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Rule (1) the chain (1) 

If y is differentiable of u and u is differentiable of x, then y is differentiable of x, i.e.  

dx
du

du
dy

dx
dy .= . 

 

Example (1) If  uuy 22 −=   and   xxu −= 2 , find  
dx
dy . 

Solution  

Since  22 −= u
du
dy ,                12 −= x

dx
du , 

But,  
dx
du

du
dy

dx
dy .=    then )12)(1(2)12)(22( −−=−−= xuxu

dx
dy , by substituting the expression 

of x instead of u we finally obtain:    

)12)(1(2 2 −−−= xxx
dx
dy . 

 

Example (2) If  2

1
w

y =   and   xw −= 2 , find  
dx
dy . 

Solution  

Since  2−= wy   then  3
3 22

w
w

dw
dy

−=−= − ,                1−=
dx
dw , 

But,  
dx
dw

dw
dy

dx
dy .=    then 33

2)1)(2(
wwdx

dy
=−−= , by substituting the expression of x instead of w 

we finally obtain:    

3)2(
2
xdx

dy
−

= . 

 

Example (3) If  wy =   and   37 tw −= , find  
dt
dy . 

Solution  

Since  2
1

wy =   then  
w

w
dw
dy

2
1

2
1 2

1

==
−

,                23t
dt
dw

−= , 
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But,  
dt
dw

dw
dy

dt
dy .=    then 

w
tt

wdt
dy

2
3)3)(

2
1(

2
2 −=−= , by substituting the expression of t 

instead of w we finally obtain:    

3

2

72
3
t

t
dt
dy

−
−= . 

 

Example (4) If  483 2 +−= wwy   and   12 2 += xw , find  
dx
dy  when x = 0. 

Solution  

,86 −= w
dw
dy                     x

dx
dw 4= , 

But,  
dx
dw

dw
dy

dx
dy .=    then )4)(86( xw

dx
dy

−= , hence 

0))0(4)(8)1)0(2(6( 2

0

=−+=
=xdx

dy . 

 

Example (5) If  nuy =   (where u is any real number ) and   )(xfu = , find  
dx
dy . 

Solution  

 Then                1−= nnu
du
dy ,                

But,  
dx
du

du
dy

dx
dy .=    then )(1

dx
dunu

dx
dy n−= . Thus, we obtain the following rule: 

 

Rule (2) Power rule 

If u is differentiable of x and n is any real number, then 

)()( 1

dx
dunuu

dx
d nn −=  

 

In other words, we say that: the derivative of a bracket raised to the power (n) equals the 

derivative of the bracket multiply the derivative of what inside the bracket. 
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Example (6) If 82 )1( += xy    find   
dx
dy . 

Solution 

72

7282

)1(16

)2()1(8)1(

+=

+=+=

xx

xxx
dx
d

dx
dy

 

 

Example (7) If 3
10

2 )132(3
−

−−= xxy    find   
dx
dy . 

Solution 

).34()132)(10(

)34()132)(
3

10(3)132(3)132(3

3
13

2

1
3

10
23

10
23

10
2

−−−−=

−−−−=−−=−−=

−

−−−−

xxx

xxxxx
dx
dxx

dx
d

dx
dy

 

 

Example (8) If xxy −= 25    find   y′ . 

Solution 

.
52

)110(

)110()5(
2
1

)110()5(
2
1)5(

2

2
1

2

1
2
1

22
1

2

xx
x

xxx

xxxxx
dx
d

dx
dy

−

−
=

−−=

−−=−=

−

−

 

 

Example (9) If 
3
2

+
−

=
x
xy    find   y′ . 

Solution 

.
)3)(2(2

5
)3)(2(

1
2
5

)3)(2(
3

2
5]

)3(
5)[

2
3(

2
1

]
)3(

)23([)
2
3(

2
1]

)3(
)1)(2()1)(3([)

3
2(

2
1

)
3
2()

3
2(

2
1)

3
2(

3342

2
2
1

2
2
1

1
2
1

2
1

+−
=

+−
=

+−
+

=
+−

+
=

+
+−+

−
+

=
+

−−+
+
−

=

+
−

+
−

=
+
−

=

−

−

xxxxxx
x

xx
x

x
xx

x
x

x
xx

x
x

x
x

dx
d

x
x

x
x

dx
d

dx
dy
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Example (9) Suppose 1050 3 +−= qp  is a demand equation for a manufacturer’s 

product. 

(a) Find the rate of change of (p) with respect to q. 

(b) Find the relative rate of change of (p) with respect to q. 

(c) Find the marginal-revenue function. 

Solution  

The rate of change of (p) with respect to q   is   
dq
dp .  Then, 

  

.
102

3

)()10)(
2
3()3()10)(

2
1(0

))10(50()1050(

3

2

22
1

321
2
1

3

2
1

33

+

−
=

+−=+−=

+−=+−=

−−

q
q

qqqq

q
dq
dq

dq
d

dq
dp

 

The relative rate of change of (p) with respect to q   is   
p
dq
dp

.  Then, 

.
)101050(2

3

)
1050

1).(
102

3()1).((

33

2

33

2

−−+
−=

+−+

−
==

qq
q

qq
q

pdq
dp

p
dq
dp

 

 

      To evaluate the marginal revenue function 
dq
dr  we first recall the relation between the 

revenue (r) and the price (p); 
 

revenue = (price).(quantity), 
 

i.e.     r = (p).(q) 
 
Since 1050 3 +−= qp  then 1050)1050( 33 +−=+−== qqqqqpqr   
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Now, the marginal revenue )
102

310(50)1050(
3

3
33

+
++−=+−=

q
qqqqq

dq
d

dq
dr  . 

 
 
Home work: solve the following problems (page 582 in the book). 

[8]  If  273 23 −+−= uuuy   and   25 −= xu , find  
dx
dy  when x = 1. 

 

[18] If 2
3

4 )7(4
−

−= xxy    find   y′ .  

 

[44]  If 3
2

2

2
38

+
−

=
x
xy    find   y′ . 

 

[46]  If 
73
)24(

2

4

+
−

=
x
xy    find   y′ . 

 

[62] Find the equation of the tangent line to the curve 32 )13(
3
+

−
=

x
y   at the point )3,0( − . 

 
[69] Suppose 20100 2 +−= qp  is a demand equation for a manufacturer’s product. 

(1) Find the rate of change of (p) with respect to q. 

(2) Find the relative rate of change of (p) with respect to q. 

(3) Find the marginal-revenue function. 

 
 
[73] If the total cost function for a manufacturer is given by 

 

,5000
3

5
2

2

+
+

=
q
qc  

        Find the marginal cost. 
 


