Rule (1) the chain (1)

If y is differentiable of u and u is differentiable of x, then y is differentiable of x, i.e.

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Example (1) If
$$y = u^2 - 2u$$
 and $u = x^2 - x$, find $\frac{dy}{dx}$.

Solution

Since
$$\frac{dy}{du} = 2u - 2$$
, $\frac{du}{dx} = 2x - 1$,

But, $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ then $\frac{dy}{dx} = (2u-2)(2x-1) = 2(u-1)(2x-1)$, by substituting the expression

of x instead of u we finally obtain:

$$\frac{dy}{dx} = 2(x^2 - x - 1)(2x - 1)$$

Example (2) If
$$y = \frac{1}{w^2}$$
 and $w = 2 - x$, find $\frac{dy}{dx}$.

Solution

Since
$$y = w^{-2}$$
 then $\frac{dy}{dw} = -2w^{-3} = -\frac{2}{w^3}$, $\frac{dw}{dx} = -1$,

But, $\frac{dy}{dx} = \frac{dy}{dw} \cdot \frac{dw}{dx}$ then $\frac{dy}{dx} = (-\frac{2}{w^3})(-1) = \frac{2}{w^3}$, by substituting the expression of x instead of w

we finally obtain:

$$\frac{dy}{dx} = \frac{2}{\left(2 - x\right)^3}$$

Example (3) If $y = \sqrt{w}$ and $w = 7 - t^3$, find $\frac{dy}{dt}$.

Solution

Since
$$y = w^{\frac{1}{2}}$$
 then $\frac{dy}{dw} = \frac{1}{2}w^{-\frac{1}{2}} = \frac{1}{2\sqrt{w}}$, $\frac{dw}{dt} = -3t^2$,

1

Lec 8

But, $\frac{dy}{dt} = \frac{dy}{dw} \cdot \frac{dw}{dt}$ then $\frac{dy}{dt} = (\frac{1}{2\sqrt{w}})(-3t^2) = -\frac{3t^2}{2\sqrt{w}}$, by substituting the expression of t

instead of w we finally obtain:

$$\frac{dy}{dt} = -\frac{3t^2}{2\sqrt{7-t^3}}$$

Example (4) If $y = 3w^2 - 8w + 4$ and $w = 2x^2 + 1$, find $\frac{dy}{dx}$ when x = 0.

Solution

$$\frac{dy}{dw} = 6w - 8, \qquad \qquad \frac{dw}{dx} = 4x,$$

But, $\frac{dy}{dx} = \frac{dy}{dw} \cdot \frac{dw}{dx}$ then $\frac{dy}{dx} = (6w - 8)(4x)$, hence
 $\frac{dy}{dx}\Big|_{x=0} = (6(2(0)^2 + 1) - 8)(4(0)) = 0.$

Example (5) If $y = u^n$ (where u is any real number) and u = f(x), find $\frac{dy}{dx}$.

Solution

Then
$$\frac{dy}{du} = nu^{n-1}$$
,
But, $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ then $\frac{dy}{dx} = nu^{n-1}(\frac{du}{dx})$. Thus, we obtain the following rule:

Rule (2) Power rule

If u is differentiable of x and n is any real number, then

$$\frac{d}{dx}(u)^n = nu^{n-1}(\frac{du}{dx})$$

In other words, we say that: the <u>derivative of a bracket raised to the power (n) equals the</u> <u>derivative of the bracket multiply the derivative of what inside the bracket</u>.

Example (6) If
$$y = (x^2 + 1)^8$$
 find $\frac{dy}{dx}$.

Solution

$$\frac{dy}{dx} = \frac{d}{dx}(x^2 + 1)^8 = 8(x^2 + 1)^7 (2x)$$
$$= 16x(x^2 + 1)^7$$

Example (7) If
$$y = 3(2x^2 - 3x - 1)^{-\frac{10}{3}}$$
 find $\frac{dy}{dx}$.

Solution

$$\frac{dy}{dx} = \frac{d}{dx}3(2x^2 - 3x - 1)^{-\frac{10}{3}} = 3\frac{d}{dx}(2x^2 - 3x - 1)^{-\frac{10}{3}} = 3(-\frac{10}{3})(2x^2 - 3x - 1)^{-\frac{10}{3}-1}(4x - 3)$$
$$= (-10)(2x^2 - 3x - 1)^{-\frac{13}{3}}(4x - 3).$$

Example (8) If $y = \sqrt{5x^2 - x}$ find y'.

Solution

$$\frac{dy}{dx} = \frac{d}{dx}(5x^2 - x)^{\frac{1}{2}} = \frac{1}{2}(5x^2 - x)^{\frac{1}{2}-1}(10x - 1)$$
$$= \frac{1}{2}(5x^2 - x)^{-\frac{1}{2}}(10x - 1)$$
$$= \frac{(10x - 1)}{2\sqrt{5x^2 - x}}.$$

Example (9) If
$$y = \sqrt{\frac{x-2}{x+3}}$$
 find y'.

Solution

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{x-2}{x+3}\right)^{\frac{1}{2}} = \frac{1}{2} \left(\frac{x-2}{x+3}\right)^{\frac{1}{2}-1} \frac{d}{dx} \left(\frac{x-2}{x+3}\right)$$
$$= \frac{1}{2} \left(\frac{x-2}{x+3}\right)^{-\frac{1}{2}} \left[\frac{(x+3)(1) - (x-2)(1)}{(x+3)^2}\right] = \frac{1}{2} \left(\frac{x+3}{x-2}\right)^{\frac{1}{2}} \left[\frac{(x+3-x+2)}{(x+3)^2}\right]$$
$$= \frac{1}{2} \left(\sqrt{\frac{x+3}{x-2}}\right) \left[\frac{5}{(x+3)^2}\right] = \frac{5}{2} \sqrt{\frac{x+3}{(x-2)(x+3)^4}} = \frac{5}{2} \sqrt{\frac{1}{(x-2)(x+3)^3}} = \frac{5}{2\sqrt{(x-2)(x+3)^3}}.$$

Prepared by Ahmed Ezzat Mohamed Matouk

Example (9) Suppose $p = 50 - \sqrt{q^3 + 10}$ is a demand equation for a manufacturer's product.

(a) Find the rate of change of (p) with respect to q.

- (b) Find the relative rate of change of (p) with respect to q.
- (c) Find the marginal-revenue function.

Solution

The rate of change of (p) with respect to q is $\frac{dp}{dq}$. Then,

$$\frac{dp}{dq} = \frac{d}{dq} (50 - \sqrt{q^3 + 10}) = \frac{d}{dq} (50 - (q^3 + 10)^{\frac{1}{2}})$$
$$= 0 - (\frac{1}{2})(q^3 + 10)^{\frac{1}{2} - 1}(3q^2) = -(\frac{3}{2})(q^3 + 10)^{-\frac{1}{2}}(q^2)$$
$$= \frac{-3q^2}{2\sqrt{q^3 + 10}}.$$

The relative rate of change of (p) with respect to q is $\frac{a}{2}$

$$\frac{\frac{dp}{dq}}{p}$$
. Then

$$\frac{\frac{dp}{dq}}{p} = \left(\frac{dp}{dq}\right) \cdot \left(\frac{1}{p}\right) = \left(\frac{-3q^2}{2\sqrt{q^3 + 10}}\right) \cdot \left(\frac{1}{50 - \sqrt{q^3 + 10}}\right)$$
$$= -\frac{3q^2}{2(50\sqrt{q^3 + 10} - q^3 - 10)}.$$

To evaluate the marginal revenue function $\frac{dr}{dq}$ we first recall the relation between the revenue (r) and the price (p);

revenue = (price).(quantity),
i.e.
$$r = (p).(q)$$

Since $p = 50 - \sqrt{q^3 + 10}$ then $r = pq = (50 - \sqrt{q^3 + 10})q = 50q - q\sqrt{q^3 + 10}$

Now, the marginal revenue
$$\frac{dr}{dq} = \frac{d}{dq}(50q - q\sqrt{q^3 + 10}) = 50 - (\sqrt{q^3 + 10} + \frac{3q^3}{2\sqrt{q^3 + 10}})$$
.

Home work: solve the following problems (page 582 in the book).

[8] If $y = 3u^3 - u^2 + 7u - 2$ and u = 5x - 2, find $\frac{dy}{dx}$ when x = 1.

[18] If
$$y = 4(7x - x^4)^{-\frac{3}{2}}$$
 find y' .

[44] If
$$y = \sqrt[3]{\frac{8x^2 - 3}{x^2 + 2}}$$
 find y'

[46] If $y = \frac{(4x-2)^4}{3x^2+7}$ find y'.

[62] Find the equation of the tangent line to the curve $y = \frac{-3}{(3x^2 + 1)^3}$ at the point (0,-3).

[69] Suppose $p = 100 - \sqrt{q^2 + 20}$ is a demand equation for a manufacturer's product.

- (1) Find the rate of change of (p) with respect to q.
- (2) Find the relative rate of change of (p) with respect to q.
- (3) Find the marginal-revenue function.

[73] If the total cost function for a manufacturer is given by

$$c = \frac{5q^2}{\sqrt{q^2 + 3}} + 5000,$$

Find the marginal cost.