The function is said to be increasing if for all $x_2 > x_1$ then $f(x_2) > f(x_1)$

From the last figure if we assumed that the distance between x_1 and x_2 is very small then the curve of the function can be treated as a line segment and its slope $\frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$ in the case of increasing function. But from our previous knowledge the slope at the point x_1 is the first derivative x_1 . Thus, **If** f'(x) > 0 for all $x \in (x_1, x_2)$, then f(x) is increasing.

The function is said to be decreasing if for all $x_2 > x_1$ then $f(x_2) < f(x_1)$

From the above figure if we assumed that the distance between x_1 and x_2 is very small then the curve of the function can be treated as a line segment and its slope $\frac{f(x_2) - f(x_1)}{x_2 - x_1} < 0$ in the case of decreasing function. But from our previous knowledge the slope at the point x_1 is $f'(x_1)$.

Thus, If f'(x) < 0 for all $x \in (x_1, x_2)$, then f(x) is decreasing.

From the above figure the maximum point in the interval (a,b) is called **relative maximum**, and the minimum point in the interval (a,b) is called **relative minimum**. However the highest point in the total domain of the function is called **absolute maximum** and the lowest point in the total domain of the function is called **absolute minimum**.

If the point is either relative maximum or relative minimum, then it is called **relative extremum** and its plural is "**relative extrema**".

 x_0 is relative minimum

From the above two figures, we can easily see that:

- If f' changes negative to positive as x increases through x₀, then f has a relative minimum at x₀.
- If f' changes positive to negative as x increases through x₀, then f has a relative maximum at x₀.

• If f' doesn't change its sign through x_0 , then x_0 is not relative extremum.

Definition (1) The value x_0 in the domain of f(x) is called a *critical value* of f, if either $f'(x_0) = 0$ or $f'(x_0)$ is not defined. The point $(x_0, f(x_0))$ is then called a *critical point*.

Rule (1) If f has a relative extremum at $x = x_0$ then x_0 is a critical value, in other words if f has a relative extremum at $x = x_0$ then $f'(x_0) = 0$ or $f'(x_0)$ is not defined.

Remark: Every relative extremum is a critical point but not every critical point is relative extremum.

The following example show a critical point which is not corresponds to relative extremum: For the function $f(x) = x^3$, $f'(x) = 3x^2$ to find the critical values put f'(x) = 0, this implies that $3x^2 = 0 \Rightarrow$ the critical value is x = 0. The question now is "Is the critical value x = 0corresponds to relative extremum?". To answer this question use f' test and calculate the sign of f' through x = 0. When x < 0 then $f'(x) = 3(-)^2 = +$ and when x > 0 then $f'(x) = 3(+)^2 = +$. Thus f' doesn't change its sign through x = 0 and consequently x = 0 is not relative extremum.

A strategy for finding relative extrema

To find the relative extrema of the function f(x):

Step (1) Find f',

Step (2) Find the critical values (Points at which f'(x) = 0 and f'(x) not defined),

Step (3) Use f' test to determine which of the candidate critical values are relative extrema and which are not.

Example (1) Find the relative extrema of $f(x) = x^4 - 2x^2$.

Solution

Step (1) $f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x - 1)(x + 1)$

Step (2) To find the critical values put $f'(x) = 0 \implies 4x(x-1)(x+1) = 0$,

Thus the critical values are x = 0, x = -1, x = 1.

Step (3) f' test for the points x = 0, x = -1, x = 1:

As
$$x < -1 \Rightarrow f' = 4(-)(-)(-) = -$$
 then f' is decreasing in $(-\infty, -1)$.

As $-1 < x < 0 \implies f' = 4(-)(-)(+) = +$ then f' is increasing in (-1,0).

As $0 < x < 1 \implies f' = 4(+)(-)(+) = -$ then f' is decreasing in (0,1).

As
$$x > 1 \Rightarrow f' = 4(+)(+)(+) = +$$
 then f' is increasing in $(1, \infty)$.

By summarizing the above results on the following intervals:

Thus, x = -1 is relative minimum value, the point x = 0 is relative maximum value and the point x = 1 is relative minimum value.

Example (2) Find the relative extrema of $f(x) = x^2 e^x$.

Solution

Step (1) $f'(x) = x^2 e^x + e^x (2x) = x e^x (x+2)$

Step (2) To find the critical values put $f'(x) = 0 \implies xe^x(x+2) = 0$,

Thus the critical values are x = -2, x = 0.

Step (3) f' test for the points x = -2, x = 0:

As
$$x < -2 \Rightarrow f' = (-)(+)(-) = +$$
 then f' is increasing in $(-\infty, -2)$.
As $-2 < x < 0 \Rightarrow f' = (-)(+)(+) = -$ then f' is decreasing in $(-2, 0)$.
As $x > 0 \Rightarrow f' = (+)(+)(+) = +$ then f' is increasing in $(0, \infty)$.

By summarizing the above results on the following intervals:

Thus, x = -2 is relative maximum value and the point x = 0 is relative is relative minimum value.

See also example (4) in the book page 640.

Home work: Solve your book page 642 problems number: 18, 30, 46, 48, 60.