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10.1 Limits 
 
Partial review: 
 
The function: 

The function is a relation between two sets A and B, such that each element x in A has a 

unique image y in B, we then say that f(x) = y.  

In the function f(x) = y, the letter x is called independent variable, and y is called dependent 

variable. 

The set of all independent variables-A here-is called the domain of the function, and the set of 

all dependent variables-B here-is called the range of the function. 

Types of functions: 

• The polynomial function: 

The general form of the polynomial function of degree n is 
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When n = 1, the polynomial function becomes linear function and when n = 2, it becomes 

the quadratic function and so on. 

The domain of the polynomial function of any degree is the set of all real numbers R. 

• The rational function: 

The rational function is always written as a quotient of two function, for instance 

,
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xgxf =  the domain of the rational function is set of all real numbers except zeros of 

denominator. i.e, domain = )}.({ xhofzerosR −   

• The radical function: 

The radical function always equal expression under the radical sign, for instance 

.exp)(,)()( ressionalmathematicaisxEwherexExf =  To find its domain, put 

the expression under the radical 0≥  , then the domain will be { }.0)(, ≥∈ xEandRxx  

• The logarithmic function: 

For instance, x
axf log)( = ,   and x

exf ln)( = , … . 

The number 71828.2≈e  is always the base of the ln function, therefore we briefly write 

f(x) = ln(x).  
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• Trigonometric function: 

For instance, 
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• Case defined function: 

For instance the modulus function ,)( xxf =  which is defined as follows, 


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Example the rational function 
1
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x
xxf   has the domain }1{−R , thus, 1 is not in the 

domain of our function f(x), therefore we will study the values of this function for values 

very close (near) to 1 but doesn’t equal 1. 

The function .1
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xx

x
xxf  To do so, we form the following table: 

x 0.9 0.99 0.999 →......... 1  ←......... 1.01 1.5 2 

F(x) 1.9 1.99 1.999 →......... 2  ←......... 2.01 2.5 3 

 

From the table we observe that f(x) approaches to the value 2 to as x approaches to the 

value 1, i.e   f(x) →  2    as   x 1→ , 

We then say that “the limit of the function f(x) equal 2 as x approaches to 1”. We write 

this as: 
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In general, we say that ,)( LxfLim
ax

=
→

 when f(x) approaches L as x approaches a. 

In the above table we find that when 2)(1 →< xfx ,  this is called the Left-hand limit 

of f(x), and is written as ,2)(
1

=
−→

xfLim
x

 and also when 2)(1 →> xfx ,  this is called 

the Right-hand limit of f(x), and is written as .2)(
1

=
+→

xfLim
x

 

Rule: The limit of a function exists if and only if the Left-hand limit equal the Right-

hand limit of this function. 
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In our example the left hand limit equal the right hand limit  )(
1
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Then based on the above rule the limit of  
1
1)(

2

−
−

=
x
xxf  exists. 

Example (1) show if the limit of the function drawn in the following graph exists or not 

(give your reasons). 

Properties of limits: 

• ,CCLim
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=
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      where  C  is constant. 

• ,nn

ax
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     where  n   is positive integer. 

• If f(x) is a polynomial function, then ),()( afxfLim
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    where e is the base of the natural logarithm. 

• If )(xfLim
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 exist and )(xgLim
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 exist, then  
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Example (2) find 
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Example (3) find 
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Solution .
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2

22

2 −
−−

→ x
xxLim

x
 

Solution  .312)1(
)2(

)1)(2(
2

2
22

2

2
=+=+=

−
+−

=
−
−−

→→→
xLim

x
xxLim

x
xxLim

xxx
 

 

Example (5) find  
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Example (6) find 
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Solution 3)( 2 −= xxfQ  
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Now the difference quotient  
h

xfhxf )()( −+  will be simplified as: 
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