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Example (1) Differentiate xxy =  

Solution 

Here we can’t use the power rule, and by taking the natural logarithm of both sides of the 

equation, then  
xxy lnln =  

xxy lnln =⇒ ,  after that differentiating both sides of this equation  with respect to x, we have: 

xx
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x
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And finally,                     )1ln( += xx
dx
dy x . 

 

Remark we use logarithmic differentiation for functions on the form )()( xvxu , in other words 

when the base is variables and the power is also variables. 

 

 
Example (2) Find the derivative of xxey ln)1( +=  

Solution  

This function has the form )()( xvxu , hence we may use the technique of logarithmic 

differentiation. By taking the natural logarithm of both sides of the equation, we obtain: 
xxey ln)1ln(ln +=  

)1ln().(lnln xexy +=⇒ , 

Then by differentiating both sides of this equation  with respect to x, we have: 
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+=⇒  



Math 121                              Sec. 12.5  logarithmic differentiation                                        Lec 12 

Prepared by Ahmed Ezzat Mohamed Matouk                                                                                2 
 

)1ln()(ln)(ln).1ln(1 xx e
dx
dxx

dx
de

dx
dy
y

+++=⇒  

)1(.
)1(

1).(ln)1).(1ln(1 x
x

x e
dx
d

e
x

x
e

dx
dy
y

+
+

++=⇒  

).(
)1(

1).(ln)1ln(11 x
x

x e
e

xe
xdx

dy
y +

++=⇒  

}
)1(

).(ln)1ln(1{ x

x
x

e
exe

x
y

dx
dy

+
++=⇒ , 

And finally                        }
1

).(ln)1ln(1{.)1( ln
x

x
xxx

e
exe

x
e

dx
dy

+
+++= . 

 

Example (3) Use the logarithmic differentiation to find y′  for the following function: 

x
xy

21
1 2

−
−

=  

Solution  

By taking the natural logarithm of both sides of the equation, then we obtain  

x
xy

21
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)21ln(1lnln 2 xxy −−−=⇒  
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1
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2
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Now, by differentiating both sides of this equation  with respect to x, we have: 
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And finally                                   }.
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Example (4) Find the derivative of xx xey 42=  

Solution  

This function has the form )()( xvxu , hence we may use the technique of logarithmic 

differentiation. By taking the natural logarithm of both sides of the equation, we obtain: 
xx xey 42lnln =  

xx xey 4lnln2lnln ++=⇒  

xxxy ln.42lnln ++=⇒  

Now, by differentiating both sides of this equation  with respect to x, we have: 
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Example (5) If xxy ln)(ln= ,   find 
dx
dy  when x = e. 

Solution  

By taking the natural logarithm of both sides of the equation, we obtain: 
xxy ln)ln(lnln =  

)ln(ln).(lnln xxy =⇒ , 

Thus, by differentiating both sides of this equation  with respect to x, we obtain: 
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Now as x = e then the derivative is 
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Home work: Solve the book pages 617 and 618, the following problems: 

 

[8] Use the logarithmic differentiation to find the derivative of the function  

      
9
52

+
+

=
x
xy . 

 

[8] Use the logarithmic differentiation to find the derivative of the function  

      .)1(6
3

46

23

xex
xy −

+
=  

 

[19]  Find y′   if     xx xey 34= . 

 

 

[21] If   12)34( +−= xxy ,  then find 
dx
dy    when x = 1. 

 

 

[26] If   xxy = , find the relative rate of change of y with respect to x when x = 1. 

 

 

 

 

 

 


