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Example (1) Find )(c
dx
d , where   c    is constant. 

Solution: 

Since ,)( cxf = then chxf =+ )(  
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Now, we have the following rule: 

 

Rule 1: the derivative of a constant function is zero. 

 
 

 Example 2 find 3x
dx
d  using the definition  

Solution: 

Since ,)( 3xxf = then 
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For general  nx  we have the following rule: 
 
 

Rule 2: 1−= nn nxx
dx
d  

 
 
Example (3) find the derivative of the following functions: 
 

.)()(,)()(,)()(,)()( 4 xxfivxxxfiiixxfiixxfi ====  
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Solution:  

(i)  ,44 314
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Rule 3: )(.))(.( xfcxfc
dx
d ′=  

 
 
Proof: 
 

Let ),(.)( xfcxg = then )(.)( hxfchxg +=+  

∴ ,))()(.()(.)(.)()(
h

xfhxfc
h

xfchxfc
h

xghxg −+
=

−+
=

−+  

).(.)()(lim.))()(.(lim)()(lim))(.(
000

xf
dx
dc

h
xfhxfc

h
xfhxfc

h
xghxgxfc

dx
d

hhh
=

−+
=

−+
=

−+
=∴

→→→

 
 
Example 4 differentiate the following functions: 

.
8
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Solution: 
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Rule 4 derivative of sum of two functions equals sum of their derivatives 

)()()]()([ xgxfxgxf
dx
d ′+′=+ , 

         derivative of difference of two functions equals difference of their derivatives 
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Example (5) find the derivative of the following functions: 
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Solution 
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Example (6) find the slopes of the curve  ,843 2 −+= xxy  at the points )7,3(),12,2(),8,0( −− . 

Solution 

The derivative of this function is ,46 +=′= xy
dx
dy  

Since 
xdx

dy  is the slope of the tangent line to the curve of y = f(x) at the point x, 

Then, the slope at the point )8,0( −  is: 

.4404)0(6
0

=+=+=
=xdx

dy  

 
The slope at the point )12,2(  is: 
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2

=+=+=
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The slope at the point )7,3(−  is: 
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Example 7 find all points on the curve ,1
3

3

+−= xxy  where the tangent line is horizontal. 

Solution 

The derivative of this function is ,11)
3
1(3 22 −=−= xx

dx
dy  

If the tangent is horizontal then its slope equals zero 
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But, know that 
xdx

dy  is the slope of the tangent line to the curve of y = f(x) at the point x, then to 

obtain all the points of the curve of y  at which the tangent line is horizontal put ,0=
dx
dy  this 

implies that .012 =−x  The solutions of the last equation are 1−=x  or  1=x . 

At 1−=x , then ,
6
52

3
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3
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=y  i.e the tangent line to the curve of 

y is horizontal to the point )
6
5,1(−  which lies on this curve. 

Similarly, at 1=x , then ,
3
11)1(

3
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=+−=y  i.e the tangent line to the curve of y is horizontal to 

the point )
3
1,1(  which lies also on this curve. 

 

 

Home work: solve book pages 551 and 552, the following problems: 

 

Differentiate the following functions: 

[22]   ,2ln8 4 +−= xy  

[34]   ,2)( )5/14(−= xxf  

[61]    ,2 xxy =  

[73]    ,)( 2

32

x
xxxw +

=  

 

[78] find all the slopes of the function xxy 43 −=   when x = 4, x = 9, x = 25. 

 

[85] find all points on the curve 32

2
5 xxy −= , where the tangent line is horizontal. 

 

 
 


