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ABSTRACT
The non-existence of an end-to-end path poses a challenge in
adapting the traditional routing algorithms to delay tolerant
networks (DTNs). Previous works include centralized rout-
ing approaches based on deterministic mobility, ferry-based
routing with deterministic or semi-deterministic mobility,
flooding-based approaches for networks with general mo-
bility, and probability-based routing for semi-deterministic
mobility models. Unfortunately, none of these methods can
guarantee both scalability and delivery. In this work,we in-
vestigate scalable deterministic routing in DTNs. Instead of
routing with global contact knowledge, we propose a simpli-
fied DTN model and a routing algorithm which routes on
contact information compressed by three combined meth-
ods. Analytical studies and simulation results show that
the performance of our proposed routing algorithm, DTN
Hierarchical Routing (DHR), approximates that of the op-
timal time-space Dijkstra’s algorithm in terms of delay and
hop-count. At the same time, the per node storage overhead
is substantially reduced and becomes scalable. Although our
work is based on a simplified DTN model, we believe this
approach will lay a groundwork for the understanding of
scalable routing in DTNs.
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Figure 1: A DTN in its motion cycle of 6 min-
utes. (a)-(f) are the snapshots of the network at
the minute mark.

1. INTRODUCTION
Delay tolerant networks (DTNs) are occasionally-connected

networks that may suffer from frequent partitions. Repre-
sentative DTNs include sensor-based networks using sched-
uled intermittent connectivity, terrestrial wireless networks
that cannot ordinarily maintain end-to-end connectivity, satel-
lite networks with moderate delays and periodic connectiv-
ity, and underwater acoustic networks with moderate de-
lays and frequent interruptions due to environmental factors.
Snapshots of a DTN over a period of 6 minutes are shown in
Figure 1, where nodes 1, 3, and 4 have circular trajectories
and nodes 2, 5, and 6 are static nodes. The motion cycle of
node 1 is 2 minutes and that of nodes 3 and 4 is 3 minutes.
The network has a motion cycle of 6 minutes since the same
snapshot of the network reoccurs only every 6 minutes. For
a message that is in node 1 and is heading for node 6, a
routing scheme will send it to node 3 immediately. Then
the routing scheme allows node 3 to store the message until
minute 2 when node 3 gets the opportunity to forward the
message to node 6.

The Delay Tolerant Network Research Group (DTNRG)
has designed a complete architecture to support various pro-
tocols in DTNs [1]. A DTN can be described abstractly
using a graph. Each edge in this graph contains a set of
contacts. A contact is a period of time during which two
neighboring nodes can communicate with each other. Sev-
eral types of contacts are defined in [1]. Among them are the
persistent contacts between the persistently connected nodes
and the predicted contacts that are intermittently available.



Their availability is predicted based on the history of previ-
ously observed contacts or some other information.

Routing in DTNs with predicted contacts is an active re-
search area. In Figure 1, the contact between nodes 1 and 2,
the one between nodes 3 and 4, and the one between nodes
5 and 6 are persistent contacts. All other contacts in the
same figure are predicted contacts which repeat with fre-
quencies of at least once every 6 minutes. Figure 2 is the
graph model of the physical network in Figure 1. In this fig-
ure, a thick line represents a persistent contact, and a thin
line represents a predicted contact.

Routing in DTNs poses some unique challenges compared
to a conventional data network due to the uncertainty and
time-varying nature of network connectivity. The additional
complexity of the time dimension significantly complicates
the routing decision. Centralized routing approaches based
on deterministic mobility include [8] and [11]. Ferry-based
routing includes those with deterministic [15], [18] and semi-
deterministic [17] mobility. Flooding-based approaches for
networks with general mobility include [3], [7], and [16].
Probability-based routing without a message delivery guar-
antee for semi-deterministic mobility models include [6], [9],
and [10]. Like many of the previous works, this paper will
focus on deterministic mobility where the mobility of the
nodes are predetermined and, therefore, the contacts in the
network are predictable.

On the other hand, many hierarchical routing approaches
[2], [5], [12], and [13] have been proposed in MANETs where
the (virtual) hierarchical network constructed by multilevel
clustering is used as a compressed topology abstraction for
routing. In this paper, we will adapt the hierarchical net-
work, which was previously only applicable in static and
connected networks, to our DTN model. The challenge is to
effectively represent the time-space information in the hier-
archical structure. There is no previous work in DTNs that
use the hierarchical network to compress the time-space in-
formation and use it as a time-space topology abstraction in
routing. Moreover, there is no previous solution that guar-
antees both scalability and delivery.

Since it is difficult if not impossible for a scalable and
delivery-guaranteed algorithm to obtain the necessary infor-
mation in order to make a routing decision in a network of
completely random movement, we propose a simplified DTN
model in which each node is either static or has a strict repet-
itive motion. We name our proposed routing protocol in this
model the DTN Hierarchical Routing (DHR). Though our
model poses strong assumptions in some circumstances, it is
adaptable in many other situations, and we believe that our
work will lay a groundwork for the understanding of scalable
routing in DTNs.

We achieve scalability in our model by using three com-
bined methods to compress the time-space topology infor-
mation. First, we construct a hierarchical network by per-
forming multilevel clustering. We aggregate related contact
information to the links in the hierarchical network. In or-
der to route, each node only needs to have partial global
topology information (consisting of the contact information
stored in some of the links in the hierarchical network) whose
size is O(log(N)) in the network of size N .

Two other methods are used to compress the contact in-
formation in the links in the hierarchical network. The first
one is the redundant contact information removal method,
which removes the contact information in a link that does

not contribute to the link’s underlying time-variant short-
est path. The second method is to stop aggregating contact
information in the links above a certain level, i.e., to re-
move the time dimension of the time-space information in
the upper levels of the hierarchical network. Analytical and
experimental results show that both of these compression
methods have limited effects on routing performance.

The contribution of our work is summarized as follows:

• We present a DTN model which is realistic for some
practical DTNs and with which multilevel clustering
can be performed to build a hierarchical network.

• Based on this model, we build the first hierarchical
network in DTNs in which the time-varying nature of
the physical topology is reflected by the time-variant
information (the contact information) maintained by
the links in the hierarchical network.

• We develop compression algorithms which reduce the
amount of information in the hierarchical links without
much loss or significant impact on the routing perfor-
mance.

• We devise a hierarchical routing algorithm based on
our hierarchical network. Analytical studies and sim-
ulation results support that, in our DTN Hierarchical
Routing (DHR) algorithm, the size of the per node
information is small and scalable, and the routing per-
formance approximates that of the optimal time-space
Dijkstra’s algorithm.

The rest of the paper is organized as follows. A simpli-
fied DTN model is given in Section 2. Section 3 presents a
framework of multilevel clustering and hierarchical routing.
Section 4 proposes the hierarchy clustering and the routing
algorithm in our DTN model as well as other routing infor-
mation compression methods. Section 5 presents analysis on
the routing performance and the scalability of our algorithm.
Simulation and results are displayed in Section 6. Section
7 discusses related works. Finally, Section 8 concludes the
paper.

2. A SIMPLIFIED DTN MODEL
We model the DTN as a graph where vertices are nodes

and edges are sets of (representative) contacts. Our model
allows only static nodes and nodes with strict repetitive mo-
tions. A strict repetitive motion means that the node moves
on a predetermined trajectory repetitively and the position
of the node is a function of time in each repetition. Although
this assumption might be quite strong in some situations, it
is not unrealistic in many other cases since the motion of
most real objects (such as buses and airplanes) have repeti-
tive patterns, and their positions at any particular time can
be roughly estimated. Example networks to which such a
model can be directly adopted are satellite networks where
nodes have accurate periodic connectivity, and underwater
acoustic networks where events that trigger the aberrancy
of the nodes from their fixed trajectory are rare.

We define the motion cycle Ti of a mobile node ni having
a strict repetitive motion as a period of time such that if the
node is at any point p at time t, then it is at p at time t+k×Ti

for any integer k. The relative motion cycle TS′ of a set of
mobile nodes S′ = {n1, n2, . . . , nk} having strict repetitive
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Figure 2: The simplified DTN model for the DTN
in Figure 1.

Table 1: Contacts of the nodes in Figure 2.
Node Contacts (ni, nj , Tij , ts, td)
1 (1, 2, -, -, -), (1, 3, 6, 0, 0.1)
2 (2, 1, -, -, -)
3 (3, 4, -, -, -), (3, 1, 6, 0, 0.1), (3, 6, 3, 2, 0.1)
4 (4, 3, -, -, -), (4, 5, 3, 2, 0.1)
5 (5, 6, -, -, -) ,(5, 4, 3, 2, 0.1)
6 (6, 5, -, -, -), (6, 3, 3, 2, 0.1)

motions is a period of time such that, if n1, n2, . . . , nk are
at points p1, p2, . . . , pk respectively at any time t, then they
are at p1, p2, . . . , pk respectively at time t + k × TS′ . The
relative motion cycle TS of a set S of nodes (including static
nodes and nodes with strict repetitive motions) is equal to
TS′ , if S′ ⊆ S (S′ 6= ∅), and S′ is the set of all mobile nodes
in S.

For simplicity, TS of S = {ni, nj} is denoted by Tij . It
is obvious that if Ti and Tj are the motion cycles of ni and
nj respectively, then Tij equals the least common multiple
(LCM) of Ti and Tj . A similar result holds when S has more
than two elements. In Figure 1, for example, the motion
cycles T1 and T3 of nodes 1 and 3 are 2 minutes and 3
minutes respectively, and thus the relative motion cycle T13

of nodes 1 and 3 is LCM(2, 3) = 6 minutes.
Once the relative motion cycle Tij of nodes ni and nj is

known, the set of contacts C occurring within any period of
time equal to Tij can be used to represent all the other con-
tacts. In this paper, a predicted contact is represented by
a tuple (ni, nj , Tij , tstart, tduration), and a persistent contact
by (ni, nj ,−,−,−) where tstart and tduration are the starting
time and the duration (which depends on speed and trans-
mission range) of the contact. For simplicity, we construct a
representative set C of contacts for each pair of nodes within
the time period (0, Tij). That is, 0 ≤ tstart < Tij . The rep-
resentative contacts for the nodes in Figure 1, whose model
is shown in Figure 2, is given in Table 1. A uniform contact
duration 0.1 is set to simplify the discussion.

With the representative contacts for a set V of nodes in
the network, one can use the optimal time-space Dijkstra’s
algorithm, such as the ones in [8] and [11], to calculate the
shortest path between a pair of nodes in V . Since our rout-
ing is unicast and there are usually multiple paths with the
same minimal delay, we design an extended time-space Di-
jkstra’s algorithm which first finds all paths with the mini-
mal delay and then chooses one among those paths with the
least hop-count randomly. This algorithm is used in DHR
to route with local contact information in some levels of the
hierarchical network. It is also used to compute the opti-
mal routing solution on the global topology that is the basis
upon which the routing performance of DHR is evaluated.

3. MULTILEVEL CLUSTERING AND
HIERARCHICAL ROUTING

This section reviews a multilevel clustering and hierarchi-
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Figure 3: Lowest ID hierarchical clustering.

cal routing algorithm (which is similar to [2], [5], [12], and
[13]) in static networks on which our proposed algorithm
in section 3.2 is based. Organizing a network into a hier-
archical structure could make the management of routing
tables scalable. Clustering offers such a structure, and it
suits networks with relatively large numbers of nodes. Mul-
tilevel clustering, which is clustering applied recursively over
clusterheads, is feasible and effective in large networks.

3.1 Multilevel clustering
Clustering is conducted first by electing clusterheads. Then,

non-clusterheads choose clusters to join and become mem-
bers. There are two kinds of clustering algorithms. One is
the cluster algorithm [4]. In this algorithm, a node selects
itself as a clusterhead if it has the highest priority among its
unclustered neighbors. A non-clusterhead joins the cluster of
a clusterhead that has the highest priority among the node’s
neighboring clusterheads. The other is the core algorithm
[13] in which each node selects a node in its neighborhood
including itself with the highest priority as a clusterhead and
then joins that node’s cluster. The main difference between
these two are whether clusterheads could be neighbors (as in
core) or not (as in cluster). Also, the cluster algorithm runs
sequential rounds while the core algorithm needs one round
to complete. In our work, we use the cluster algorithm.
There are many ways to define node priorities. The lowest
ID algorithm [14] is widely used. In the lowest ID cluster
algorithm, the lower a node’s ID, the higher is its priority.
Figure 3 shows the hierarchical network as the result of the
multilevel clustering using the lowest ID algorithm on the
physical network shown in level 0 of the hierarchy.

The hierarchical network is a logical tree of nodes in a
homogeneous network, where nodes and links above level 0
in the hierarchy are conceptual (in contrast to the physical
nodes and links in level 0). A node in level k+1 corresponds
to a cluster (or a clusterhead) in level k, and the ID of the
level k + 1 node is the same as that of the clusterhead in
the level k cluster. We use subscripts to denote the level
to which a node belongs. In Figure 3, we use 61 to denote
that the node with label 6 is in level 1, which represents the
cluster in level 0 consisting of 60, 80 and 240. A hierarchy
address of a node is a sequence of IDs of the clusters of the
node and its clusters in all levels. For instance, the hierarchy
address of the physical node 8 is (13, 22, 61, 80), where 61 is
the cluster of 80 in level 1, 22 is the cluster of 61 (and thus
of 80) in level 2, and 13 the cluster in level 3.

Each clusterhead needs to know all of its members and
its adjacent clusterheads. If there is a link between any two
nodes of two clusters on level k, then there is a link between
the nodes representing these clusters in level k + 1. For



instance, in Figure 3, there is a link between 61 and 21 since
there is a link between 60 and 130. We call 60 a gateway and
130 a remote gateway from cluster 61 to cluster 21. Each
level k + 1 link is associated with a delay which is equal to
the delay of the shortest path between the corresponding
level k clusterheads. For instance, if the delay of the link
between 60 and 130 is 3 and that of the link between 130

and 20 is 2, then the delay of the link between 61 and 21 is
5, since 5 is the delay of the shortest path (the only path in
this example) between 60 and 20

3.2 Hierarchical routing
Hierarchical routing facilitates the hierarchical network as

a topology abstraction and may not generate a shortest path.
The advantage of hierarchical routing is that it is scalable
(logarithmic) for localized traffic patterns, and it does not
need location information.

Hierarchical routing requires that the source has the hi-
erarchy address of the destination. If only the ID of the
destination is available, the source can resort to using loca-
tion service [2]. Hierarchical routing is a hop-by-hop routing
rather than a source routing. Before any routing, each node
in the network needs to obtain the topology information of
its clusters in all levels. For instance, in Figure 3, node
8 has the topology information consisting of all the thick
links. Note that it includes the gateway links, such as links
(60, 130) and (21, 41). The availability of this routing al-
gorithm releases the clusterheads’ burden of relaying every
message forwarded to other clusters.

Each node makes its forwarding decision via the following
steps: (1) find the lowest level k where the source s and the
destination d have a common cluster, (2) define the inter-
mediate source s′ and the intermediate destination d′, which
are the level k clusters of s and d respectively, (3) use the
optimal time-space Dijkstra’s algorithm to find the next hop
n′ on the shortest path from s′ to d′ based on the level k
topology information of s. (4) if k = 0, n′ is the forward-
ing decision of s, otherwise go back to step 3 with a new
k = k− 1, a new d′ being the remote gateway from s′ to n′,
and a new s′ being the the node on level k (new k) which is
either s or a cluster of s.

As an example, we show the process of node 20 making
its forwarding decision for the destination, node 9, in Figure
3. The lowest level where nodes 20 and 9 have a common
cluster head is k = 2, and thus s′ = 12, d′ = 32, and the
resulting n′ = 32. Since k = 2, we continue with k = 1,
where s′ = 41, d′ = 31, and the resulting n′ = 51. Again,
we continue with k = 0, where s′ = 200, d′ = 210 and the
resulting n′ = 210. Thus, node 20’s decision is to forward
the message to node 21.

4. MULTILEVEL CLUSTERING AND
HIERARCHICAL ROUTING IN DTNS

As mentioned in Section 3, the information in a level k+1
link in a static hierarchical network contains a time-invariant
delay which is simply the sum of the delays of the level k
links on a shortest path between the level k clusterheads.
The challenge in multilevel clustering in our DTN model is
that the delay information in the links is time-variant. A
method needs to be proposed to aggregate the time-varying
information to the links in the hierarchical network from the
level that is immediately below them.
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Figure 4: A hierarchical network with aggregated
contact information given an aggregation level.

4.1 Multilevel clustering in DTNs
Each node on level 0 of the hierarchical network corre-

sponds to a physical node, and there is a link between two
level 0 nodes if there are contacts between their physical
nodes. To allow the links in each level in the hierarchical
network to have time-variant delay information, we store
in each link a set of contacts. Contacts are stored in the
5-element tuple format presented in Section 2. A level 0
link stores all contacts between the two end nodes. A level
k+1 link aggregates all contacts in the level k links that form
paths between the corresponding level k clusterheads, which
includes those between clusterheads and gateways and those
between gateways.

For example, in Figure 4(c), nodes 30 and 50 are cluster-
heads, and the level 1 link between 31 and 51 contains the
contact information contained in all of the level 0 links be-
tween 30 and 40, between 50 and 60, between 30 and 60, and
between 40 and 50.

The size of the aggregated contact information in the links
increases exponentially as their level increases. To ensure
scalability, the aggregation should stop at a certain level
which we call the aggregation level La. The links above
level La maintain time-invariant delays just as in the static
hierarchical network, which is illustrated in Figure 4(a).

Figure 4(b) and Figure 4(c) show the results of two mul-
tilevel clusterings on the same network with different La (0
and 1). One difference is shown in the link between nodes
31 and 51. In Figure 4(b), we use a thick line to represent a
time-invariant delay in the link since La < 1. In Figure 4(c),
we move the four links from level 0 to level 1 to illustrate
that all related contact information is aggregated to the link
from the level immediately below.

The delay on the links above level La is calculated in the
same way as in the static hierarchial network. To calculate
the time-invariant delay on level La + 1, each link on level
La also needs to have a time-invariant delay. We use the
weighted average delay which is the expectation (in statis-
tics) of the time-variant delays of the shortest paths between
these two end nodes of the level La link. In our DTN model,
the weighted average delay can be calculated with the set of
shortest paths within a period of time equal to the LCM of
the cycles of the contacts stored in the link.

We will now present two examples to show the calculation
of the weighted average delay. First, we calculate D(10, 30)
in Figure 4(c), which is a hierarchical network of the DTN
in Figure 1. The link between 10 and 30 contains only one
contact (1, 3, 6, 0, 0.1) as given in Table 1. Here we assume
the transmission delay (including queuing delay and radio



transmission duration) is 0.1. During the first 0.01 minute
when the contact is active, the delay is 0.01 (the transmission
delay). In the remaining 6 minutes, the delay is (6−t+0.01)
where (6− t) is the waiting time for the next contact. Thus,

D(10, 30) =
1

6
[

∫ 0.01

0

0.1dt +

∫ 6

0.1

(6− t + 0.01)dt] ≈ 3.

Second, we calculate D(31, 51) in Figure 4(c). The link
between 31 and 51 contains four contacts, and the LCM of
their cycles is 3 minutes. We can observe in Figure 1 that,
in the 2.9 minutes, before the occurrence of contact between
nodes 3 and 6, path (3, 4, 5) has the minimal delay max(3−
t+0.01, 0.02); during the contact (0.1 minute, especially the
last 0.01 minute), path (3, 6, 5) has the minimal delay of
0.02. Therefore,

D(31, 51) =
1

3
[

∫ 0.1

0

0.02dt+

∫ 3.0

0.1

max(3−t+0.01, 0.02)dt] ≈ 1.5.

We show the priorities and the weighed average delays
used in the multilevel clustering in Figure 4(c) in Table 2.

The weighted average delay is also used in the calculation
of the node priorities in the multilevel clustering as shown
below.

The multilevel clustering algorithm we use in our DTN
model uses two priorities for each node: the absolute priority
Pr(n) and the relative priority Pri(n).

Pr(n) =
∑

i,j∈N(n),i6=j 6=n

1
D(i,n)+D(n,j)

1
D(i,j)

+ 1
D(i,n)+D(n,j)

.

Here N(n) is the set of the neighbors of node n and D(i, j)
is the weighted average delay between nodes i and j. Note
that each term inside the summation has a value in (0, 1

2
]

(since D(i, j) ≤ D(i, n) + D(n, j)). The criteria for clus-
terhead selection reflected by the absolute priority are (1) a
clusterhead is on or close to the shortest path between any
two neighbors (which is reflected by the value of the term
inside the summation), and (2) a clusterhead has a large
node degree (which is reflected by the summation).

Pri(n) =
Pr(n)

D(i, n)
.

The criterion for clusterhead selection shown in the relative
priority is: a cluster member prefers a nearby (in terms of
delay) clusterhead.

The clustering algorithm is simply presented as the fol-
lowing: (1) each node calculates its absolute priority, (2)
a node without a neighboring clusterhead declares itself a
clusterhead if it has the largest absolute priority among its
neighbors that haven’t joined any cluster, and (3) a node
having neighboring clusterheads chooses one with the largest
relative priority and joins that cluster.

4.2 Contact information compression
We use two methods to compress the aggregated contact

information. The first method, which has already been pre-
sented, compresses the time-space information by removing
the time-dimension information in the links above level La.
Analytical study and simulation in later sections show that
its impact on the routing performance is slight when La

is not very small. An intelligent improvement is to decide
whether to compress according to the volume of the con-

(a) Level 0 average delay

D(i, j) i = 10 i = 20 i = 30 i = 40 i = 50 i = 60

j = 10 - 0.1 3 - - -
j = 20 0.1 - - - - -
j = 30 3 - - 0.1 - 1.5
j = 40 - - 0.1 - 1.5 -
j = 50 - - - 1.5 - 0.1
j = 60 - - 1.5 - 0.1 -

(b) Level 0 node priority

Level 0 Absolute Relative Prj(n)
Priority Pr(n) j = 10 20 30 40 50 60

n = 10 1 - 10 3.33 - - -
n = 20 0 0 - - - - -
n = 30 3 1 - - 30 - 2
n = 40 1 - - 10 - 0.67 -
n = 50 1 - - - 0.67 - 10
n = 60 1 - - 0.67 - 10 -

(c) Level 1 average delay

D(i, j) i = 21 i = 31 i = 51

j = 21 - 3.1 -
j = 31 3 - 1.5
j = 51 - 1.5 -

(d) Level 1 node priority

Level 1 Absolute Relative Prj(n)
Priority Pr(n) j = 21 j = 31 j = 51

n = 21 0 - 0 -
n = 31 1 0.33 - 0.67
n = 51 0 - 0 -

Table 2: Data in the example hierarchical clustering
of Figure 4(c).

tact information and the variance (in statistic) of the time-
variant delays of the link.

The second compression method is to remove part of the
contact information from the links. For a hierarchy link on
level L (0 ≤ L ≤ La), a contact is meaningful to calculate
the underlying shortest path of the link only if it is on a
shortest path at a particular time. This method is illus-
trated by the following example. The physical network in
this example is shown in Figure 5(a), its model is shown
in Figure 5(b), and the contacts in the network model are
shown in Table 3. Node 4 has a motion cycle of 2 minutes,
and the motion cycles of nodes 1 and 2 are both 6 minutes.

The hierarchical clustering process runs on the network
and the result of the level 0 cluster is shown in Figure 5(b).
As shown in Figure 5(c), the level 0 clusterheads are 60 and
70. 40 and 50 are the gateways from 61 to 71, and 10 and
20 are the gateways from 71 to 61. Contacts on all of the
possible paths between 60 and 70 through the gateways are
aggregated to the level 1 link between 61 and 71.

Since all the predicted contacts shown in Table 3 have
a common period of 6 minutes, we will examine the paths
from 6 to 7 with minimal delay in the first 6 minutes. It
can be observed from Figure 5(a) and Table 3 that the path
with the minimal delay during minute 3 and minute 5 is
(6, 5, 2, 7) as shown in Figure 5(d), and the path with the
minimal delay in the rest of the time is (6, 5, 1, 7) as shown
in Figure 5(e). After removing all the contacts that are not
on these two paths, the result of the compression is shown
in Figure 5(f).



5
8 6 7 3

4
1

2

(a) Physical network

5
8 6 7 3

4
1

2

(b) DTN model

5

6

4 1

2

7

(c) All contacts

5

6

4 1

2

7

(d) Path 1

5

6

4 1

2

7

(e) Path 2

5

6

4 1

2

7

(f) Result

Figure 5: Another physical network at time 0 (a)
and its model (b). The aggregated contact informa-
tion compression process (c)-(f) on the link between
61 and 71.

Node Contacts (ni, nj , Tij , ts, td)
1 (1, 4, 6, 0, 0.1), (1, 5, 6, 5, 0.1), (1, 7, 6, 2, 0.9)
2 (2, 4, 6, 4, 0.1), (2, 5, 6, 3, 0.1), (2, 7, 6, 0, 0.9)
3 (3, 7, -, -, -)
4 (4, 6, 2, 0.3, 0.1), (4, 1, 6, 0, 0.1), (4, 2, 6, 4, 0.1)
5 (5, 6, -, -, -), (5, 1, 6, 5, 0.1), (5, 2, 6, 3, 0.1)
6 (6, 4, 2, 0.3, 0.1), (6, 5, -, -, -), (6, 8, -, -, -)
7 (7, 3, -, -, -), (7, 1, 6, 2, 0.9), (7, 2, 6, 0, 0.9)
8 (8, 6, -, -, -)

Table 3: Contacts in the DTN model of Fig. 5(b).

The second compression method, which removes contacts
from the links, is implemented as follows. Suppose (u, v) is
a level k link, T is the LCM of the motion cycles of the con-
tacts stored by (u, v), {ti} is the set of time slots which is
a partition of T such that within each ti the set of shortest
paths between u and v does not change, and {Sij} is the set
of contacts on the jth shortest path during ti. A boolean
function E is constructed in the following steps. First, con-
struct terms Eij with the names of all contacts in {Sij} as
literals. Second, construct disjunctive normal forms (a dis-
junction of terms) Ei with all Eijs. Finally, construct E
which is a conjunction of all Eis. Here, a set of contacts
satisfies Ei if they form a shortest path during ti, and a set
R of contacts satisfying E can be used to calculate the de-
lay of the shortest paths between u and v at any time. This
compression algorithm reduces the size of R to reduce the
storage and communication overhead while retains most of
the important contacts for the links.

Again, an intelligent improvement is to choose the small-
est set of contacts whose shortest paths’ variance from the
actual shortest paths is below a particular threshold. It
should be able to further reduce the size of contact infor-
mation when, for instance, 20% of the contacts form 80% of
the shortest paths.
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Figure 6: The inaccuracy of the time-invariant delay
represented by the relative deviation σn

µn
.

4.3 DTN Hierarchical Routing (DHR)
Our proposed DTN Hierarchical Routing (DHR) is quite

straightforward after the hierarchical network has been built.
DHR is also a hop-by-hop routing. Each node makes its for-
warding decision in two phases. The first phase runs only
when the highest level Lc, on which the cluster of the current
node and that of the destination are different, is greater than
La. In this phase, the static hierarchical routing, as pre-
sented in Section 3.2, runs on the levels (from Lc to La + 1)
where delay on the links are time-invariant. The result of
this phase is an intermediate destination d′ (see Section 3.2)
of level La.

When Lc ≤ La, the first phase does not run, and d′ is set
to the clusterhead of the destination in level Lc. The second
phase, which we called aggregation routing, has the following
steps: (1) all contact information in the links from level 0 to
level La that are stored by the current node are aggregated
to form a graph G. That is, G includes all contacts in the
links in the clusters of the current node from level 0 to level
La in the hierarchical network. (2) the optimal time-space
Dijkstra’s algorithm is performed on G to find a shortest
path p from the current node to d′. The first hop on p is the
current node’s forwarding decision.

5. ANALYSIS

5.1 Routing performance
In this subsection, we will analyze the possible impact of

removing the time dimension at higher levels (above La).
We estimate the inaccuracy of using the weighted average
delay to represent the delay of a time variant link with the
relative deviation σn

µn
, where µn is the expectation of the

delay of a n-hop link (i.e., the weighted average delay) and
σn is the standard deviation of the delays of the shortest
paths.

For simplicity, we only calculate σn
µn

in a simplified setting
where the waiting time for a contact in each hop is in a
independent identical uniform distribution. Thus, µn = n×
µ1 and σ2

n = n×σ2
1 , where µ1 and σ1 is the expectation and

the variance of the one hop delay. We have σn
µn

= σ1
µ1

/
√

n,
which it plotted in Figure 6.

Since the hierarchial network provides partial time-variant
shortest path information when La > 0, its performance
should be bound by the results in Figure 6.

5.2 Overhead
This subsection briefly analyzes the overhead in DHR, i.e.,

the overhead in maintaining the hierarchy and the overhead
in the routing process.

The contact information of each node is sent to its clus-
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Figure 7: An example of the simulated network.

Parameter Value
Field size 5, 000× 5, 000(m2)
Transmission range 150(m)
Number of static nodes 30/60/90
Number of mobile nodes 70/60/50
Total number of nodes 100/120/140
Percentage of mobile nodes 70/50/35
Region size 600/800/1200(m)
Motion cycle 675/900/1350(s)
Aggregation level (La) 0-2

Table 4: Simulation parameters.

terhead which aggregates it to form a cluster topology and
broadcasts the topology to the nodes in the cluster. In any
broadcast algorithm, each node sends the message at most
once, so the communication overhead will not exceed that of
the storage overhead. Under level La (a constant) where the
contact information is aggregated, the worst case contact in-
formation is O(CLa), where C is the minimal cluster size.
For each cluster above La where links are time-invariant,
cluster topology information size is O(C). The number of
levels in a hierarchical network is O(log(N)), where N is
the network size. Thus, the average communication and
storage overhead for maintaining the hierarchical network is
O(log(N) · CLa). The diameter of the network is O(

√
N).

The routing overhead is on average O(
√

N).

6. SIMULATION & RESULTS
We develop a stand-alone, discrete event simulator to eval-

uate our protocol. This simulator only implements the net-
work layers and it makes simple assumptions regarding lower
layers. For instance, it assumes infinite bandwidth and nodes
having infinite buffers. We compare the performance of
DHR against the optimal time-space Dijkstra’s algorithm
in terms of delay and hop-count of the resulting paths.

6.1 Simulation settings
In our simulation, we generate connected (in the DTN

sense) networks containing both mobile nodes and static
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Figure 8: Percentage of routes of different lengths.

nodes in a 5, 000× 5, 000m2 field. We generate three groups
of 30 networks with different ratios of mobile nodes and
static nodes as shown in Table 4. For instance, the first
group contains 70 mobile nodes and 30 static nodes (mo-
bile nodes account for 70% of the total nodes). All nodes
have a uniform transmission range of 150m. An example
of the simulation network is shown in Figure 7, where the
trajectories of the mobile nodes are shown by dotted lines.

The trajectory of the a mobile node is generated as fol-
lows; (1) a square region of a given size is placed at a random
position in the network, (2) 3 to 7 points are sprayed at ran-
dom positions inside the region, (3) a trajectory is formed
by starting form the first point, traveling each points once
and finally coming back to the first point. Here we use the
nearest neighbor algorithm in the traveling salesman prob-
lem to generate a short trajectory. The length of the sides
of a square region is 600m, 800m, or 1200m. The nodes’ mo-
tion cycles corresponding to these square regions are 675s,
900s or 1350s. Thus, the relative motion cycle of the net-
work is 2,700s. The placement of the static nodes in the
networks are random. Table 4 shows the critical simulation
settings. We only use time-space connected networks in our
simulations.

For a source-destination pair, we refer to the routes re-
sulting from the optimal time-space Dijkstra’s algorithm as
the Dijkstra routes, and that of the DHR as DHR routes. In
different experiments, we let La range from 0 to 2. After a
hierarchical network is built, we route messages from every
node in the network to 30 other randomly selected nodes.
The delay and hop-count for all the source-destination pairs
are then averaged and grouped by the hop-count of their
Dijkstra route. The results are also averaged over the 30
networks for each group with the same mobile/static nodes
ratio.

6.2 Simulation results and discussions
First, we show the results of DHR routing using only the

compression which removes contacts above level La. Figure
8 shows the distribution of the hop-count of the Dijkstra
routes in the three network groups. Thus we only show
the simulation results where the hop-count is between 1 hop
and 13 hops because only the routing performance within
this range is accurate (with large volume of data) and rep-
resentative (with more than 90% of the total paths).

Figure 9 shows the lengths of DHR routes in terms of hop-
count. The x-axis is the length of the Dijkstra routes of the
same source-destination pairs. DHR routes with different
Las are all very close to the Dijkstra routes in hop-count and
a larger La gives a smaller hop-count. Note that Dijkstra
routes are not always shorter than DHR routes, since they
are first optimized in delay and then in hop-count.
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Figure 9: Hop-count of DHR (with different Las) routes compared with that of the Dijkstra routes in networks
of different numbers of mobile nodes and static nodes.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 2  4  6  8  10  12

H
op

-c
ou

nt
 r

at
io

Hop-count of Dijkstra routes

DHR La=0
DHR La=1
DHR La=2

1

(a) 70 mobile & 30 static nodes

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 2  4  6  8  10  12

H
op

-c
ou

nt
 r

at
io

Hop-count of Dijkstra routes

DHR La=0
DHR La=1
DHR La=2

1

(b) 60 mobile & 60 static nodes

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 2  4  6  8  10  12

H
op

-c
ou

nt
 r

at
io

Hop-count of Dijkstra routes

DHR La=0
DHR La=1
DHR La=2

1

(c) 50 mobile & 90 static nodes

Figure 10: The ratio of the hop-count of the DHR (with different Las) routes to that of the Dijkstra routes
in networks of different numbers of mobile nodes and static nodes.

Figure 10 presents the same data as Figure 9 from a dif-
ferent angle where the hop-counts of the DHR routes are
divided by that of the Dijkstra routes. The hop-count of
the DHR routes becomes smaller than in the Dijkstra routes
when the hop-count of the Dijkstra routes is 13.

Figure 11 compares the DHR routes with the Dijkstra
routes in terms of delay. DHR always perform worse than
the optimal time-space Dijkstra’s algorithm, and DHR with
a larger La performs better. The figure shows that the
DHR routes of the three groups of networks (different in
static/mobile nodes ratio) have similar average delays.

Figure 12 shows the delay ratio of the DHR routes to the
Dijkstra routes. The ratio is greater than and closer to 1.0
as hop-count increases. DHR paths have less than 20% addi-
tional delay than Dijkstra paths in most cases when La = 1
or La = 2, while they have more than 40% additional delay
in all cases when La = 0. The performance of DHR becomes
better when the source-destination distance increases, which
is consistent with our previous analytical results shown in
Figure 6.

We also conduct simulation applying the contact infor-
mation removal method. Due to space limitation, only the
delay ratios are shown. Figure 13 shows the delay ratio of
DHR with and without contact information removal. Figure
14 shows the per node storage overhead in the hierarchical
network. The overhead is calculated in terms of the ratio
of the number of contacts stored in each node to the total
number of contacts in the network. In Section 5, we have
discussed that the communication overhead is proportional
to the storage overhead.

It is shown in Figure 14 that the per node contact in-
formation is only 1-3% of the total information size in the
network when using contact information removal, which is
a substantial saving when compared to the 10% when not
using it. This provides a trade-off between scalability and
routing performance.

6.3 Summary of simulation
To sum up, the simulation results show that our scal-

able algorithm, DHR, has a satisfactory performance that
is comparable to the optimal result from the optimal time-
space Dijkstra’s algorithm for networks combined with mo-
bile nodes and static nodes in different ratios. DHR with a
larger aggregation level and less contact information com-
pressed performs better than with a smaller aggregation
level in terms of both hop-count and delay. Routing per-
formance improves as the source and destination distance in
terms of hop-count increases, which is consistent with our
theoretical analysis as shown in Figure 6. While having good
routing performance, the storage and communication over-
head of running a DHR are far smaller than the overhead of
running the optimal time-space Dijkstra’s algorithm.

7. RELATED WORKS
In [8], Jain, Fall, and Patra exhaustively formulated the

DTN routing problem under different degrees of knowledge
about the network. Specifically, the Dijkstra’s algorithm
is used to calculate the shortest path with contacts being
predictable, and also a linear programming approach which
calculates the optimal routes across the network with ad-
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Figure 11: The delay of the DHR (with different Las) routes compared with that of the Dijkstra route in
networks of different numbers of mobile nodes and static nodes.
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Figure 12: The ratio of the delay of the DHR (with different Las) routes to that of the Dijkstra routes in
networks of different numbers of mobile nodes and static nodes.

ditional knowledge of the global traffic demand. In [11],
Merugu, Ammar, and Zegura proposed a time-space routing
algorithm that is similar in spirit to the Dijkstra’s algorithm
in [8].

Among the approaches in deterministic routing, [15] and
[18] exploited deterministic trajectory of mobile nodes to
help deliver data, improve data delivery performance, and
reduce energy consumption in nodes. In [17], Wu, Yang,
and Dai used semi-deterministic trajectory of mobile node
to achieve deterministic results of several routing schemes.
However, such a trajectory is selected from a set of prede-
fined hierarchical structured routes.

Epidemic routing [16] is a random movement and flooding-
based algorithm, where all nodes are mobile and have infinite
buffers. When a node has a message to send, it propagates
the message to all nodes through contacts. Epidemic rout-
ing is extended in Gossip [7] where each message is flooded
to the neighbor nodes with probability p. In age matters
[3], Dubois-Ferriere, Grossglauser and Vetterli required that
nodes keep a record of their most recent encounter times
with all other nodes. Instead of searching for the destina-
tion, the source node searches for any intermediate node
that encountered the destination more recently than did the
source node itself.

In probability-based routing [10], each node maintains the
delivery predictability (based on historical contacts) to all
known destinations and uses them to make routing decisions.
In [9], Leguay, Friedman, and Conan presented a routing
scheme for DTNs which uses a high-dimensional Euclidean
space constructed upon nodes’ motion patterns. The axis in

the Euclidean space could be contacts or particular locations
in the network. This algorithm might not deliver messages in
some situations, and requires global knowledge, such as the
locations of the access points. Similarly, Solar [6] used a set
of hubs for probability-based routing in semi-deterministic
mobility modeling of DTNs.

Much work has been done on multilevel clustering and
hierarchical routing in MANETs. In the multilevel clus-
tering approaches such as DART [5], L+ [2], MMWN [13],
and WHIRL [12], certain nodes are elected as clusterheads.
These clusterheads in turn select higher level clusterheads,
up to some desired level. A node’s address is defined as a
sequence of clusterhead identifiers, one per level, allowing
the size of routing tables to be logarithmic in the size of
the network. One problem with explicit clusterheads is that
routing through clusterheads creates traffic bottlenecks. In
L+, this issue is partially solved by allowing nearby nodes
to route packets instead of the clusterhead.

8. CONCLUSION
In this paper, we have proposed DTN Hierarchical Rout-

ing (DHR) in a simplified DTN model where nodes have
strict repetitive motions. We constructed a hierarchical net-
work which provides a compressed time-space topology ab-
straction of the network in our DTN model. Two aggregated
contact information compression algorithms are presented
for better scalability. Simulation results showed that the
performance of DHR approximates that of the optimal time-
space Dijkstra’s algorithm in terms of delay and hop-count
in networks of different ratio of mobile and static nodes.
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Figure 13: The ratio of the delay of the DHR (with and without contact information removal) routes to that
of the Dijkstra routes in networks of different number of mobile nodes and static nodes.
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Figure 14: Storage/communication overhead.

Simulation results are consistent with theoretical analysis
in that the performance of DHR increases as the source-
destination distance increases, and the routing performance
degrades slightly as more contact information in the hierar-
chical network is compressed.

Our future work will focus on improving the contact infor-
mation compression algorithms. Two of such improvements
have been suggested in Section 4.2. Relaxing the constraints
in our DTN model and making necessary changes to the hi-
erarchical clustering and routing algorithms are also very
important future work to increase the applicability of DHR
to more general DTN models.
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