehts. |
betweenA(p1, p3, p2) and A(p1, p2,ps) is ™ — «; and the the closest object is found in componért, thenC; andCs
angle between\ (py, p2, p3) and A(p1, p2, p4) is undefined.  belong to the same hull.
We define that two triangles are neighboring triangles ifthe In Figure 6(a), letC; be the component g; consisting
can be flipped to become face-to-face, and when flipping ooetriangles facing node, C> be the component consisting of



the target hull, or at least one node on the target hull iseclos
to the destination than the local minimum.

Proof: If the destination is reachable and is not on the
target hull, then there must be a triangle, g8ft:, v, w), that
intersects then-t segment. In this case, at least one vertex in
A(u,v,w) must be closer te thanm. OtherwiseA (u, v, w)
is not a valid triangle. This is because if all of the vertexes

Fig. 6. Components and hulls fir;. of A(u,v,w) are outsideball(m,|mt||) (which is the ball
centered atn with radius equal to the distance between
andt, ||mtl|), thenball(u,v,w, m) containsball(m, ||mt||).

triangles facingy,, andC3 be the component consisting of theThis follows that the radius dfall(u, v, w, m) is greater than
single edgeedge(p1, p2); C1 andC> belong to different hulls 1 (since the radius of the contained b#h:t| > 1) and
because they contain opposite triangles, such@s, ps,ps) A(u,v,w) is invalid, according to Definition 1. [ ]
andA(p1, ps, p2); C3 andCs belong to the same hull because
one of( the trian)gles or edges @b Enust be the closest object Vl. GHG AND EXTENSION
to edge(p1,p2) in Cs; finally, C3 and C; belong to different A. Greedy-hull-greedy (GHG) routing

hulls becaus€’; andC; belong to different hulls. Therefore, Greedy-hull-greedy (GHG) routing is analogous to greedy-
p1 has two local hulls. Similarly, in Figures 6(b) and 6(c), wgace-greedy (GFG) routing. All geometric routing algonith
can see thap, has only one hull. contain a greedy routing algorithm and a recovery algorithm
since greedy routing (which forwards the message everrlose
. to its destination) is the simplest and most efficient. An
When a message reaches_ a local minimum, one of Beacution of GHG is a repetitive alteration between greedy
adjacent hulls of the local minimum (the target) is selectgfyarding and hull-based local-minimum recovery. GHG can

such that the message can recover from the local minimyy ¢4y extended with a bounded circle as in [5] to achieve

by searching this hull (searching the nodes in or on thesully o \\ost case boun@(d®), whered is the distance between

subspace). We define ttarget hullas the hull whose subspacée goyrce and destination. Delivery is guaranteed sinde hu

contains all or part of the segment connecting the |°C3r'6uting can always make progress (Theorem 5).
minimum m and destination, or simply them-t segment.

Since each object belongs to only one hull, to determif® Efficient searching on the target hull

the target hull is to find a representative object (a triangle |n 2D, searching the border of a face for a recovery node
or a single edge) of the target hull. First we find the closegf 3 trivial one-dimensional search. Random walk is progose
object to thes-t segment. If the closest object is a trianglgn [10] to search the virtual cube structure also proposed in
or a single edge, then this object is the representative®f 10]. We use a more efficient hull-based, depth-first sedrch,
target hull. Otherwise, the closest object is an edgees@y which each message is forwarded at most twice the number
some triangle. In this case, we flip the virtual triangle, ethi of the nodes on a target hull (leaf nodes forward at most once
consists of the two vertexes ef and the destination, alongand non-leaf nodes forward at mdst 1 times, wherék is the
e to find the triangle which has the smallest angle with theumber of children in the search tree). Therefore, we carser
virtual triangle. This triangle is the representative abgf the the worst-case bound @ (d®).
target hull. In Figure 6(a), suppoge is the local minimum, | [11], a depth-first search (DFS) has been proposed for
¢ is the destination, anddge(p1, ps3) is the closest object of yse in geometric routing where depth can be defined as the
segment(p1,t). We can flip the virtual triangleA(t, p1,ps)  reciprocal of the distance between the nodes and the destina
(or A(t,ps,p1)) to find the first triangleA(t, ps,p3) (O tion. In this algorithm, messages only st@Pél) routing state
A(t,ps,pr)) on the target hull. It can be proved that all ofnformation. This algorithm can be improved by allowing leac
part of them-¢ segment is in the subspace of the target hulhgde to overhear the messages of its neighbors.
since there cannot be a triangle dividing thet segment and e assume that each message has a unique ID. Whenever
its closest object into different subspaces. a nodeu overhears or receives a message for the first time, it
When routing on a target hull, each node only forwards theates a record for the message. This record is removed when
message to its neighbors adjacent to the triangles andesingle message expires. Each record stores (1) a set of nodes tha
edges on the target hull. Therefore, in hull routing, when gere overheard forwarding the message to some other nodes,
node forwards a message to another node, the sender neeqs)t@n ancestor node of that first forwards the message to
tell the receiver which hull is the target hull by piggybauki 4 and (3) a set of nodes that forwarded the message to.
the information about an object on the target hull that thene DFES rules are: (1) whem receives a message from if
receiver knows. Theorem 5 shows that hull-based routing cgns the first time thatu receives it ¢ is the ancestor) ot
always make progress. forwarded the message tdbefore,u sends the message to the
Theorem 5:If the subspace of the target hull contains alhext neighborw that is the closest to the destination among
or part of them-t segment, then either the destination is othe neighbors on the target hull and that does not have the

B. Determine the target hull
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Fig. 7. Comparison of PUDT costs.

message (known from overhearing); (2uifdoes not existy  describing thex, y, and z coordinates of a node. The sim-
forwards the message back to the ancestor; and 3)sfnot ulation results are plotted in log scale. The measurement
the ancestor and did not send the message o« returns does not include information about the node’s own position.
the message to. Simulation results in Figures 7(a)-7(c) show that cost & th
We associate each message with a counter which increaBeT algorithms under different heightf and number of
whenever it starts to travel to a new hull. When a node findodes. The results show that the average cost of the low-cost
that a message travels to two of its local hulls with the san®JDT is only around 3% of the 2-hop information which is
counter value, the node combines these two local hulls intequired in the basic PUDT. Also, the maximum cost of the
one hull. This ensures that each forwarding node forwartisv-cost PUDT is almost equal to the average cost of the basic
the message to all of its neighbors on the target hull wh&UDT.
the target hull contains different local hulls of the fordiug .
node. It can be proved that this algorithm guarantees that aEﬁ' Routing performance

recovery node on the target hull can be traveled to. We compare the routing performances of Flooding (which
finds the optimal paths), DFS [11] and DFS+CDS (DFS runs
C. Extension: CDSs on hulls on the connected dominating set of the network), greedy-

In [19], the Gabriel Graph (GG) is constructed on thEAndom-greedy (GRG) [10] which performs its random walk
connected dominating set (CDS) of the network nodes igcal-minimum recovery search on _the hull we constructed,
reduce the number of nodes on each face. We use CDS‘?‘{Bj GHG. Our simulation m_etr|c is in terms of hop-count.
reduce the number of nodes on each hull to make searching\{e_ generate networks with ranQome placeq nqdes and
more efficient. Our CDS nodes are hull-specific. Note thaf ificial holes to emulate obstacles in practical situsiorhe
we cannot construct a CDS on all nodes since it results € Of all networks i$00 x 500 x 500 and the transmission
removing most of the triangles range of the nodes is 100. A number/@fnodes are randomly

An optional step can be applied before the huII—base’?daced n ea_crr\]bnetwork wf;ose gﬁegrﬁelranlgesdlietween 8,
CDS selection to reduce the CDS size by allowing node<: ©F 16 neighbors per node, andis calculated fromD as

— 3 2 i
to construct larger local hulls through exchanging local huN = 500°/(m ><.100 /(D(;H))HA rectang:jlar hhole whoie S'ﬁe
information and combining hulls when hulls share objects. IS H x Hx 150 Is created at the center of each network, where

H ranges between 200 and 400 in different networks. Small
VIl. SIMULATION holes other than the artificial hole might exist in regionsveh
node density is low. Disconnected networks are discarded.
For eachD and H, we generate 30 networks to repeat the

PUDT is performed in random 3D networks of siz&)00 x  simulation. For each network, we select at most 5000 pairs of
1,000 x Z, where Z varies among 100, 200, and 400. Fonodes as the sources and destinations. Since all protameds h
each Z, networks containing a varied amount of nodes athe same path length when greedy forwarding is successéul, w
generated. For each and each network density, 100 networksequire that, in these selected pairs of nodes, the deistinat
are generated to repeat the simulation by randomly setgectis a local-minimum of the source in order to create larger
an(z,y, z) coordinate for each node within the specific spacdifferences in the simulation results.

We compare the cost of the basic PUDT (denotedlfy) First, we compare GHG with Flooding, DFS, and
in the simulation results) and the low-cost PUDT (denoted WyFS+CDS. Figures 8(a)-8(c) show that the path length of
O(1)) in terms of the size of position information exchangedll protocols increases as the size of the hole increases (th
among the nodes. The size is measured by the volumeimérease in Flooding is the smallest). The performance of
position information, each of which contains three integeGHG is, on average, only 20% longer than the optimal path

A. Evaluation of our PUDT algorithm
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Fig. 8. Comparison of routing performances.

length of Flooding and is at most 50% longer in the worstnore efficient than DFS and GRG. We believe many problems
case. Comparatively, DFS and DFS+CDS have a longer pathgeometric routing in 2D networks can be redefined or
length which in the worst case is about six and three timegtended to 3D networks based on our model, which include
longer than GHG, respectively. The performance of DFS amaulticast, geocast, virtual coordinates, handling umatenpo-
DFS+CDS becomes worse as the network density increas@ton information, and energy efficient routing.

As the density increases, the percentage of nodes on tre hull
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APPENDIX

Proof of Theorem 1:If two balls intersect at three points,

then each ball is divided into two domes by the intersecting

Fig. 10. [lllustration for the proof of Theorem 3.

dome(p1,ps3, P4, ps) IS insideball(pa, ps, pa, ps), and finally
p1 is insideball(pz, ps, pa, Ps)- [ ]

Proof of Theorem 2:We will show that the opposite cases
below are impossible which are illustrated in Figures 9@)-
We ignore the symmetric cases. If neithgrnor p, connects
to both ps, ps, andps, we can assume; does not connect
to ps without loss of generality. Ips does not connect tps,
then either bothp, and ps do not connect te; (case 1), or
p4 does not connect tp; andps does not connect tp, (case
2). If po connects tas, thenp, cannot connect tp, andp;
cannot connect tp; (case 3).

Case 1:As shown in Figures 9(a) and 9(d) connects to
neitherp; norp,, andp, andps do not connectte;. Let L be
a plane which containg; andp, and which is perpendicular
to A(p1,p2,ps). pa, ps, andps must be on the same side of
L. Therefore edge(p1, p2) cannot intersec (ps, pa, ps).

Case 2:As shown in Figures 9(b) and 9(g)3 connects
to neitherp, nor py, ps does not connect tp,, andp, does
not connect top;. Let L be a plane which contains, and
p2 and which is perpendicular tA(p1, p2, p3). P4, ps, andps
must be on the same side bf Thereforeedge(p1, p2) cannot
intersectA(ps, pa, ps)-

Case 3:As shown in Figures 9(c) and 9(fp; does not

plane determined by the three points. For each ball, oneeof pnnect tp; andps, andp, does not connect tp;. Let L be

domes is inside the other ball and the other dome is outsi%

the other ball.

Case 1: As shown in Figure 3(a), we will show that

if py is outsideball(ps1,ps,ps,ps), then p, is outside ball
ball(p2, p3, pa, ps). Since the intersectiom of edge(p1,p2)

and A(ps, ps, ps) is inside ball(p1,ps, pa, ps), edge(p1,p2)

has an intersection with ball(p1, ps, ps, ps). Sincep; andv

are on different sides gflane(ps, p4, ps), they are on two dif-
ferent domes oball(p1, p3, ps, p5) Separated bylane(ps, pa,

ps). Sincew is inside T(p2, p3,p4,p5), dome(ps,pa,ps,v)

is inside ball(pz, ps, pa,ps). Thus, dome(ps, ps, ps,p1) IS

outside ball(p2, ps, p4, ps) Which follows thatp; is outside
ball(p2, p3, P4, Ps)-

Case 2:As shown in Figure 3(b), we will show that ik is
insideball(p1, ps, p4, ps), thenpy is insideball(ps, ps, pa, ps)-
Sincep, is inside ball(p1, ps, pa, ps), line(p1,p2) intersects
with ball(p1,ps,psa,ps) at v, and p; and v are on dif-
ferent sides ofplane(ps,p4,ps). It follows that p; and
v are on different domes oball(p1, ps, ps,ps) Separated
by plane(ps,ps,ps). As po is inside T(ps,ps,ps,v), it
is impossible forv to be insideball(p2, ps, p4,ps); other-
wise ps is inside ball(p2, ps, pa, ps) instead of on the ball.
Therefore,dome(ps, ps, ps,v) is outsideball(pz, ps, pa, Ps).

intersection plane of the unit balls centereghatand py
respectivelyps andps must be abovéd, andp, must be under
L. Therefore edge(p1, p2) cannot intersec (ps, ps, ps). N

Proof of Theorem 3:lllustrated in Figure 10, the theorem
can be rephrased as: if one of the edgeAip1, p2, ps) inter-
sects anotheA(pq, ps, ps), then any vertex ilMA(p1, p2, p3)
is at most 2 hops away from any vertex&(pq4, ps, ps)-

Symmetrically, we only need to prove that; is at
most 2 hops away from any vertex it\(p4,ps,ps). If
it is edge(p1,p2) or edge(pi,p2) that is invalidated by
A(p4,ps,p6), p1 is at most 2 hops from any vertex in
A(p4, ps,pe). This follows directly from Theorem 2.

We need to prove that ikdge(p2,ps) is invalidated by
A(p4, ps,p6), thenp; directly connects to at least one ver-
tex in A(p4,ps,ps). This must be true. As shown in Fig-
ure 10, let|p1, p2| > |p1,ps3|, we can see thagts is outside
of ball(p4,ps,ps,p2) Since edge(ps,p3) is invalidated by
A(p4, ps, pe)- By assumption, all vertexes df(p4, ps, ps) are
outside of the ball centered at with radius equal tdp;, p2|.
Therefore, all vertexes it\(p4, ps, ps) are to the left of the
intersecting plane. of the two balls, while all vertexes in
A(p1,p2,p3) are on or to the right ofL. This contradicts the
fact thatedge(p2, p3) intersectsA(pq, ps, ps)- [ ]



