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Limits laws: 
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      where  C  is constant. 
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     where  n   is positive integer. 

• If f(x) is a polynomial function, then ),()( afxfLim
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    where e is the base of the natural logarithm. 
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Example (1) find 
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Example (2) find 
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Remark: Notice that the quantities ∞×
∞
∞ 0,,

0
0   is indeterminate quantities, and we should 

avoid them in our calculation by using any mathematical trick for the problem like factorizing or 

multiplying by the conjugate or expanding the brackets or using the theorem that will be given. 
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Example (5) find 
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Solution 3)( 2 −= xxfQ  
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Now the difference quotient  
h
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Example (6) find 
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Example (7) find 
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Solution 
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Example (8) find 
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Theorem 1 the well known limit .))((lim 1−
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Example (9) find  
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Solution: we can compare our problem with the general form of the above theorem. And then 

have a = 2 and n = 5. Now, 
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Example (10) find  
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 using the theorem, then  
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Example (11) find  
3
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−
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x
, 

Solution we can solve this limit directly by multiplying conjugate )3( +x  in both the numerator 

and denominator of  the quantity 
3

812

−
−
x
x  and then simplifying. Another way of solving this 

problem is by using the theorem; where you may notice that: 
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Let xy = , then 
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Now, it is clear that we can apply the theorem where n = 4 and a = 3, therefore: 
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Theorem 2: If )()( xgxf ≤  when x is near a point a (except possibly at a) and the limits of f(x)  
                    and g(x) both exist as x approaches a, then  
                                                            ).(lim)(lim xgxf
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≤       

 
 
 
Theorem 3 (The squeeze theorem) If )()()( xhxgxf ≤≤  when x is near a point a (except  
                    possibly at a), and 
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                     Then, 
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The previous theorem (squeeze theorem) is useful in calculating the limit of the following 

example. 

Example (12) prove that  .01sin2

0
=

→ x
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x
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Solution as we have previously discussed 
x

Lim
x
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0→

 doesn’t exist, therefore we can’t use limit 

laws to calculate
x
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x

1sin2

0→
. Now, we know that  

11sin1 ≤≤−
x

 

Multiplying each part of this inequality by 2x , then we obtain 

222 1sin x
x

xx ≤≤−  

Taking the limit to each part of this inequality as x approaches to zero we obtain: 
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It is clear that  )(lim 2
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Assume that 2)( xxf −= ,   
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Home work: Solve pages 111 and 112 in your book, problems No. 3, 11, 16, 18, 22, 34, 37, 41. 


