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Abstract. Many real-world DTN application involve vehicles that do
not have a purely random mobility pattern. In most cases nodes follow
a predefined trajectory in space that may deviate from the norm due to
environment factors or random events. In this paper we propose a DTN
routing scheme for applications where the node trajectory and the con-
tact schedule can be predicted probabilistically. We describe a technique
for contact estimation for mobile nodes that uses a Time Homogeneous
Semi Markov model. With this method a node computes contact profiles
describing the probabilities of contacts per time unit, and uses them to
select the next hop such that the delivery ratio is improved. We develop
the Trajectory Prediction DTN Routing algorithm and we analyze its
performance with simulations.
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1 Introduction

Regular MANET routing protocols work on the assumption that there exists
at least one path between endpoints, and will,therefore, fail route discovery.
Proactive routing protocols (e.g. DSDV, OLSR) will also fail to converge due to
rapid topology changes or lack of stable connectivity.

To mitigate these issues a new class of Delay Tolerant Networks (DTN) has
been defined in [4]. Connectivity in DTNs relies on nodes physically deliver-
ing messages between disconnected partitions, similar to how the postal service
delivers packages. This store-carry-forward approach for end-to-end message de-
livery exploits the increased user mobility instead of being hindered by it. If a
message reaches a node that has no link to the next hop towards the destina-
tion, it will be buffered until a contact occurs with the next hop. In this way
a message can be delivered from a source to its destination even when there
never exists an instantaneous path between the two endpoints. In some DTNs
the waiting time between successive contacts may be very large (hours for inter-
planetary networks) and variable, so applications must be designed to tolerate
long delivery latencies.
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The intermittent nature of end-to-end connectivity and the variable delay
require a new approach for routing. The local decision of selecting the next
hop for a message depends on available information on current connectivity and
on future opportunities to establish links with other nodes (contacts). Hence,
routing also may involve scheduling transmissions for future contacts in addition
to selecting the next hop. To optimize the network performance, such as delivery
ratio or latency, DTN routing must select the right contact to transmit the
message. If a contact is not available when a message is received from the upper
layer, the DTN transport layer will buffer it until a proper contact begins and
transmission time becomes available, or until the message expires and is dropped.

In this paper we propose a Trajectory Prediction DTN Routing scheme
(TPDR) for applications where the node trajectory and the contact schedule
can be predicted probabilistically. Most sensing applications with mobile nodes
define trajectories that are far from random. Node movement is typically con-
trolled such that sensing quality of service is optimized to increase application
lifetime, coverage, or to reduce latency. DTN message routing can be employed
to extend the operational range of vehicles beyond communication range and to
mitigate intermittent connectivity. For instance, Autonomous Underwater Ve-
hicles (AUVs) in a littoral surveillance application follow a scan pattern that
provides full sonar coverage of the sea bed (Figure 1). In these networks it is
possible to predict nodes trajectories and contact schedules. Due to events affect-
ing the mission plan and environmental factors (such as ocean currents), contact
schedules can not be known with 100% accuracy. We describe a technique for
trajectory prediction and contact estimation for mobile nodes that uses a Time
Homogeneous Semi Markov model. With this method we compute contact pro-
files for pairs of nodes that describe the probability of a contact per time unit.
We develop the Trajectory Prediction DTN Routing algorithm and we analyze
its performance with simulations.

This paper continues in Section 2 with a presentation of the application and
network models, and the routing architecture. Section 3 describes related work
in routing for Delay and Disruption Tolerant networks. Section 4 presents results
from performance evaluations using simulations. The paper concludes in Section
5 with some comments.

2 DTN Routing with Trajectory Prediction

This section begins with a description of the application and the network models
considered in this paper for the DTN routing algorithm with contact prediction.

The applications addressed in this paper consider small and medium size
networks where nodes are mobile, with trajectories that can be predicted for
a certain time horizon and where the communication topology is mostly dis-
connected. Such a scenario is not thoroughly addressed by the DTN research
community. More specifically, the proposed routing solution applies to applica-
tions where nodes are location aware and also have available enough information
on the mobility pattern, such as the velocity vector and mission status, that they
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can approximate when contacts begin and end. Contact prediction of this nature
is possible in applications where node operation is coordinated either centrally
(mass transit, trains) or autonomously (mobile sensing). In mobile sensing appli-
cations, such as subsea monitoring [13], sensor–actor networks [1, 11], position
status and movement data is disseminated to the network. In mobile sensing
applications location updates can be broadcasted with low data rate to reach
the entire network, while mission payload data can be forwarded on a high speed
wireless link with shorter range during contacts. When a broadcast channel is
not available, status (position and velocity) updates is propagated throughout
the network in the typical DTN store-and-carry fashion, although with consid-
erably higher delays. For all practical reasons it is nor feasible, neither useful to
predict contacts for the whole application duration. It is considerably cheaper
to limit trajectory and contact predictions to a finite time horizon.

To support the contact prediction and the node state dissemination mech-
anisms it is necessary for all nodes to have their system clocks synchronized.
In networks where the contact duration/link data rate fraction is large, precise
node time synchronization is not required. Otherwise, if the contacts are very
short, maybe due to high vehicle speed, or if the link data rate is very high, pre-
cise time synchronization is important to pinpoint contact begin times to avoid
wasting unused transmission time. In most cases broadcast beacon protocols can
serve for synchronization.

Fig. 1. DTN network scenario with autonomous underwater vehicles scanning an area
and reporting to a controller ship.

An application that fits the above description involves underwater littoral
monitoring with Autonomous Underwater Vehicles (AUV). As described in [12],
the high costs of equipment and deployment make feasible applications with only
a relatively small number of AUVs. Increased coverage is achieved by designing
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the vehicle trajectory to scan the target area. Characteristics of the underwater
acoustic communications channel, such as long propagation delays, low data
rates and short transmission range, limit the operational capability of AUVs.
A store-and-carry delay tolerant approach is an economic solution to improve
coverage at the cost of higher delays. The availability of an out-of band slow long-
range acoustic channel used to broadcast vehicle status updates brings up the
possibility of predicting nodes’ trajectories and contact opportunities. A short
range high data rate acoustic link forwards sensor data (e.g. sonar or video)
during contacts.

Figure 1 shows a notional AUV scenario with vehicles executing repeatedly
a closed monitoring path. To simplify the presentation, the application defines
two trajectories, a horizontal combing pattern and a vertical one. Several vehicles
can follow the same trajectory with a delay between them.

We assume that each node moves according to a predetermined pattern at a
constant speed monitoring the environment. Periodically, onboard sensors gen-
erate images (from a camera or a sonar) that have to be forwarded towards
the controller station on the ship. From time to time pattern recognition al-
gorithms running on sensor data on each AUV will trigger a detection event.
This event causes the AUV to autonomously interrupt its current trajectory and
gather extra data before it continues on its original path. The vehicles report
sonar measurement messages to the base station located on a non-moving ship
using the acoustic high data rate link, following the DTN store-and-carry bun-
dle forwarding approach if a connected contemporaneous multihop path is not
available.

2.1 Network Model and Trajectory Prediction

The monitored area is overlayed on a w × w square grid. Grid coordinates x, y

are numbered between 1 and w. Each cell is assigned a unique cell ID s(x, y)
given by the following mapping:

s(x, y) = (y − 1)w + x

This cell numbering is equivalent to assigning successive numbers to cells from
left to right, top to bottom, beginning with the origin cell, (1,1). The set of all
cells is denoted with S. The size of set S is m = w2.

Time in this model is discretized. The trajectory followed by a vehicle u up
to time unit t is a sequence of cells Si

1,t = {s}1..t = {(x, y)1..t}. We describe this
trajectory for an individual vehicle, as it evolves in time, as a Markov process.
The set of Markov states is represented by the set of cells on the grid S.

As a vehicle enters a state (grid cell) i, it stays there for a time called state

holding time, and then leaves to the next state j. The selection of j can be
described by a transition probability matrix P e, P e

ij = P (transition from i to j).

Let Tn be the time of the nth transition, n ≥ 0, and T0 = 0. The state holding
time for the nth transition is Tn−Tn−1. The probability distribution of the state
holding time depends on the states involved in the transitions. We believe it is
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not realistic to assume that the state holding times have the memoryless Markov
property, with a geometric distribution.

We model the system with a Time Homogeneous Semi-Markov Process (TH-
SMP). The state holding times can have arbitrary distributions – with the con-
straints that they are i.i.d. and do not change in time (time-homogeneous). The
TH-SMP is defined by the tuple {(Sn, Tn)|n ≥ 0}, where Sn is the nth state
reached. The TH-SMP kernel Q describes the process evolution in time:

Qij(t) = P (Sn+1 = j, Tn+1 − Tn ≤ t | Sn = i) = P e
ijHij(t) (1)

We assumed that the selection of the next state (given by P e) is independent
of the state holding time distribution function when the model transitions from
state i to state j (denoted with Hij).

Hij(t) = P (Tn+1 − Tn ≤ t | Sn+1 = j, Sn = i).

The state holding time effectively depends on the vehicle speed that we as-
sume is constant in our application. We also assume a vehicle is delayed in a
state by a constant time dev when a detection event occurs. The probability of
a detection event per time unit per state is a constant, pev .

A vehicle geometric path on the grid is defined by the matrix P e that forms
the embedded Markov chain of the TH-SMP, as we observe that
P e

ij = limt→∞ Qij(t) = P (Sn+1 = j | Sn = i).
The state holding time irrespective of the next state is defined as Di(t) =

P (Tn+1 − Tn ≤ t | Sn = i). This is the c.d.f. of the time it takes the vehicle to
traverse a grid cell i regardless where it goes next. Di(t) can be computed as:

Di(t) =

m∑

j=1

Qij(t) (2)

To predict the future vehicle trajectory, we define the stochastic process X =
(Xt, t ∈ N), where Xt ∈ S is the vehicle state at time t. The distribution of Xt

is given by φij(t) = P (Xt = j | X0 = i). If we know that a vehicle is now in state
i, after t time units in the future it will be in state j with probability φij(t). As
a special case φij(0) = δij , where δ is Kronecker’s symbol.

To determine φij(t) one can use the distributions for Di(t) and Qij(t), which
can be derived from P e and Hij(t), both easy to determine from the application
domain.

To determine φij(t) we start with a special case when the process stays in
state i between time 0 and t, with no transitions.

P (Xt = i|X0 = i and T1 ≥ t) = P(T1 − T0 ≥ t | X0 = i) = (1 − Di(t)).

If the process makes at least a transition between times 0 and t, conditioned on
the time of the first transition (at time k) from i, and on the state l to which
the process moves after state i, we obtain:
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P (Xt = j | X0 = i and at least one transition) =

m∑

l=1

t−1∑

k=1

Q̇il(k)φlj(t − k),

where Q̇il(k) = dQil(k)
dk

= Qil(k)−Qil(k−1) is the time derivative of Q. Putting
it together, we obtain:

φij(t) = (1 − Di(t))δij +

m∑

l=1

t−1∑

k=1

Q̇il(k)φlj(t − k) (3)

φ can be calculated iteratively, as φij(t) depends on probabilities φlj(t − k)
computed in the previous steps.

This approach was inspired by the work in [7] that looked at the problem
of predicting access point handoffs in WLANs. Our Markov model (state space,
transitions) is defined differently and the prediction is extended to handle inter-
node contacts.

2.2 Contact Prediction and the Forwarding Decision

The contact profile Cab(t) = P (a ↔ b contact at time t) for two nodes a and b can
be determined from the TH-SMP behavior given by φ and from the neighborhood

map Ns. For each state s ∈ S, Ns is the set of states z ∈ S, s.t. a vehicle in
state s can communicate with a vehicle in z. The neighborhood map can be
computed based on underwater topography maps, channel characteristics, and
on the technical properties of the communication device. For the simple disk
model, with distance d(), Ns = {z ∈ S | d(s, z) ≤ r}.

The contact profile at time t depends on having the two nodes a and b in
each other’s neighborhood, and it is expressed as:

Cab(t) =
∑

sa∈S

P (Xa
t = sa)

∑

sb∈Nsa

P (Xb
t = sb) =

∑

sa∈S

φa
iasa

(t)
∑

sb∈Nsa

φb
ibsb

(t) (4)

ia and ib are the states of nodes a and b, respectively, found out most recently.
Note that the contact prediction works with relative time. Different time offsets
can be applied as parameters to φ(t). We note that the contact profile is not a
proper pdf and is not normalized, as

∑
t Cab(t) may exceed 1.

Each message has a time-to-live (TTL) field. When the TTL expires, the
message is dropped. A nodes buffers messages until a contact begins. Then, the
TPDR protocol decides whether to forward a message intended for destination
d in a greedy way.

Suppose at time t the current node a is in contact with a set of nodes {bi}.
Assume the current node a receives periodic updates with the current state sbi

for all nodes bi over the secondary channel. Node a removes from the set {bi} all
nodes that have already received a message node a buffers and has to forward.
This can be accomplished either by storing the message path in its header, by
query, or by summary vector exchange, as in Epidemic Routing. After that node
a computes the following:
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– the contact profile for the destination node d: Cad(t), indicating the proba-
bilities of direct contact and delivery to the destination node

– the contact profiles of nodes bi with the destination d: Cbid(t). These give
the probabilities that the next hop (one of nodes bi) will be in contact with
the destination d in the future.

The prediction window for which the contact profiles are computed is limited
by the remaining message time-to-live. Then the routing algorithm at node a

takes the following steps:
1. pick the node c ∈ {a} ∪ {bi} that maximizes the probability of contact with
the destination: c =argmaxu∈{a}∪{bi}maxt=1..TTL Cud(t)
2. if c = a, continue buffering the message. There is no forwarding.
3. else forward the message to next hop c since c has a higher probability of a
contact with the destination than the current node a.

Discussion Routing cycles are avoided by preventing forwarding to nodes that
have seen a message before. This routing algorithm has several simplifying as-
sumptions. First, it assumes that during a contact all queued messages can be
forwarded to the next hop. Then, it assumes infinite buffers and an ideal commu-
nications channel during a contact. With the affordability of memory capacity,
the infinite buffer assumption is not out of line for most applications. The first
assumption applies to cases where the message load is low, the data rate is very
high, or the contact duration is very long. For the AUV application, the latter
case is more realistic due to the reduced vehicle speed.

In terms of effective implementation, it is worthwhile to note that matrices
φij(t) that give the trajectory prediction, must be computed just once, at the
beginning of the application runtime, provided the other involved distribution
(state holding time H) and the state transition probabilities P e do not change.

While the number of states (w4) in the TH-SMP can be daunting, matrices
φ, H , Q, and P e are very sparse. For the area combing patterns in Figure 1,
the fill factor for these matrices is about 1

w3 . Sparse matrices support efficient
storage and matrix arithmetic operations.

The Trajectory Prediction DTN Routing algorithm could be expanded in
many directions. We investigate an extension for a shortest path routing algo-
rithm that uses contact profiles. Similar work has been described in [5]. Our
approach benefits from the ability of specifying arbitrary distribution functions
for the state holding time Hij(t), which is more realistic. This also supports
better the use of recorded historic data on trajectory traces.

3 Related Work

In this section we present a brief overview of DTN routing techniques relevant to
our problem. For a comprehensive overview of DTN routing, the reader should
consult [17].
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One of the first thorough analysis of communications in networks with inter-
mittent connectivity is done by Fall in [4]. Fall proposes a new delay/disruption
tolerant architecture, later updated by Cerf et. al. in [3]. The DTN architecture
defines a bundle layer operating above the transport layer, that offers end-to-end
delivery service to applications. The bundle layer forms an overlay network used
for transfer of message bundles with the option of hop-by-hop custody transfer
(delivery responsibility) and optional delivery with end-to-end confirmation.

Routing has better performance when more information are available on the
current state of the network topology and on its future evolution. At one end of
the spectrum is deterministic routing, where the current topology is known and
future changes can be predicted. With deterministic routing, message forwarding
can be scheduled to optimize network performance and to reduce resource uti-
lization using single-copy forwarding. In contrast, stochastic routing techniques
assume node mobility is random or unknown and therefore must rely on multi-
copy forwarding to increase the end-to-end delivery probability.

Deterministic DTN routing techniques are based on formulating models for
time-dependent graphs and finding a space-time shortest path in DTNs by con-
verting the routing problem to classic graph theory. These techniques are ap-
propriate for scenarios with predictable topology (e.g. space networks) or where
node mobility is tightly controlled, such as unmanned air vehicles (UAVs) and
Autonomous Underwater Vehicles . A major problem facing deterministic rout-
ing protocols remains the distribution of network state and mobility profiles
under sporadic connectivity, long delays, and sparse resources.

Jain et al. present in [6] a routing framework that takes advantage of increas-
ing levels of information on topology, queue state and traffic demand. Four knowl-

edge oracles are defined. The contacts summary oracle provides time-invariant
aggregate or summary statistics on inter-node contacts, such as average waiting
time until a next contact. The contact oracle provides full information for all
contacts, such as start time and duration, enough to build a time-varying con-
tact multigraph. The queuing oracle answers for the instantaneous queue state
and current waiting times at all nodes. The traffic demand oracle gives informa-
tion on any present and future messages injected in the network. The authors
adapt the Dijkstra shortest path algorithm to run in a time-varying multigraph
where the edge cost functions is determined with the available oracles. The edge
cost function is the total estimated edge delay, consisting of the sum of the
signal propagation delay (computed from node location information), the con-
tact waiting time (given by the contact oracle), and the transmission queuing
delay (available from the queuing oracle). A complete knowledge centralized lin-
ear program optimization is presented that uses the traffic demand oracle to
more accurately characterize transmission times. This serves as a benchmark for
performance evaluations. Due to the sparse connectivity in DTNs, estimating
current queue state across the network and implementing edge capacity reser-
vation are difficult. Simulation results point out that in scenarios with limited
resources (buffer space and edge capacity) the benefits from using the additional
knowledge from the queuing oracle are not significant.
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When network state is too uncertain, stochastic routing techniques forward
messages randomly hop-by-hop with the expectation of eventual delivery. In be-
tween, there are routing mechanisms that may predict contacts using prior state,
or that adjust the trajectory of mobile nodes to serve as message ferries. Stochas-
tic routing techniques rely on replicating messages and controlled flooding for
improving delivery rate, trading off resource utilization against improved routing
performance in absence of accurate current and future network state.

Passive routing techniques do not interfere with node mission, do not change
the node trajectory and react to a changing topology. Passive routing techniques
rely in general on flooding multiple copies of the same message with the objec-
tive of eventual delivery [14–16]. These protocols trade off delivery performance
against resource utilization. By sending multiple copies on different contact paths
(such as in epidemic routing [16]), the delivery probability increases and the de-
lay drops at the cost of additional buffer occupancy during message ferrying and
higher link capacity usage during contacts. This approach is appropriate when
nothing or very little is known about mobility patterns.

Some passive stochastic routing protocols use delivery estimation to deter-
mine a per contact probabilistic metric for successful delivery based on recorded
history of prior contacts ([8, 10]. These protocols are useful when contacts cannot
be accurately predicted and when nodes follow non-random trajectories.

Active routing techniques ([2, 9, 18]) rely on controlling the trajectory of some
ferry nodes to pick up messages and ferry them in preparation for a contact with
the destination node. Active routing techniques provide lower delays with the
additional cost of increased protocol and system complexity. They also rely on
the availability of mobile message ferries that could be reassigned from their
original mission.

4 Performance Evaluation

In this section we present the simulation performance evaluation for the TPDR
algorithm described in this paper. The results are compared with other routing
protocols for DTNs, Direct Delivery and Epidemic Routing [16]. With Direct
Delivery, the source node buffers a message until it is delivered during a con-
tact with the destination node. The simulated scenario involves 4 to 10 AUVs,
plus one ship, deployed in a 1 km square area divided in a 20 × 20 grid. The
dynamics of the AUV vertical and horizontal scan patterns are modeled by the
transition probability matrix P e and the state holding time distribution matrix
Hij(t). The state holding time is 1 with probability 1− pev and 3 with probabil-
ity pev ∈ {0.01, 0.05, 0.1}. This models the random detection events that trigger
a delay for taking additional sonar measurements. These detection events also
generate new messages intended for the ship node. The message TTL is var-
ied between 40 and 100 time units. 100 is also the upper bound for trajectory
prediction.

We simulated this topology with a packet-level simulator written in Matlab.
The simulation assumed an ideal channel with no delay, as we wanted to focus
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mostly on the effectiveness of the prediction element on the overall routing per-
formance metrics — message end-to-end delay and delivery ratio. Half of AUVs
use the horizontal scan and the others use the vertical pattern.

The quality of the contact prediction is of great interest. In Figure 2 we over-
lap the computed predicted contact profile between AUV2 and the ship node
(C21(t)) with the actual contact trace between these two nodes that was cap-
tured during the simulation. The contact prediction accurately indicates future
contacts with higher probability values. Tables 1 a) and b) show the variation of
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Fig. 2. Predicted contact profile and actual contact trace between AUV2 and the ship.

the delay and the delivery ratio depending on the AUV count: 6, 8, and 10. One
can notice that the delivery ratio comes within 10% of Epidemic Routing, which
is a multi-copy routing approach. The delay is not better, as the routing decision
picks the next hop with the highest probability of contact with the destination.
We also note the better delay for the Direct Delivery protocol. This happens
because most messages for this protocol get dropped due to expired TTL from
lack of connectivity, and they do not contribute negatively to lower the average
delay. In the next experiment shown in Figure 3, the AUVs and the ship use

Table 1. End-to-end message delay and delivery ratio for 6, 8, and 10 AUVs
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message TTL that changes from 40 to 100. Figure 3 a) illustrates the variation
of the message delay depending on TTL. As expected, a larger TTL increases
the average delay, but also improves the delivery ratio. TPDR performs well
for delay, but excels for delivery ratio. For higher TTLs, TPDR closes on the
Epidemic Routing’s delivery ratio, which is maximal, reaching above 80%.

Fig. 3. Protocol performance depending on the message TTL field.

5 Conclusions

In this paper we presented an approach for probabilistic DTN routing that uses
prediction of the trajectory of mobile nodes. The prediction mechanism models
the geographic rectangular grid as a Time-Homogeneous Markov Process, where
the states map to grid cells, and the transitions between cells reproduce vehi-
cle movement. This approach does not depend on the memoryless property for
correct state estimation and supports arbitrary state holding time probability
distributions that are i.i.d. and time-homogeneous (i.e. do not change over time).
Based on the state transition prediction, we developed contact estimation using
contact profiles. The profile gives the probability for a contact between two nodes
in a particular time unit, regardless of the grid location. A DTN forwarding al-
gorithm was developed, that selects the next hop based on the highest contact
probability. Simulations have demonstrated the effectiveness of this algorithm.
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