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ABSTRACT

Maximally-localized Wannier Functionsin |11-V semiconductors
Master of Science Thesis

By
Hazem Omar Abu-Farsakh
Department of Physics, Yarmouk University, Irbid, Jordan
Dec. 2003

Supervisor
Prof. Dr. Abdallah Qteish

The maximally-localized Wannier functions (MLWF’s) of four 111-V semiconductors
(GaAs, AlAs, GaN and AIN) have been congtructed, using the scheme of Marzari and
Vanderbilt. To do that, we have developed FORTRAN77 and C++ codes. For
comparison, we have constructed aso the MLWF’s of C, Si, Ge and SIC. In the eight
studied systems, the MLWF's are confined in the primitive unit cell, which demonstrates
their high potential application as accurate and minima basis for various theoretical
approaches. The deviation of the Wannier center from the center of the bond is found to
be proportional to the bond ionicity. Based on this deviation, a new lbond ionicity scale
has been introduced. The obtained ionicities of the studied systems are in much better
agreement with those obtained self-consistently (from the calculated charge density) than
with the empirical Phillipsionicity scae.

K ey words. maximaly-localized Wannier functions, 111-V semiconductors, bond ionicity,

density functional theory, pseudopotentia plane-wave.



CHAPTER'

INTRODUCTION

Modern computational methods applied to condensed matter systems are mainly
based on Density Functional Theory (DFT) of Hohenberg and Kohn [1]. The Kohn-Sham
(KS) formalism [2] of DFT provides a way to exactly transform the many-body problem
into a single-body one. However, the Exchange and Corrédation (XC) potential have to be
approximated. The most widdy used approximation for the XC potential is the Loca
Density Approximation (LDA) [2,3]. The LDA isfound to give surprisingly good results
for many physical and chemical properties of awide range of materials. The most serious
shortcoming of LDA is the so-called band-gap problem: the band gaps of insulators and
semiconductors are underestimated. Another approximation is the so-called Generalized
Gradient Approximation (GGA) [4-6]. The GGA is found to improve the cohesive
energies of solids and molecules. Recently, the Exact Exchange (EXX) [7,8] scheme has
been introduced. In this scheme, the exchange effects are treated exactly, and only the
correlation potential is approximated using LDA or GGA. The EXX formalism is found
to give band-gaps, effective masses, and cohesive properties in good agreement with
experiment. In its present implementation (using PlaneWave (PW) basis set), the EXX
calculations are very expensive in terms of both memory and CPU time.

Within the singleparticle approximation, the €eectronic states of a periodic
crystalline solid are usualy described in terms of extended Bloch orbitals [9,10]. An
aternative representation can be derived in terms of Wannier functions (WFs) [11].
WF’s are formally defined via a unitary transformation of the Bloch orbitals. The most
serious drawback of WF’s, which so far has limited their applications compared to Bloch
representation, is their non-uniqueness. This is a consequence of the phase indeterminacy

that Bloch orbitals have at any wave vector k. The non-uniqueness of WF’s can be



utilized to construct the maximally-localized set of WF's (MLWF’s). Recently, Marzari
and Vanderbilt [12] developed a very practical method for generating MLWF's starting
from the knowledge of the occupied Bloch states. The new technique has been
successfully applied to crysta systems and small molecules [12]. Furthermore, a
disentanglement procedure was introduced [13] to extend the original algorithm to the
case of systems without gaps and to remove the limitationto the isolated group of bands

that are separated by gaps from higher and lower bands.

Since their introduction in 1937, WFs have played an important rule in the
theoretical study of the properties of periodic solids. Moreover, the representation of
electronic ground state of periodic systems in terms of localized Wannier orbitals has
recently attracted considerable attention due to, mainly, two recent developments. First,
the development of “order-N” or “linear scaling” eectronic structure methods [14]. In
these methods the computational time scales only as the first power of the system size
[15], instead of the third power typical of conventional methods based on solving for
Bloch states. Moreover, MLWF’s are being used as very accurate minima basis in a
variety of other applications, such as the construction of the Hamiltonian in the form of a
multi-band Hamiltonian in second quantization (a kind of extended, multi-band Hubbard
model) such that all the standard many-body methods can be applied [16]. Second, the
formulation of the modern theory of bulk polarization of crystalline solids [17,18], which
directly relates the vector sum of the centers of the MLWFs to the macroscopic
electronic polarization of a crystaline insulator. Furthermore, the piezodectric tensor
defined as polarization derivative with respect to strain can be easily caculated [18]
within this approach.

The main driving force behind the present work is the formulation of the EXX
potential, within the KS formalism, in terms of MLWF’s. This is expected to reduce
dramaticaly the computational efforts of the EXX calculations. The first step in this
ambitious project is the construction of the MLWF's, which is done in this present work..
Thus, the main aim of thiswork is of two folds

I- The implementation of the Marzari-Vanderbilt scheme of constructing

MLWF’s. We have developed two codes. one written in FORTRAN77 and
takes its input (mainly Bloch wavefunctions) from data obtained using the
CASTEP code [19], and the other in C++ and takes its input from data



obtained using the SFHINgX code [20]. The two codes are found to give
identical results, and, thus, the reported results are obtained by using the C++
code.

- As a preliminary application, the developed code is used to construct the
MLWF’s of some 1l1-V compounds. This is done for GaAs, AlAs, AIN, and
GaN. For comparison, we have constructed also the MLWF’s of SIC, Si, Ge
and C. Moreover, the use of Wannier centers as a measure of the ionicity is
investigated.

Thisthesisis organized as follows. In the following chapter, we review the DFT and
the LDA for the XC potential. In chapter 3, we present the planewave pseudopotential
method, together with a review of some modern ab-initio pseudopotential generation
methods. Chapter 4 is devoted to introduce both the WF's and the Marzari-Vanderbilt
scheme for congtructing the MLWF’s. In chapter 5, we show the used computational

details. Finaly, in chapter 6, we report, discuss our results and provide our conclusions.



CHAPTER 2

DENSITY FUNCTIONAL THEORY

2.1 Introduction
Density Functional Theory (DFT) of Hohenberg and Kohn [1] is one of the most

popular and successful quantum mechanica approaches. It is an exact theory for the
ground state of an interacting many-particle system. It is nowadays routinely applied for
caculating, e.g., the binding energy of molecules in chemistry and the band structure of
solids in physics. Some applications relevant for fields traditionally considered more
distant from guantum mechanics, such as hiology and mineralogy are beginning to
appear. DFT owes this versatility to the generality of its fundamental concepts and the
flexibility one hasin implementing them.

To get afirst idea of what density functiona theory is about, it is useful to recall
some elementary quantum mechanics. In quantum mechanics it is known that al
information we can possibly have about a given system is contained in its many-body
wavefunction Y . A system of N interacting electrons in an external potential is
described by the many-electron Schrodinger equation which, in the time independent and
adiabatic approximations’ [21], is

HY (F},F oo [y ) S EY (P Ty ) (2.2)

H isthe Hamiltonian operator:

2 é\l 10 1
N7 +a Ve (r)+-a )
2 ri-rj‘

i=1 i=1 it

H=-

2.2)

N
Qo=

1 In the adiabatic approximation the nuclei are treated as objects at fixed positions. It is based on the fact that typical
electronic velocities are much grater than typical ionic velocities.



where r, is the position of thei-th electron and V,_, (r;) is the externa potentid. If the

HamiltonianH is spin independent, the spin part of the wavefunction cancels out, and,
therefore, the spin variebles are suppressed for simplicity. Hereafter, we will use the

Hartree atomic units(h=e=m, =1).

The usual quantum-mechanical approach to Schrodinger’s equation (SE) can be

summarized by the following sequence
Vo (1) %Fi® Y (1,1, ) %94 %%4® observables, (2.3)
i.e., one specifies the system by choosing V., (r) , plugs it into Schrodinger’s equation,
solves that equation for the wavefunctionY , and then calculates expectation values of
observables with this wave function. For example, the electronic charge density is given
by
N(r) = 2N¢pr, O e O Y (0T T )Y (F T e Ty ) (2.4)
Powerful methods for solving Schrédinger’s equation have been developed during
decades of struggling with the many-body problem. The problem with these methods is

the great demand they place on one’s computational resources: it is ssimply impossible to

apply them efficiently to large and complex systems.

It is here where DFT provides a practical aternative. The Hohenberg-Kohn theorems

[1] have promoted the charge density, n(r), from just one among many observables to

the status of a basic variable, as Y . The DFT approach can be summarized by the
sequence

N(r) Fa® Y (M, My, ry) F®V,, (r). (2.5)

That is, the knowledge of n(r) implies knowledge of the wavefunction and the externa

potential, and hence of al other observables. The above equation describes only the
conceptua structure of DFT.

The Kohn-Sham (KS) formalism of DFT [2] provided a way to exactly transform the
many-body problem into a single-body one. Kohn and Sham proved that solving
Schrodinger equation of an auxiliary system of non-interacting electrons moving in an
effective potential,



=6 +veﬁ[n(r)]§y M=ey, ),

D D~

would give the same result of the real interacting system moving in an external potential

V.. (r). Here{y ,} arethe single body wavefunctions. The effective potentia V [n] is
given by
Vet [N] =V (r) + Vi [N + Ve [N],

where V,,[n] is due to classica e ectron-electron interactions, and V,.[n] is due to the

quantum mechanical exchange and correlation (XC).

However, The XC energy functiona is unknown. In fact, it depends in a
complicated way on the charge density distribution of the system, and thus, no simple
exact expression for it is available. Therefore, in practice, an approximation for it is
required. The most widely used one is the Local Density Approximation (LDA) [2,3]
where the XC energy functional is considered to be locally equal to that of a uniform
electron gas of the same local density. Another approach is the so-called Generalized
Gradient Approximation (GGA) [4-6] where the XC energy functional depends locally
on the density and on its gradient. Recently, an Exact Exchange (EXX) has been
introduced [7,8], where the exchange part of the XC energy functional is treated exactly
and only the correlation part needs to be approximated. In this thesis, we limit ourselves
to the LDA.

This DFT approach forms the basis of the large mgority of electronic structure
caculations in physics and chemistry. Much of what we know about the eectricd,
magnetic, and structural properties of materials has been calculated using DFT, and the
extent to which DFT has contributed to the science of moleculesiis reflected by the 1998
Nobel Prize in Chemistry, which was awarded to Walter Kohn [22], the founding father
of DFT, and John Pople [23], who was instrumenta in implementing DFT in

computational chemistry.

The following sections are devoted to explain the DFT. First, in section 2, the
Hohenberg-Kohn theorems will be introduced. Then, in section 3, the KS formalism of
the DFT will be discussed. Finally, section 4 is devoted to the LDA.



2.2 TheHohenberg-Kohn Theorems

At the heart of DFT is the Hohenberg-Kohn (HK) theorems. HK theorems was
introduced in 1964 by Hohenberg and Kohn [1]. The first theorem can be stated as
follows. The complete many-body wavefunction, Y , of an electronic system is a unique

functional Y[n(r)] of the electronic charge density n(r). As a consequence, the
expectation value of any observableis also afunctional of n(r)
O =0[n] =(Y[n]|O]Y[n]). (2.6)

Hohenberg and Kohn [1] gave a straightforward proof of this theorem, which was
generalized to include systems with degenerate states by Levy in 1979 [24].

Hohenberg and Kohn defined auniversal functional F[n]:

F[n] :<Y"I° +\7€e‘Y>, 2.7)
where T and Vee are the kinetic and the electron-electron interaction energy operators
of the many-body system respectively. The functional F[n] is universal in the sense
that it does not depend on the external potential V., (r) which represents a particular

system of interest. With the help of F[n] Hohenberg and Kohn further defined, for a

given external potentia V,, (r) , the total energy functional

E[n] = cpr Vo, (r)n(r) + F[n]. (2.8

The second theorem of Hohenberg and Kohn can be stated as follows. The total
energy functional of a system assumes its minimum value (the ground-state energy) at
the true ground state density of that system (n,), i.e. it obeys avariational property

E, = E[n,] £ E[n], (2.9)
where n is some other density. Thisis very similar to the usual variational principle for
wavefunctions. If we calculate the expectation value of a Hamiltonian with a trial
wavefunction Y dthat is not its Ground State (GS) wavefunction Y, we can never
obtain an energy below the true GS energy,

E, =E[Y,]1=(Y,[H|Y,)£(Y 8H|Y ¢ = E[Y §. (2.10)



Similarly, in DFT, if we calculate the GS energy of a Hamiltonian using a density that is
not its GS density we can never find a result below the true GS energy. From Eq. (2.8)
and Eqg. (2.9) itisclear that

Eo = Ol Ve (N)no (r) + Fn,]. (2.11)

After these abstract considerations let us now consider one way in which one can
make practical use of DFT. Assume we have specified our system (i.e., V., (r) is known).
Assume further that we have a reliable approximation for F[n] . All one has to do then is
to minimize E[n] (Eq. (2.8)) with respect to n(r) under the congtraint that the total
number of electronsin the system, N, is constant, that is

N = ¢gr n(r). (212)
The best function n,(r) is the system’s GS charge density and the value E, = E[n,] is
the GS energy. Assume now that V., (r) depends on a parameter a. This can be, for
example, the lattice constant in a solid or the angle between two atoms in a molecule.
Calculation of E, for many values of a allows one to plot the E,(a) curve and to find
the equilibrium value of a. In this way one can calculate quantities like molecular
geometries and sizes, lattice constants, unit cell volumes, charge distributions, total
energies, etc. By looking at the change of E,(a) with a one can, moreover, caculate
compressibilities and bulk moduli (in solids) and vibrational frequencies (in molecules).
By comparing the total energy of a composite system (e.g., a molecule) with that of its
constituent systems (e.g., individual atoms) one obtains dissociation energies. By
calculating the total energy for systems with one more (or less) electron one obtains the

electron affinity (or ionization energy). All this follows from DFT without having to

solve the many-body Schrédinger equation.

In principle it should be possible to calculate all observables, since the HK theorem
guarantees that they are al functionals of n,(r). However, in practice, one does not
know how to do this explicitly. Another problem is that the minimization of E[n] is, in

general, a tough numerical problem of its own. Moreover, one needs a reliable

approximation for F[n] to begin with. In the next section, on the KS formalism, we will

see one widely used method for solving these problems.



2.3 TheKohn-Sham Formalism

In 1965, Kohn and Sham [2] have introduced the following separation o the
functional F[n],
FIn] =T,[n] + E,;[n] + Exc[n], (2.13)

where T,[n] isthe kinetic energy of non-interacting electrons with density n(r)
1 é\l AN * ~
T.=-2a gy (NN (r) (2.14)
i=1

(herey ;isthe single particle wave functions of the non-interacting system), E, [n] isthe

classica eectron-electron interaction energy (or Hartree energy)

E,[n] = Ogj r dr ”f?”i? (2.15)

The term E,.[n] contains the remaining electron-electron interaction energies, and the
difference between the kinetic energies of the interacting and nonrinteracting systems,
T-T,. This functional is, by definition, the quantum mechanica exchange and

correlation energy of the interacting system, which is unknown and needs to be
approximated. Nonetheless, note that Eq. (2.13) isformally exact.

Using equations (2.8) and (2.13), the total energy functiona can be written as
E[n] =T,[n] + E,[Nn] + E,.[N] + E,.[N] (2.16)
where
Eoc[N] = CIr Ve, (1)N(r) (2.17)
Thevariationa principle applied to Eq. (2.16) yields
dE[n] _ dT, _dE, , dE,  dE

dn(r)_dn(r) dn(r) dn(r) dn(r)

_ dT,
—dn(r)+V o (1) *Vi [N +V,[N]
=m, (2.18)

where m is the Lagrange multiplier associated with the requirement of constant number

of particles, V,[n] and V,.[n] arethe Hartree and the XC potentials, respectively.

10



Consider now a non-interacting system of particles moving in external potential
V, (r) having the same n(r) as the above interacting system. For this system the
minimization condition is
dT,
dn,(r)

+Vg [n(r)] =m, (219

since there are no Hartree and XC terms in the absence of interactions. Comparing this
equation with the previous one (Eg. (2.18)) we conclude that they are mathematicaly
identical if V[n] ischosento be

Ve [N] = Vo (1) + Vi [N] +Vy[N]. (2.20)
Consequently, one can calculate the density of the interacting (many-body) system, in

the potential V,_,(r), by solving the equations of a non-interacting (single-body) system,
in the potential V[n]. In particular, the Schrodinger equation of this auxiliary system
is

N

N2+veﬁ[nlgyi(r):eiyi(r), (221)

D3 D~

yields wave functions that reproduce the density n(r) of the origina system (these are

the same wave functions employed in Eq. (2.14)),
N
nr)y=2al (). (2.22)
i=1

Equations (2.20), (2.21), and (2.22) are known as KS equations, and V4 [n] iscalled the

KS potential. The problem of minimizing E[n] was replaced by that of solving a set of
single-particle Schrodinger equations. These equations have to be solved self-

consistently. In this case, one starts with an initial guess for n(r), calculates the
corresponding V4 [Nn(r)], and then solves the differential equation (2.21) for they ;'s.

From these y ,'s one calculates a new density, using (2.22), and starts again. The

process is repeated until a reasonable convergence is reached.

Note, from the derivation of Eg. (2.21), that the e,'s are the eigenvalues of the

auxiliary single-body Schrodinger equation whose eigenfunctions yield the correct
density. They are usualy caled the KS eigenvalues. DFT assigns no formal interpretation
to KS orbitals and KS eigenvalues, except that of the highest occupied state which is

11



equal to the ionization energy. It is only the ground state charge density that has strict
physical meaning in the KS equations. Nevertheless, most band-structure caculations in
solid-state physics are actually calculated from the KS eigenvalues, and it comes as a

great (and welcome) surprise that in many situations the KS eigenvalues, e, , do provide a

quite good approximation to the actual energy levels of extended systems [25]. Moreover,
it was found recently [26] that the energy gap between the highest occupied KS
eigenvalue and the lowest unoccupied one agrees quite well with experimental values for

the true energy gap, even for difficult cases, when an extremely accurate V, is used

(within the EXX approach).

2.4 ThelL ocal Density Approximation
The LDA [2,3] is the most common approach to approximate the unknown XC
functional E,.[n]. The idea behind LDA is to replace the XC energyE,.[n] of the
non-uniform n(r) with E,.[n] computed as if locally the interacting electron gas has
the same XC energy of a uniform interacting electron gas with the same local density.
Now, let ef2"(n) be the XC energy per electron for a homogeneous (uniform) electron
gas with a density n. Then, the total XC energy of this system, E,.[n], can be written
as
Eyc[n] = ¢pr nesZ" (n). 2.23)
In LDA one imagines the real inhomogeneous system (with density n(r) in a potential
V,.(r)) is decomposed in small cells in each of which n(r) and V_(r) are

approximately constant. In each cell (i.e., locally) one can then use the expression of a
homogeneous system to approximate the contribution of the cell to the red
inhomogeneous one. Making the cells infinitessmally small and summing over all of

them yields
Exc'[n] = ¢ n(r)ese (n(r)) (2.24)
and the corresponding exchange-correlation potential is given by

dExc"[n(r)] _ d[n(r)ese (n(r))]
dn(r) dn(r) '

Vi (r) = (2.25)
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Usually, e,. issplitted into an exchange, e, , and acorrelation, e. , part

e 2A[n(r)] = e™™[n(r)] +e™™[n(r)]. (2.26)

The exchange energy per electron for a homogeneous system is given by

el ™ (n) =- %g;g n? . (2.27)

Usually e’ and eX™ are expressed in terms of the parameter r_, which is related to n

through the relation

-1
891—pr39 . (2.28)
%]

The correlation energy per electron has been calculated by Quantum Monte Carlo
(QMC) calculations performed by Cerperly and Alder [27] and got parameterized by
Perdew and Zunger [28]:
ec i1+1 0529(\)/£4f?(,) 3334r, forr*1 : (2.29)
- 0.048+(0.0311+ 0.002r,) In(r,) - 0.0116r, for r,<1

LDA is exact for a homogeneous system and is expected to be valid for systems
with slowly varying charge density. Nevertheless, LDA is found to be a very good
approximation even in the case when the charge density is rapidly varying with respect
to r [3,29,30,31]. LDA aso has some drawbacks. For example, lattice constants and
band gaps are underestimated (band gap problem). Several approaches appeared to
improve the LDA. Examples are the GGA [4-6] and the EXX [7,8] methods.
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CHAPTER 3

THE PLANE-WAVE PSEUDOPOTENTIAL
METHOD

3.1 Introduction
In practice, numerical solution of the KS differential equation (2.23) proceeds by

expanding the KS orbitals in a suitable set of basis functions. One among various existing
options is the PlaneWave (PW) basis set. Unfortunately, the PW basis set is usualy very
poorly suited to expanding the e ectronic wavefunctions because an enormous basis size
is required to accurately describe the rapidly oscillating wavefunctions of the valence
electrons in the core region. On the other hand, the energies associated with core
wavefunctions are orders of magnitude higher than the energies associated with the
valence ones. Moreover, it is well known that most physical properties of solids depend
on the valence electrons to a much greater degree than that of the tightly bound core
electrons. It is for these reasons that the pseudopotentia (PP) approximation is
introduced. This approximation uses these facts to remove the core eectrons and the
strong nuclear potential and replace them with a weaker pseudopotential which acts on a
set of pseudo-wavefunctions rather than the true vaence wavefunctions. In some cases
there are some states which can be considered as semicore: they are highly localized, but

they contribute to the chemica bonds. These states should be treated as valence.
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The main advantage of such aformulation is that one can in principle replace the all-
electron problem with an effective Hamiltonian acting on smooth wavefunctions
representing the valence eectrons. This is shown schematicaly in Fig. 3.1. Thus, the
computational load is reduced in two respects: firstly, by reducing the number of the self-
consistent wavefunctions to be determined; secondly, by avoiding to represent the rapid
oscillations of the all-electron valence orbitals close to the nucleus, while keeping the long
tallsthat are mainly responsible for the formation of thechemica bonds. A justification of
the pseudopotential approach has been provided by the orthogonalized PW (OPW)
method.

.......

11:\55

Fig. 3.1: Schematic illustration of all-electron (solid
\r

puende & lines) and pseudo (dashed line) potentials, and their

“r corresponding wavefunctions.

Severd types of pseudopotentials have been applied to the study of electronic
structure and ground state properties of solids. Examples are: (i) empirica
pseudopotentials [32], and (ii) ab initio (first principles) pseudopotentials [33,34,35].
Empirica pseudopotentials were widely used in the 60s and 70s. The main disadvantage
of the empirical pseudopotentials is that they are nontransferable, that is, they are not
able to accurately describe the valence eectrons in different atomic, molecular, and solid
state environments. Moreover, they are not able to lead to accurate valence charge
density, which is the basic quantity in DFT. Empirical pseudopotentials were fashionable
before the introduction of theab initio pseudopotentials.

In 1979, the norm-conserving pseudopotentials have been introduced by Hamann,
Schliiter, and Chiang [33]. These pseudopotentials need to be constructed only once using
the all-electron valence wavefunctions and eigenvalues obtained from self-consistent

atomic calculations. The pseudo wavefunctions match, by construction, the al-electron
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ones beyond a certain core radius (r,) (see Fig. (3.1)). This ensures good charge density
distribution outside the core region. Moreover, the norm-conserving leads to good
transferability of these pseudopotentials. These potentias are known as semilocal, since
they depend on both r and angular momentum quantum number |. Kleinman and
Bylander [36] have shown that the computational cost of the matrix elements of these
potentials between PW’s, can be greatly reduced by transferring the semiloca form to a
truly nonlocal one. Findly, the expanson of the valence wavefunctions of highly
localized states, such as the p-state of the first row elements, in terms of PW’s requires a
very large number of these basis. Severa methods have been devised [37,38,39] to
optimize the pseudopotential, in terms of the required number of PW’s. Here, we will
describe the one used in thiswork, namely, that of Troullier and Martins [40].

This chapter is organized as follows. In the next section, we provide a justification of
the pseudopotential approach. Then, in section 3, we introduce the construction of norm-
conserving pseudopotentias, and we describe the Kerker and Troullier-Martins schemes.
Next, in section 4, we present Kleinman-Bylander form of pseudopotentials. Finally, in

section 4 we focus on the momentum space formalism.

3.2 Justification of The Pseudopotential Approach

To see this, consider a solid as a collection of ion cores and valence electrons. The
core wavefunctions are well localized while the valence ones are extended and
hopefully can be expanded by a reasonable number of PW’s. The one electron

Schrodinger equation reads

Hy =ey (3.1)
where the Hamiltonian is the sum of the kinetic energy, T , and an effective potential
operators, V,. Let us expand the true valence electronic wavefunction,y , as

y =f + 3 b, (3.2)

where f is a smooth wavefunction, f _ are the core wavefunctions corresponding to the
bound statesin theion core, and b, is determined from the conditionthaty and f . are

orthogonal to each other;

y|f.)=0 (3.3
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which leadsto
b, =-(f|f). (3.4)
Using the above three equations, and the fact that y and f_ are solutions of the
Schrodinger equation with eigenvalues e and e, respectively, Eq. (3.1) can be
mani pulated to take the form
gH r8 (e ec)|fc><fc|gf =ef (35)
that is, the smooth valence wavefunction f is the solution of a modified Schrodinger

equation with the same eigenvalue as the all-electron valence wavefunction. Eq. (3.5)
can be expressed as

(H +V)f =ef (3.6)
where V. is a repulsive potential operator. The pseudopotential is defined to be the
sum of the actual potential, V,, and V,

Vi, =V, +V, 3.7)
which represents a weakly attractive potential as a consequence of the cancellation
between V, and V. Thus, Eq. (3.6) can be written as

(T+V,)f =ef (3.8)

where f isregarded as a pseudo-wavefunction.

3.3 Norm-Conserving Pseudopotentials

The norm conservation means that the total amount of charge inside the core region

(r <r,) is correctly given by the pseudo-wavefunction. This condition is related to the

transferability of the pseudopotential, see below. Such a condition is very important,
because it ensures that the electrostatic energy associated with valence electrons is well
approximated and that the long-range tail of the electrostatic potential from the nucleus
plus the core electrons is correct. In the following, we give the basic requirements of the
construction of norm-conserving pseudopotentials [33,41], which have been very

widely employed in computational materials science during the last two decades.

A common starting point for generating modern ab initio pseudopotentials is self-

consistent all-electron (AE) calculation for the atom in a reference configuration. Thisis
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done by solving the radial Schrodinger equation for the valence wavefunctions and their

corresponding eigenval ues,

é 1d> I(1+) u
&~ — *t +VIn]grR, (r) =e, rR, (r 3.9
& a7t e TVIIGR (D =eurR, (1) (39)
where
VI == £+, [ +V,.[n] (3.10)

This yields the eigenvalues e and radia wavefunctions R™(r) (heredfter, the
quantum number n will be suppressed). A semilocal screened pseudopotential is then
constructed such that:

0] The self-consistent calculation for the pseudo atom in the same valence
configuration yield the same va ence eigenvalues as the real atom,

e” =¢’" . (3.11)

(i) The normalized radia pseudo wavefunctions are nodeless and equa to the

normalized radia all-electron wavefunction at and beyond a chosen core

radiusr, , that is

cl
R*(r)=R™(r) forr3r,. (3.12)
This condition implies that the charge enclosed in a sphere of radiusr, in the

pseudo atom must be identical to that of the real atom. This is caled norm

conservation
§rR= ()| dr = rRE(r)dr | (3.13)
0 0

(iii)  The first and second derivatives of the pseudo wavefunction are equa to the

corresponding derivatives of the real wavefunctionatr =r .

The total charge in the sphere of radius r, is related to the first energy derivative of the
logarithmic derivative of R at the sphere boundary [42]

d d } N
InRY = *R*(r)dr. (3.14)

€ 252
- IR (r)——
( )de dar H_,

e

Condition (ii), which was first introduced by Hamann et al [33], thusimplies that the first
energy derivative of the pseudo logarithmic derivative isidenticd to the exact result. Asa
consequence, the scattering properties of the real ion core are transferred to the pseudo

core, which ensures the transferability of the norm-conserving pseudopotentials.
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The screened pseudopotential, V.5, (r), is then obtained by inverting the radia

Schrodinger equation

I+, 1 d?

Vari (1) =€, - 2r?  2rR™(r) dr?

Tl

[FR™(r)] . (3.15)

Finally, the ionic pseudopotential V;); (r) is obtained by unscreening: subtracting the
Hartree plus exchange and correlation potential calculated form the pseudo charge
dengity,
Vien (1) =V (1) - Vi [n"(N] - Vi [n*(r)] . (3.16)
3.3.1 Kerker Scheme
The smplest scheme for generating norm-conserving pseudopotentials, which satisfy
the above conditions, have been introduced by Kerker [34]. He has defined a radia
pseudo wavefunction inside the core region of the form
RP(r)=r'e", (3.17)
where p(r) isa4™ degree polynomial;
p(r)y=ar*+br®+gr?+d. (3.18)
Note that the linear term in r is absent to avoid a singularity in the pseudopotentia at
r =0. The four coefficients are determined easily by applying the above conditions. For
more details see Ref. [34].

3.3.2 Troullier and Martins Scheme
The Troullier and Martins [40] have modified the Kerker scheme, to highly improve
the convergence of the valence pseudo wavefunction in terms of PW’s. This is done by
imposing further conditions, namely:
1. The third and fourth derivatives of the pseudo wavefunctions at the core radius,

ry, areequd to the corresponding ones of the all-electron wavefunctions.
2. The pseudopotential isanalytic at the origin, V¢, (0) = 0.
These extra conditions lead to pseudopotentials that decay rapidly (~q™*) in Fourier

space. Wheress, the Kerker scheme yields a decay as g 2. Note that the above additional
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conditions will increase the number of adjustable parameters that are used in Kerker

scheme.

34 Kleinman-Bylander Form of lonic Pseudopotential

The ionic pseudopotentia is usually decomposed into a purely loca (loc) and a
semiloca (d) parts;

VE(r) =Vi&e (N + @ VS (DR (3.19)
|

Here, P, an angular momentum projection operator for the component of the

wavefunction and is given in terms of spherical harmonics Y., as

Im?
P =& [Ym)(Yml- (3.20)

Vo (r) isaloca potentia (usualy chosen to be one of the components of V,5), and

on

V{7 (r) isthe semilocal potential for the angular momentum component | ;
VT(r) =Vigm (1) = Vigrioe (1) r=>ry, (321)
where r, is a core radius. Kleinman and Bylander (KB) [36] have shown that the

semiloca part of the potential can be transformed into a truly nonlocal or (sgarable in
reciprocal space), which highly reduce the computational efforts to calculate the matrix
elements of the pseudopotentials between PW’s. Their separable formis

_ ‘Vsu (ry =(r )> <y P (r (yvsu (r(y‘
yPONG O PO)

Herey (r)isthe atomic pseudo wavefunction of angular momentum | .

\ KB r,rg

non- loc,| ’

(3.22)

Note that KB potential and the semiloca potentia give identica results when applied
to the pseudo atom. However, they don’t produce identica results (but equaly valid)

when applied in another environment.

3.5 Momentum Space Formalism

In the momentum space formalism the solution of the second order differential single
particle Schrodinger equation is transformed to that of an eigenvalue matrix problem. This

IS done by expanding both the periodic KS potential, V (r), and the Bloch
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wavefunctions, y . (r), in terms of PW’s. The PW basis set is the smplest and natural

choice to expand the pseudo-wavefunction of the solid. Moreover, it provides a high

numerical efficiency and accuracy.

The KS potentid is periodic with the same periodicity as the Bravias lattice [9,10] of
the solid:

Ve (F +R) =V (r), (3.23)
where R is a lattice trandation vector. For this reason, we can apply the Bloch’s theorem
[9,10], which saysthat the solutions of Eq. (2.21) have the form

y nk (r) = unk (r) eik* ' (324)
where k is a vector inside the first Brillouin Zone (BZ) of the reciprocal lattice [9], n

denotes the band index, and u,, (r) isa periodic function with the same periodicity as
Vg (r):

U, r+R)=u,(r). (3.25)
Thus, u, (r) canbewritten as

Uy (1) =Q C (G) €°7, (3.26)

where G isareciprocal lattice vector, and C,, (G) arethe Fourier expansion coefficients.

The single particle Schrodinger equation can be transformed, after some

mathematical manipulations, to the eigenvalue matrix problem:
é %|G¢+ k|2dGG¢+Veff (G +k,GC+ k)gcnk (G9=e,(k)C,(G). (3.27)
Here,
V, (G +k,Go+K) = \% Jdr €' CHT Y (1) e (3.28)
whereV isthe volume of the solid. V, (G +k, G ¢+ k) can be separated into

Vg (G +k, GO+ k) =V, (G +k,G¢+K) +V,. (G- G§+V, (G- GY, (3.29

ion

where

ion ion

V(G +k,Ge+k) = \% Oar €Ty () geHor (3.30)
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Vi (G- GQ = —Odr V. (r)€© e (3.31)
and
V, (G- G9 =\%(‘)dr Vv, (r)e© e, (3.32)

Note that both V, (r) and the LDA form of V,.(r)areloca potentias, and hence, their

Fourier transforms depends only on (G - G9. However, V.*(G +k,G¢+k) can be

on

written as

ion loc

V.2(G +k,Ge+k)=V,>(G - G<D+aVKB|(G +k, GO+ k), (3.33)

where the local part iswritten as

V.2 (G - G(D:—Odr \

loc

loc (r)el(G o ' (334)

and the KB separable form of the pseudopotential leadsto

4p (21 +1)P (cosg)

R TG GG

’ é¥ S S . u
&0y Z (VST () (G +kr)rdry
& G

& | y
& (V)] (G e klrridrg. (335)

Here, j, aretheorder | spherical Bessel functions, R are the Legendre polynomials, and

(G +k) G ¢+ k)

T G rkiGerK]

Note that the introduction of the KB form results in a factorization of the original integral

into aproduct of integrals each involve only G or GU.

Eq. (3.27) is the momentum space representation of the Schrodinger equation. Non-

trivia solutions are obtained by solving the determinantal equation

|G + k| g +Vy (G +K,GHK) = (3.36)
"o
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The practical solution of Eq. (3.27) is achieved by using afinite basis set. To provide
such aset, the expansion in Eq. (3.26) is truncated: one can select the G-basis such that

%|G +k|” £ Eqyy, (3.37)

E.. 1S a certain energy cutoff, which depends on the ionic potentials considered.

Finaly, Eq. (3.27) is iteratively solved, for the required eigenstates, using the conjugate
gradient method [43]. Then, the self-consistent charge density, potential, and the total

energy are calculated. The band structure calculations are performed by solving Eqg.
(3.27), with fixed V4 (the self-consistent one), for the considered k-points, using also a

conjugate gradient method.

23



CHAPTER 4

WANNIER FUNCTIONS

4.1 Introduction

This chapter is devoted first to introduce the Wannier functions (WFs), their
definition, and properties. Then, to introduce the Marzari-Vanderbilt method for
determining the maximally-localized set of Wannier functions.

4.2 Definitions
It is possible to define a function, denoted by w, (r - R)or |Rn), such that the Bloch

functionsy _ (r) inthen-th band are given by

Y () =8 e w,(r-R). (4.2)

w, (r - R)isthe WF in cell defined by R associated with the band n [11]. This can be
justified by noting that any Bloch function, y , (r), considered as a function of k for a

fixed r, is periodic in the reciprocal space, therefore, it has a Fourier series expansion in
the real space. The WF's play the role of the localized atomic orbitals in the tightbinding
approximation [9]. However, their construction does not depend on the localization of the
corresponding atomic wavefunctions, but, in the case of deocdized crysta
wavefunctions, they don’t resemble these atomic wavefunctions. Eg. (4.1) can be inverted
easily by multiplying it by e *®¢
Zone (BZ) [9];

and integrating over al values of k in the first Brillouin
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Ok y w(r) e =4 gk e w (- R)

BZ R Bz

é (Zp) dRRCI:Wn(r - R)

C

thatis

W, (r - R)= Ok e ™Ry L (r). (4.2)

VC
(2p ’ BZ
Here v isthereal space primitive cell volume. Note that we have usedthe relation

3
djk glkAR-RY _ (2p) O e (43)
BZ v

The transformation in Eqg. (4.2) is unitary, which implies that WF's form a complete
orthonormal set. To seethis

CAr W, (r - R)w,o(r - RO =(Rn|R&G

..2
xe Vv

= 3!5 ngk ngk ¢eik>Re-ik¢R¢<y nk |Y n¢<¢>
SPV 8 st g (ke k)
= (2p)3,5 ok cd ( )d e
B2 B
:dnn¢dRR¢’ (44)

Note also that w, (r - R) and w, (r - R transform into each other with atrandation of a

lattice vector R - R,

4.3 Arbitrarinessin Definition of WF’s

The WF’s are not unique. This is a consequence of the phase indeterminancy, ",

of the Bloch orbitals,y , (r) , a every wave vector k;
y (=€ u (r)e"”, (4.5)
where f (k)is a real periodic function in reciprocal space. However, the phase (or

“gauge”) transformation does not result into a ssimple change of the overall phases of the
WPF’s. Their shape and spatial extent will in general be affected. For a single isolated

band, the gauge transformation

u, ® e u (4.6)
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is the only alowed type of gauge transformation for changing the set of WF's associated
with that band. For a composite group of J bands (i.e. bands that are connected among
themselves by degeneracies, but are isolated from al lower or higher bands), the alowed
gauge transformation has a more general form:
J
Uy ® QUL Uy, (47)
m=1

where U™ isa unitary matrix that mixes the bands at wave vector k. Note that Eg. (4.6)

can be regarded as a specia case of Eq. (4.7). Thus, the most general operation that
transformsthe Bloch orbitals into WF s is given by

(ZIVO—°)3 gk QUYL () &R, (48)

This arbitrariness of WF's can be utilized to construct the maximally-localized set of

w (r- R)=

WF’s. In the next section we introduce the Marzari and Vanderbilt [12] scheme to do just
that.

4.4 Marzari-Vanderbilt Method

Marzari and Vanderbilt [12] have introduced a spread functional (W) as a measure of
the total delocalization or spread of the WFs. Given a set of Bloch orbitals, y , (r), the

choice of the unitary matrix, U® | in Eq. (4.7), that minimizes the spread functiona can

be found. Then, the determination of the maximally-localized WF's (MLWF’s) can be
established.

4.4.1 Spread Functional in Real Space
The spread functional,W, is defined as

W:én g<r2>n-rn2 5 (4.9)

Here, <r2>n and T are the expectation values <On‘ r2‘0n> and (On|r |On) respectively.

The choice of this form of spread functiona isjustified in Ref. [12]. This functiona is to

be minimized with respect to the unitary transformation U ). It is convenient to

decompose W into two terms,
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=W +W, (4.10)
where
w =8 ¢r?) - &|(Rnir|on)|g (411)
n e Rm u
and
W=8 & |(Rmr |on)|". (4.12)
n Rm!On

It is clear that W is positive definite. It can be shown [12] that W, is also positive
definite, and, moreover, gauge-invariant: invariant under any arbitrary unitary

transformation (4.8) of the Bloch orbitals. To seethis, from (4.11) we can write

W, =3 gé <On r? On> -aa <On r, Rm><Rn’{ r, On>g
n @a a Rm a
:é gOn r? On> - <On r,Pr, On>§
=a g<0n r,d- P)r, On>g
that is
W, =4 (onlr,Qr,|0n). (4.13)

Here, P is the projection operator onto the group of bands under consideration and Q is
the projection operator onto all other bands, namely

P=& [RN(RN| =&Y u )Y | (4.14)
Rn nk
and
Q=1-P. (4.15)

Then, from (4.13) we get
W =4 trPr,Qr, ]
a (4.16)
=[P +|PyQ]” +[Pzq]”.
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Here ||A||2 =tr[ATA] . It is clear from the last expression that W, is positive definite. It is

aso gauge invariant as mentioned previously. Accordingly, the minimization of W

corresponds to the minimization of only W.

Notethat W can, in tern, be decomposed into two parts

W=W,, +W,, (4.17)
where
Woo =& & |(Rmr on)’ (4.18)
mtn R
and
o o 2
W, =& & |(Rnlr|on)". (4.19)
n R0

W, isthe band-off-diagonal part and W, isthe band-diagonal part.

4.4.2 Spread Functional in Momentum Space
It is shown in Ref. [44] that the matrix elements of the position operator between
WF’stake theform

V . ~
R r|om)=i —— ¢gk e**(u, [N, |u_.), 4.20
and
RN r2[om) =- —c_ &k R U, [NZlu ). 4.21
The above two equations can be inverted by multiplying by e ™** then summing over R,
and using
3
é ei(k—kﬂ)>R - (Zp) dk,k¢ (4_22)
R c
we gef,
(U N U ) =-1 & €™ (Rn|r [om), (4.23)
R
(U, Ni‘ U )=- A e‘ik“<Rn‘ r2‘0m>. (4.24)
R

Thus, 7, and (r?) canbewritten as
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k k Nk nk /7 .
To= (Zp)solI (Un| Ny Jug) (4.25)

N

Ok (U [N U )

r?) =
(), = (2p)3
Now, integrating the last equation by parts gives

Ol (4.26)

(%), =y

We shall now derive expressions for W and its different partsin terms of a discretized
k-space mesh. Accordingly, we make the substitution

1

( 2p)3 , (4.27)

where N is the number of k-points in the first BZ, or equivaently, the number of rea-
space cells in the system. If the Brillouin Zone has been discretized into a uniform
Monkhorst-Pack mesh [45] (see Appendix A) containing Z k-points, then the simplest

finite difference expressons for, the gradient,l(lk (i.e. involving the smallest possible

shdll) of asmooth function of k, f(k),isgivenby [12]

Nf(k) =& wb[ f(k +b)- f(k)], (4.28)
and
INF)|" =8 w, [ fk +b)- f()]>. (4.29)

Here, b is a vector connecting each k-point to one of its nearest neighbors and wy, is the

weight associated with each shell | b | = b. For any given k-point in a cubic mesh
w, = 3/ Zb® , withZ =6, 8, or 12 for simple cubic, body centered cubic and face centered
cubic k-space meshes respectively [12].

Therefore, starting from (4.25) and (4.28) we now have

<unk

Wbb [< U,

i
ro=—
N

;\-mo

é Wbb (un,k+b - Uy )>

b
un,k+b> - < Uy |unk > ]

Tmo

il
N
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= 8w (1, Jun)- 1], 4:30)
k,b
and from (4.26) and (4.28) we get
A _lo @ oF
<I’ >n—_aWb@un,k+b>' unk>g
:%ké [2 nk+b - <unk un,k+b>]
1o )
=g aw ez 2Re( u, “k+b>5' (4.31)

To find the final expressions for W and its different parts, a desirable property should
be taken into account. Namely, if the WF's are shifted by a lattice vector, R, that is when

ik

u, ® u,e"™ oneshould find

r.®r +R
(r?) ® (r?) +27, R+R’ (4.%2)
so that W remains unchanged. Expressions (4.30) and (4.31) can be modified to obey the

above requirements. Thus, the expressions for the expectation values of r and r?> are

given by [12]
F=- 18 whiminm & (4.33)
N b
oy _1lp 1 & (kb) u (kb)2u
=— M, +{ImInM
(1), = & el & M| e ANCEY
where
M & :<urrk un,k+b>' (4.35)

Hence, one can find that equations (4.11), (4.18), and (4.19) become

1
AP ANl

= ié wbtr[P‘k>Q‘k*b’] , (4.36)
N k,b
2
Woo =—aw,aM&”|", (4.37)
N k,b mtn

and
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Qo

W, ==& WA (- IminM&» - b ). (4.39)

1
N

=

b

Note that it is now clear from the expression (4.36) that W, is gauge invariant.

4.4.3 Gradient of Spread Functional
Consider the first-order change of the spread functional W arising from an
infinitessma gauge transformation (4.7), given by
Ul =d_ +dw® (4.39)
where dW is an infinitesimal anti-hermitian matrix, dW' =-dw . Inserting (4.39) in

(4.7) yidds

u, ® u, +g dw’ u_. (4.40)

Marzari and Vanderbilt [12] have utilized this change in U *) to derive a very elegant

expression for the gradient of W, given as

dw
GY = iy =48 wp (AR]- ST] ). (4.41)
b
Here, A and B are the operators
- RT i
A= ad gE=2TE
[

with R*® and T®® are defined as
(k,b) — ng (Kb)pg (K.b)*
er - an Ivlnn '
(k,b) — B(k,b) ~(k,b)
Tmn - Rm qn ’

n

and

(kb) — —_m and q¥” =ImInM%? +pb X

The condition required for having found a minimum is that the gradient, G*', given
by Eg. (4.41), should vanish. The most important thing to note here is that the gradient

(k,b)
m

depends only on the overlap matrices, M
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4.4.4 Steegpest-Descent Minimization
The ssimplest (but not necessarily the most efficient) method to minimize W is the

steegpest-descent. Using small updates to the unitary matrices, as in Eq. (4.39), with the
choice

dw® =eG® (4.42)
where e isapostiveinfinitesmal, leadsto

dw=g tr[G*dw®]

k
--e 6"
k
Here ||A4|2 —a mn|A,m|2 and G' =-G. Thus, the choice (4.42) guarantees dW< 0, which

aways leads to areductionin W. Wetake e =a /4w, where w= § W, , sothat

DW® :%véb wb(A[R""b)] _ gT kD] ) ’ (4.43)

and, then, the wavefunctions are updated according to the matrix exp[DW*’] which is

unitary because DW is anti-hermitian. Following the choice of Marzari and Vanderbilt
[12], The pre-factor a was set to 0.4.

The agorithm is as follows. First, we start with a reference set of Bloch orbitals and

evaluate the overlap matrices

(0)(k,b) — /,,(0)
M mn - <umk

Uk ) (4.44)
and we choose our starting U 9% to be d . Then we evaluate DW ™ given by Eq.
(4.43) and update the unitary matrices, according to

U N0 =g (N-009 gyprpyy (VD07 (4.45)
where N is used to denote the cycle number. After that, we evaluate a new set of the
M &) matrices according to

M (VED) — | (NK)T g ©Ok.b) J (N)(k+b) (4.46)

This cycle is repeated until convergence is obtained. It is clear that this evolution towards

the minimum requires only relatively inexpensive updating of the unitary matices. The

overlap matrices, M “* | have to be cal culated only once.
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To highly improve the efficiency of the minimization procedure, the reference Bloch
orbitals are prepared in order to make the starting Wannier functions somewhat |ocali zed.
The other advantage of this step is to help to avoid getting trapped in alocal minima[12].
We use the same preparation method used by Marzari and Vanderbilt [12]. In this
method, the set of reference Bloch orbitals are prepared by projecting them anto Gaussian

functions, g,,(r), centered at mid-bond positions. Thisis done asfollows, first
|fnk>:a|y mk><yrﬂ<|gn>’ (4.47)

then, the resulting orbitalsf |, are orthonormalized via Léwdin orthogonalization scheme

f~nk>:é. (S-llz)mn|frrk>’ (448)
where S, =(f ., |f . ). and finally reconverted to cell-periodic functions with

uld = e‘ik"f~nk (r). (4.49)

Another preparation method is used in Ref. [46]. This method involves a gauge

transformation for each band given by
Y () ® y (el iiminy ().
To make this method work well, r should be chosen where the Wannier functions are

expected to be reasonably large [46].

Note that the exponential exp[DW *'] is a matrix operation, which is performed as
follows. First, we use the representation DW® =-iH , where H is a Hermitian matrix

(H =iDW). Next, we diagonalizeH, i.e. H = CDC *where D is diagonal. Then we have
exp(-iH) =exp(-iCDC ™)

exp(-iD) iscalculated by just taking the exponentia of each element of - iD .

33



CHAPTER 5

COMPUTATIONAL DETAILS

5.1 Introduction
Our caculations are performed within the local density approximation (LDA) for the

exchange-corréation potential, using a pseudopotential planewave (PP-PW) approach. In
this chapter we introduce the used computational details. First we will describe the |attice,
structure, and reciprocal lattice for the studied systems. Next, we will state some details
used in the self-consistent calculations. Finadly, we give some details related to the
construction of the MLWF's.

5.2 Lattice

The underlying Bravais lattice of al the studied crystals is the facecentered cubic
(FCC). In the FCC lattice, the | attice points are located at the corners and at the centers of
the faces of a periodically repeated cub, as shown in Fig. 5.1. Thus each lattice point has
12 nearest neighbors. The conventional cell contains four lattice points. Any two lattice
points are connected by alattice trand ation vector

R=na, +n,a, +n.,a,, (5.1
where a,, a,, a, are the primitive trandation vectors, and n, n,, n;are integers. In the

case of FCC Bravais lttice, we have
i . . i . . 1 .. .
a, :Ea(x +y);, a, :Ea(y +2);, a, :Ea(x +2). (5.2

Here, a is the edge length of the conventiona cubic cell (or the lattice constant), and

X, VY, 2 arethe Cartesian unit vectors. Hence, the primitive cell volumeis a®/4. The
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angel between any two primitive trandation vectors is 60. In Table 5.1, we list the used
experimental lattice constants for the studied systems.

Table 5.1: Lattice constants (@) in Bohr units.
System | GaAs  AlAs GaN AIN SiC Si Ge C

a 10.680 10.680 8532 8249 8230 10260 10680 6.739

Fig. 5.1: FCC lattice. The bigger cdl is the conventiona
unit cell and the other one is the primitive unit cell. Herea’,
b’, ¢” are the primitive trandation vectors.

5.3 Structures

Si, Ge and C crystalize in the diamond structure, while GaAs, AlAs, GaN, AIN and
SiC dl crystallize in the zincblende structure. In the diamond structure, the primitive unit
cell has two identical atoms at (0,0,0) and (Y4,%,"s)a associated with each lattice point (of
the FCC lattice), as shown in Fig. 5.2. Hence, the conventiona cell contains eight atoms.
The tetrahedral bonds in diamond structure are aso clear in Fig. 5.2. Each atom has four
nearest neighbors. The zincblende structure has equal number of two types of atoms
distributed on the atomic sites of the diamond structure so that each atom has four nearest
neighbors of the other kind, as shown in Fig. 5.3. Note that the diamond structure alows a
center of inversion symmetry operation (which mapsanaom at r intoanaomat - r)
at each midpoint between nearest neighboring atoms, while zincblende structure does not
have inversion symmetry.
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Fig. 5.2: Diamond aysta structure. The tetrahedral bonds are clear in both figures.
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Fig. 5.3: Zinchlende crystal structure.

54 Reciprocal Lattice

The reciprocal lattice vectors are defined via
G=vb, +v,b, +v;b,, (5.3
where v,,Vv,, v, areintegers, and b,,b,,b, are the primitive vectors in the reciprocal

space. The primitive reciprocal lattice vectorsto the FCC lattice are:

b, = (xegr2n b, =P k-yran b,=Pey-2. (69
This means that the reciprocal to the FCC lattice is a Body-Centered Cubic (BCC) lattice.
The shortest G vectors are the eight vectors:

T ExEy2). (5.5)

The first Brillouin Zone (BZ) is the Wigner-Seitz primitive unit cell of the reciprocal
lattice. The Wigner-Seitz cell about a lattice point is the region of space thet is closer to
that point than to any other lattice point. The first Brillouin zone for the FCC lattice is

36



shown in Fig. 5.4. The k-points shown are called high symmetry k-points, which lie along
high symmetry directions of thefirst BZ.

Fig. 5.4: Brillouin zone of the FCC lattice. The three axes
intersect the BZ at (2t/2)(100), (21/8)(010), and (2/a)(001).

55 Sdf-Consistent Calculations
Our calculations are performed using a standard PP-PW approach (see chapter 3).

We have used norm-conserving pseudopotentials in the KleinmanBylander [36]
representation, generated by using the Troullier and Martins scheme [40]. The used
electronic configuration, core radii and local potentials (see chapter 3) are listed in Table
5.2. These pseudopotential s were carefully checked, and they are found to have very good
transferability and free from ghost states [47]. For each of the atoms considered, except
for N, a d-component is included which corresponds to the lowest unoccupied d-state. In
order to be able to use reasonable core radii for this component for Ge and Ga we used
reference energies of 15 and 20 eV, respectively.

The sdlf-consistent calculations for the different systems were performed using a
regular 4x4x4 Monkhorst-Pack (MP) mesh [45] of k-points (see Appendix A). For the
FCC lattice, this mesh of k-pointsis reduced by symmetry to only ten specia ones.

The PW energy cutoffs used for the systems considered are shown in Table 5.3.
These cutoffs are found to give excellent convergence. One should note that the occupied

p-states of the first row elements (C and N) are highly localized. Hence, systems
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involving such atoms require quite large cutoff energy. For example, we show in Fig. 5.5
the used LDA-PP’s for C and Si. It is worth noting that the p-component of the ionic

pseudopotential of C is much deeper than that of Si.

Table 5.2: Data used for the pseudopotentia generation for the atoms involved. Here, Z is the atomic
number, N, is the number of valence electrons, and |, isthe angular momentum for the local components

of theionic pseudopotentids. Iy arein Bohr units.

o . valence e ectronic N, coreradii r, -
configuration =0 =1 =2
C 6 25°2p° 4 15 15 15 2
N 7 25°2p° 5 15 15 1
Al 13 3°3p" 3 1.9 1.9 1.9 2
S 14 353p? 4 21 2.1 2.1 2
Ga 31 A4p* 3 21 2.1 2.2 0
Ge 7] 454 4 22 22 22 2
As 33 45°4p° 5 21 21 2.1 2
Table 5.3: Plane wave energy cutoffs ( E_, ) in Rydberg units (1 Hartree = 2 Rydberg).
System | GaAs  AlAs GaN AIN SiC S Ge C
E.. 25 25 60 60 60 25 25 60

o e s : 0.0 | iy = R
. i " Si
20 A0
[ 5 520
5 409 4 = R L
£ :f &5 . =
T 60 ¥ IR : i
E. '.,' — I=0 E_.‘ i Il
= I { —= =1 - =.50 : — -3
- o L & L | i
-2.0 / -z Egn & S -
| 1 | ] 1 1 ¥ 7 1 1 | | 1 | E
100,670 20 30 40 50 %90 10 20 30 40 50
r [bobr} r (bohr}

Fig. 5.5: lonic pseudopotentials of C and Si.
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5.6 Construction of the MLWPF’s

5.6.1 Reciprocal Space Grids

In the calculation of the overlap matrix elements, given by Eq. (4.35), the full sets
(not the reduced ones) of MP meshes were used. The Bloch egenfunctions and
eigenvalues are obtained via band structure calculation, at fixed (sef-consstent) KS
potential. Moreover, as suggested by Marzari and Vanderbilt [12], the MP meshes were
shifted in order to include the G point (k=0). Since the lattice is FCC in real space, the
grid is BCC in reciproca space, and we have used the simplest possible representation of
N, using only the first nearest neighbors (Z=8) of each k-point [12]. However, for GaAs,
we have used two other kinds of meshes. The first one is a uniform MP mesh that was
shifted such that for each k there is a—k, without the inclusion of the G point. The second
one is an equi-spaced cubic mesh [46], in this case we have 6 nearest neighbors for each
k-point. Note that al the reciprocal space grids, which are used in the calculation of the

overlap matrix elements, satisfy the following condition:
a et =Ndg,, (5.6)
k

which is clearly the same as equation (4.3) but with a discretizedk-space.

In the calculation of the overlap matrix elements, one shall specify the set of nearest
neighbors (or their equivalents) for each k-point among the whole set. In the case of FCC
lattice, we have eight nearest neighbors for each k-point (since we have BCC lattice in
reciprocal space). Fig. 5.6 demonstrates finding the set of nearest neighbors (or their
equivaents) for three different k-points in a 4x4x4 MP mesh for the FCC lattice In Fig.
5.6a, the specified k-point (the larger dark point) has eight nearest neighbors (the small
dark points) that al lie inside the same cell. This is not dways the case. In Fig. 5.6b, the
specified k-point (located on the upper face) has six neares neighbors inside the same
cel, and two nearest neighbors outside it (not shown). However, when folded back into
the considered cdll, the two neighbors outside it map onto two existing k-points in the
shown mesh, which lie on the opposite face. These two points are marked by dark points.
The mapping is done by adding a certain G-vector, such that k =k ¢+ G, where k¢ is
outside the specified cell and k isinsideit. The situation becomes a bit more complicated
iIf the considered point lies at the corner of the mesh, as shown in Fig. 5.6¢. Each of such
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points has four nearest neighbors inside and four outside the cell. Similar arguments are

applied for the other k-points.

(@) (b) (©)
Fig. 5.6: Demongtration of finding the set of nearest neighbors (or their equivdents) for 3 different k-
points in a 4x4x4 MP mesh for the FCC lattice. The specified point is the bigger dark one, and its nearest
neighbors (or their equivalents) are the marked by smaller dark ones.

In order to obtain the periodic part of the Bloch's orbitals of the neighboring k-points
that lie outside the considered mesh, we note that
Y elr) =Y e () - (5.7)
Here, k and k ¢ are as defined above. This is because they are identical points, ensured by
the periodicity of the unit cell in reciprocal space. Thisimpliesthat
U,.(r)=u,(r) €. (5.8)
Therefore, u, areonly explicitly calculated for the considered MP mesh, and that of the
k ¢ pointsare obtained from them by using the above relation. The caculations are

performed in reciprocal space, and thus, the PW’s coefficients of the Bloch’s orbitals at

the k ¢ points are obtained according to the relation

Cue(G9=C, (GC¢ G). (5.9)

In order to investigate the effect of choosing a certain kind of the different k-space
meshes, we show in Figs. 5.7 one of the MLWF's in GaAs obtained by using three
different kinds of k-space meshes. Fig. 5.7a shows MLWF obtained using a uniform
8x8x8 MP mesh (i.e. contains 512 k-points) that was shifted in order to include the
G- point. In this case, the minimized spread functional equals to 8.871 A®. Fig. 5.7b

shows the corresponding one obtained by using the same MP mesh but was shifted in
order to have, for each k, a—k. The minimized spread functional is now 8.981 A%. Fig.
5.7c shows the corresponding MLWF obtained by using a uniform cubic mesh of k-
points. This mesh contains 500 k-points that lie inside the first BZ of the FCC lattice.
Using this mesh, the minimized spread functional was 9.208 A®. Thus, although all of the
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above meshes contain comparable number of k-points, the spread functional depends on
the kind of the set k-points used. Nevertheless, we note that al of the MLWF's obtained
above have the same location of the Wannier centers, and al of them have smilar shape
and confinement in the primitive unit cell. Thus, the results reported in the next chapter
are constructed by using k-meshes of the first kind.

a)

b)

Fig. 5.7: @ One of the MLWF s in GaAa, obtained by using 8x8x8 MP mesh that was shifted in order
to include the G- point . b) The same MLWF obtained after using the same MP mesh but was shifted in

order to have, for each k, a—k. ¢) The same MLWF obtained by using a uniform cubic mesh containing 500
k-points.
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5.6.2 Wavefunctions Initialization

As we have mentioned in chapter 4, the reference Bloch orbitals are prepared in
order to make the starting Wannier functions somewhat localized. We do this by
projecting Gaussian functions, centered in the middles of the tetrahedral bonds, on the
Bloch orbitals. We have studied the effect of the choice of the standard deviation
(spread) of these Gaussians on the required number of iterations to reach the
convergence of the spread functional (W), and on W itself. This is done for GaAs,

which has the largest lattice constant among the studied compounds, and for C, which
has the smallest |attice constant among the studied compounds. This test is done using a

regular 4X4X4 MP mesh of k-points.

The upper parts of figures 5.8 and 5.9 show the relation between the Gaussians
standard deviation and the required number of iterations to reach convergence for C and
GaAs, respectively. The lower parts show the relation between Gaussians spread and W.
From Fig. 5.8 we see that the number of iterations increases slowly when we increase the
Gaussians spread until it suddenly increases when we use Gaussians of spread more than,
roughly speaking, about 0.9 times the C-C bond length. However, W remains unchanged.
GaAs (Fig. 5.9) show asimilar behavior. The number of iterations increases owly when
we increase the Gaussians spread until it increases rapidly when we use Gaussians of
spread more than about 0.9 times the GaAs bond length. Thus, we conclude that it is
better to choose the Gaussians spread to be less than the bond length. For example
choosing Gaussians spread to be half the bond length is expected to be a good choice. In

our calculations, for all compounds considered, we have used Gaussians spread of 1 A°.
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To show the importance of the wavefunctions initiaization procedure, we show in
Fig. 5.10a one of the calculated WF's of Si, using the 8x8x8 MP k-mesh, without any

initialization and without using the minimization scheme of W introduced by Marzari and

Vanderhilt. In this case, the unitary matrices U’ are equal to the identity matrix. It is

clear from the figure that the WF's are of widespread (W=751 A*%) and are not confined
in one unit cell. On the other hand, Fig 5.10b displays the same WF obtained after using
the initialization procedure and again without using the minimization scheme of the
spread functional. In this case, the WF is much more localized, with W=68 A%, and its
shape is very smilar to the maximally localized one which is shown in Fig. 5.10c. The W
of this MLWF is equa to 8232 A% Thus, we can conclude that this initialization

procedure provides avery good starting point.
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Fig. 5.10: @) One of the WF's of Si, obtained by using 8x8x8 MP mesh, without any initialization or
minimization of the spread functional. b) The same WF obtained after using the initialization procedure,
without minimization of the spread functional. ¢) The same corresponding maximally localized one.
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5.6.3 Plottingthe MLWPF’s
The above displayed WF’s and that shown in the next chapter are obtained as

follows:
1_

After finding the proper unitary matrix, a new set of the periodic part of the

Bloch’s wavefunction (u§ ) are constructed, using the relation
UG (1) =a U 5 up (). (5.10)

Note that u§ (r) obtained by using the inverse Fast Fourier Transform

(FFT) are given at real space FFT grid, inside only ore unit cell.

In order to have u§ inalarge unit cell, we have carried out a 3x3x3 repetition.

This means that the size of the new (big) unit cell is 27 times larger than the
original one.

The MLWF’s are calculated in this big unit cdl by multiplying by the proper
phase factor and integrating over thefirst BZ

W, R)= & ug (e, (5.11)

The R vector is chosen such that the WF's are centered at about the center of
the big unit cell.
Both the surface and contour plots of the MLWF’s are done, by using the
pxviewer code [48]. As input to the program we supply the data as they are in
the FFT grid points.
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CHAPTER 6

RESULTS AND DISCUSSION

6.1 Introduction

In this chapter we will present and discuss the Maximally-Localized Wannier
Functions (MLWF’s), for four 111-V semiconductors. These semiconductors are GaAs,
AlAs, GaN and AIN. For comparison with other systems, we will also present and discuss
the MLWF’s of C, Si, Ge and SIC. In particular, we will focus on the spread of these

functions and their centers (known as Wannier centers).

Although the accurate self-consistent calculations are nowadays a common practice,
there are, however, cases where such calculations are extremely difficult (because of the
complexity of the system) or the high accuracy they provide is not necessary (when
studying broad trends is required). In such cases, concepts such as ionicity,
electronegativity, covalent radii and others are of particular importance. It has been noted
by Marzari and Vanderbilt that the Wannier centers can be used as a measure of the bond
ionicity. However, this connection has not been exploited. In this chapter we will
introduce a bond ionicity measure based on the Wannier center, and compare it with the
empirical Phillipsionicity [49], and the self-consistent ionicity scale of Garcia and Cohen
[50]. A more complete account of the new ionicity scale, applied to a large number of

semiconductors, is currently under investigation.
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The rest of this chapter is organized as follows. In section 6.2 we report and discuss
the MLWF’s of the eight semiconductors considered. Section 6.3 is devoted to the new

ionicity scale. Finally, section 6.4 contains our main results and conclusions.

6.2 Maximally Localized Wannier Functions

6.2.1 For C, Si and Ge

As an example, we show in Fig. 6.1 the band structure of Si. In these systems, the
upper three vaence bands are not separated from the lowest energy one by a gap, asit is
the case in the polar semiconductors. Therefore, the four valence bands of the above
semiconductors have to be considered as a composite group of bands in the construction
of MLWF’s.

S

Encrgy (cV)

IS4

I XWwW L I KUX

Fig. 6.1: The Band structure of Si. Solid curves. vaence
bands. Dotted curves. conduction bands.

The MLWF’s are obtained as described in chapters 4 and 5, with J = 4. Because of
the inversion symmetry, we expect the four MLWF's per primitive unit cell are centered
exactly at the centers of the tetrahedral bonds. As noted by Marzari and Vanderbilt, the
inversion symmetry alows for real coefficients of the PW’s expansion (by taking the
origin to be at the bond center) and so also the unitary matrices U ® . This yields zero

W, . Since W, isgaugeinvariant, only W, needs to be minimized.
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In Tables 6.1, 6.2 and 6.3 we show the variation of the spread functional, W, and its
various parts (W,, W, and W) for C, Si and Ge, respectively, with respect to the k-
space grids. These grids vary from 2x2x2 to 12x12x12 MP meshes. Also listed, in the
same tables, is the parameter b which gives the relative distance (with respect to the

bond length) of the Wannier center along the bond from one of its end atoms.

Table 6.1: Minimized spread functional and its various parts (invariant, off-diagonal, and diagonal) in
C for different k-meshes (in units of A° %), together with the relative position of the centers along the C-C
bonds.

k set W W, Wop Wo b
2X2X2 1.844 1.620 0.224 0 0.5
4X4X4 2.642 2.306 0.336 0 0.5
8X8X8 3.045 2.700 0.345 0 0.5

12X12X12 3.133 2794 0.340 0 0.5

Table 6.2: Minimized spread functional and its various parts (invariant, off-diagonal, and diagonal) in
S, for different k-meshes (in units of A° %), together with the relative position of the centers along the Si-Si
bonds.

k set W W, Won Wo b
2X2X2 4.039 3.660 0.380 0 0.5
4X4X4 6.433 5.866 0.566 0 0.5
8X8X8 8.232 7.716 0.516 0 0.5

12X12X12 8.730 8.280 0.450 0 0.5

Table 6.3: Minimized spread functional and its various parts (invariant, off-diagonal, and diagonal) in
Ge, for different k-meshes (in units of A° ?), together with the relative position of the centers along the Ge-
Ge bonds.

ket w W, Wop W, b
2X2X2 5.320 4,507 0.813 0 0.5
4X4X4 7.713 7.001 0.712 0 0.5
8X8X8 10.116 9.485 0.631 0 0.5

12X12X12 11.041 10.462 0.578 0 0.5

In Figs. 6.2, 6.3 and 6.4 we show one of the MLWF’s of C, Si and Ge, respectively,
obtained by using an 8x8x8 MP mesh. The other three MLWF’s, for each system, lie on
the other three tetrahedral bonds. All of the obtained MLWF's are rea, and their shape

resembles that of the sp®hybrids combined to form s -bond orbitas: the MLWF's are

located mainly in the bond region. The remarkable features to note from the above results

are as follows:
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(i)

(ii)

(iii)

(iv)

(V)

As expected, W, is identically zero for the above three systems, which

crystallize in the diamond structure, and the Wannier centers lie exactly at the
centers of the bonds. This reflects the accuracy and reliability of our calculations.
The MLWF’s are mainly confined in the primitive unit cell. This feature is the
particular importance for the practica applications of the MLWFs, since it
reduces to a large extent the number of matrix elements required. In fact, it has
already been noted by Schnell, Czycholl and Albers[16] that matrix elements for
only few neighbor shells are sufficient, when they used the MLWF’s as basis to
congtruct the Coulomb matrix elements. The behavior is also expected when the
Fock operator matrix elements, required in the EXX caculations [7,8], are
calculated by using the MLWF’s basis set.

The spread functiona is a dowly converging function with respect to the density

of the k-mesh used. However, its dow convergence is mainly due to W,. The
W, is found to show, relatively, a very smal variation. Similar behavior has

been also observed by Marzari and Vanderbilt [12], see Table 6.4.

Our resultsfor W of S, its various contributions, and their variation with respect
to the density of the k-space mesh agree nicely with the results of Marzari and
Vanderbilt. The very small differences can be attributed to the differences in the
used computationa ingredientsin the two calculations.

In spite the fact that the Wannier centers of the MLWF's for the above three
systems considered are located exactly at the bond centers and the very nice
agreement between our results and that of Marzari and Vanderhilt, for Si, the
displayed MLWF’s (Figs. 6.2 to 6.4) don’t show the expected inverson
symmetry. In these plots, which have been done using the pxviewer [48], it
appears that the center of such MLWF s is deviated dightly from the bond center
toward one of the atoms. Thisis mainly because we have chosen the origin to be

on the atom, not on the inversion center in the middle of the bond.

Table 6.4: Marzari and Vanderbilt results [12] for the minimized spread functional and its various parts
in Si for different k-meshes (in units of A°?), together with the relative position of the centers along the Si-Si

bonds.

k set W W, Woo W, b
2X2X2 4.108 3.707 0.401 0 0.5
4X4X4 6.447 5.870 0.577 0 0.5
8X8%8 8.192 7.671 0.520 0 0.5
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Fig. 6.2: One of the maximally-localized Wannier functions in C, for the 8x8x8 k-point sampling.
The other Wannier functions lie on the other three tetrahedral bonds. (a) Isosurface plot (in gray),
showing the tetrahedral bonds. (b) Contour plot in the (110) plane of the bond chains.

5l



(@

(b)

52






6.2.2 For SC

It is well known that the C pseudopotentia is much stronger than that of the Si,
which makes the Si-C bond partialy ionic. In the case of the ZB structure of SIC, this
leads to a splitting of the four valence bands (which were composite in Si and C) into

three (upper) and one (lower) bands separated by a gap, asshown in Fig. 6.5.
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Fig. 6.5: The Band structure of SIC. Solid curves: vaence
bands. Dotted curves: conduction bands.

Thus, there are two options to congtruct the MLWF’s. (i) Treating the lowest
(isolated) valence band as a single band and construct its MLWF, and the upper three
bands as a composite and construct their three MLWF's. (ii) To continue treating the four
valence bands as a composite and construct their four MLWF’s as done previoudy for

group-1V semiconductors. In this work we have considered only the second option.

In Table 6.5 we show the variation of W for SIC, and its various components (W, ,

W, and W, ) with respect to the used density of k-space mesh. This table also shows the

similar variation of b . In Fig. 6.6 we show one of the MLWF’s of SIC. The important
features to note from these results are as follows:

() W, is not zero any more and b is larger than 0.5, because of the lack of

inverson symmetry. The Wannier centers are shifted toward the C atoms, as

expected. The large deviation from the center of the bond reflects a quite large
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ionicity value for Si-C bond, despite the fact that both atoms have the same
number of valence e ectrons.

(i)  The convergence of W and its components with respect to density of k-space
mesh is very smilar to that of group-lV semiconductors, and the slow
convergenceis mainly dueto W, .

(i) b shows a rapid convergence with respect to the density of the used k-space
mesh.

(iv)  As it was the case for group-1V semiconductors, the MLWF’s are confined
mainly inside the primitive unit cell.

(v)  Thecalculated value of W, obtained by using a certain MP mesh, is closer to that
of bulk C more than that of Si. This can be understood as a consegquence of the

stronger C pseudopotential, see Sec. 5.5.

Table 6.5: Minimized spread functional and its various parts (invariant, off-diagonal, and diagonal) in
SiC, for different k-meshes (in units of A° ?), together with the relative position of the centers from the Si
atom along the S-C bonds.

kst W W, Wop W, b
2X2X2 2.712 2.285 0.422 0.005 0.644
4X4X4 3.964 3.370 0.591 0.004 0.651
8X8X8 4,651 4,044 0.603 0.004 0.654

12X12X12 4.802 4,207 0.591 0.005 0.6%4
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Fig. 6.6: One of the maximally-localized Wannier functionsin SiC, for the 8x8x8 k-point sampling.
Si atoms are in black and C atoms are in white. The other Wannier functions lie on the other three
tetrahedral bonds. (a) Isosurface plot (in gray), showing the tetrahedral bonds. (b) Contour plot in the
(110) plane of the bond chains.
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6.2.3 For GaAs, AlAs, GaN and AIN

As an example, we show in Fig. 6.7 the calculated band structure of GaAs. Asin the
case of SIC, the vaence bands are separated into three composite bands (the upper three
ones) and one isolated single band (the lowest one). Therefore, there are two options to
construct the MLWF’s, see Sec. 6.2.2. Here, we aso opted for taking the four bands as a
composite, J =4. However, the other option has been considered, and we found that the
MLWEF of the lowest valence band is centered, in the case of GaAs, at the As atom. This
Is congistent with the well-known fact that this band has mainly an anion s-character. No
attempt for constructing the MLWF's of the upper three bands has been made, in this

work.

{
N

Encrgy (cV)

Tl i

I X W L I KUX

Fig. 6.7: The Band structure of GaAs. Solid curves: vaence
bands. Dotted curves: conduction bands.

In Tables 6.6 we show the variation of the spread functiona W and its components
(W,, W, and W) of GaAs, AlAs, GaN and AIN, respectively, with respect to the used

MP mesh. In the same tables, we show the similar variation of b of the corresponding
system. In Figures 6.8, 6.9, 6.10 and 6.11 we show one of the MLWF’s of the above four

semiconductors, respectively. The remarkabl e features to note are as follows.
0] Because of the lack of inverson symmetry, and as in the case of SIC, the

obtained values of W, are not zero, but they are very small. The quite strange
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(i1)

(iii)

(iv)

(V)

behavior is that the value of W, decreases by going to systems with larger bond
ionicity [49,50], and reaches azero vaue for AlIN.

Because of the polar nature of the bonds of the above systems, the Wannier
centers are shifted more towards the anion. As expected, the deviation from the
bond center is found to be proportional to the bond ionicity, see the next section.
W has a dow convergence with respect to the used density of the k-space mesh,
which originates mainly from the dow convergence of W, . These results and
those obtained previoudy for C, Si, Ge and SIC show that this is a common
behavior.

b shows a rapid convergence with respect to the used density of the k-space
mesh, which also seems to be a common behavior.

The MLWF’s are also confined in the primitive unit cell. The obtained value of
W isfound to depend strongly on the volume per atom: W of GaN and AIN are
much smaller than tha of GaAs and AlAs. Moreover, W is found to depend on
the atomic volume: W issmaller in AlAsthan in GaAs, and similarly in AIN and
GaN. Thisis also reflected in the calculated values of b, which indicates that Ga
is more electronegative than Al. This conclusion is consistent with the self
consistent ionicity scale of Garcia and Cohen [50], but not with the Phillips

ionicity measure— for more details see the next section.
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Table 6.6: Minimized spread functional and its various parts (invariant, off-diagonal, and diagonal) in
for different k-meshes (in units of A° 2), together with the relative position of the centers along the bonds,
for @ GaAs, b) AlAs, ¢) GaN and d) AIN.

a)

k set W W, Wop Wo b
2X2X2 4.424 3.908 0.507 0.009 0.611
4X4X4 6.898 6.282 0.610 0.006 0.616
8X8X8 8.871 8.287 0.578 0.007 0.618

12X12X12 9.499 8.953 0.539 0.007 0.618
b)

k set w W, Woo W, b
2X2X2 4.409 3.850 0.554 0.004 0.635
4X4X4 6.634 5.931 0.701 0.002 0.649
8X8X%8 8.090 7.436 0.652 0.003 0.654

12X12X12 8.456 7.847 0.606 0.003 0.655
c)

k set W W Wop Wo b
2X2X2 2.547 2.142 0.400 0.004 0.723
4X4X4 3.611 3112 0.497 0.002 0.726
8X8x%8 4.109 3.612 0.494 0.003 0.728

12X12X12 4.216 3.726 0.487 0.003 0.729
d)

k set W W Wop Wo b
2X2X2 2414 1972 0.440 0.001 0.740
4AX4X4 3.343 2.755 0.587 0 0.752
8X8X%8 3.711 3.103 0.608 0 0.757

12X12X12 3.789 3.178 0.611 0 0.760
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Fig. 6.8: One of the maximaly-localized Wannier functions in GaAs, for the 8x8x8 k-point
sampling. Ga atoms are in black and As atoms are in white. The other Wannier functions lie on the other
three tetrahedral bonds. () Isosurface plot (in gray), showing the tetrahedral bonds. (b) Contour plot in
the (110) plane of the bond chains.
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Fig. 6.9: One of the maximally-localized Wannier functions in AlAs, for the 8x8x8 k-point
sampling. Al atoms are in black and As atoms are in white. The other Wannier functions lie on the other
three tetrahedral bonds. () Isosurface plot (in gray), showing the tetrahedral bonds. (b) Contour plot in
the (110) plane of the bond chains.
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Fig. 6.10: One of the maximally-localized Wannier functions in GaN, for the 8x8x8 k-point
sampling. Ga atoms are in black and N atoms are in white. The other Wannier functions lie on the other
three tetrahedral bonds. (a) Isosurface plot (in gray), showing the tetrahedral bonds. (b) Contour plot in
the (110) plane of the bond chains.
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Fig. 6.11: One of the maximally-localized Wannier functions in AIN, for the 8x8x8 k-point
sampling. Al atoms are in black and N atoms are in white. The other Wannier functions lie on the other
three tetrahedral bonds. () Isosurface plot (in gray), showing the tetrahedral bonds. (b) Contour plot in
the (110) plane of the bond chains.
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6.3 Bond lonicity

The bond ionicity is a very important concept, which helps in getting a better and
better understanding of the behavior of matter. Several empirical ionicity scales has been
suggested, and the most widely accepted one is that of Phillips [49]. A self-consistent
ionicity scale has been introduced by Garcia and Cohen [50]. Important differences
between these two scales have been found, especialy for the systems involving first row
elements. The bond ionicity in these systems is significantly underestimated by the
Phillips scale. Another difference is in the bond ionicity of the common anion
semiconductors. For example, according to the Phillips ionicity scale GaAs bond has
dightly larger ionicity than the AlAs one, while according to the self-consistent scale this
behavior is reversed. Thus, a new and accurate ionicity scale is of special importance. In
the following we provide such a scale, based on the deviation of the Wannier center from

the bond center.

The Phillips ionicity scale [49] of the ANB®M crystals is based on two band

parameters, C and E, . The E, ishomopolar band gap results from the symmetric part of
the potential, (V, +V;)/2, whereas C istheionic or charge transfer gap results from the
asymmetric part of the potential, (V, - V;)/2. From these two parameters the average
valence-conduction gap, E, is defined according to therelation

E; =E; +C”. (6.1)
The Phillipsionicity scaleis defined as

C? C?
f :—Eﬁ N :E—s. (6.2)
Now, E, of a compound crystal of lattice parameter, a, is obtained from that of Si
according to

E, =E, (Si)%Tg (6.3)

Thus, the estimation of E, and the knowledge of E; determine C and, hence, f;.
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The Garcai and Cohen [50] firgt-principles ionicity scale is defined as follows. The
self-consistent charge density is separated into symmetric and asymmetric parts according

to
1 1
Ns(r) == (n(r) +n(-r)); na(r) == (n(r) - n(-r)). (6.4)

Then, the parameters S; and S, is defined as the cell average of the above parts,

respectively, or
1 N 2 . 1 N2
Ss = Os(r)dr; S, = Qna(r)dr. (6.5)

Finally, the asymmetry coefficient, g, which isintroduced as a measure of theionicity is
defined as

Sa

g= S, (6.6)

Inthis case g isobtained completely from the self-consistent n(r) .

To introduce a new ionicity scale based on the deviation of the Wannier center from
the bond center, two guidelines have to be observed: (i) Theionicity should be between 0
and 1. (i) The obtained ionicities should be somehow consistent with those of the above

described scales. We found that avery reasonable choiceis

w =(2b-1)%°, 05£b£EL (6.7)

The obtained values of w, for the studied systems, compared with those of f, and

g, aelisted in Table 6.7. Furthermore, plots between these different ionicity scales are
provided in Figs. 6.12, 6.13 and 6.14. It is clear, from both the table and the figures, that
the new ionicity scale fits nicely with the above two scales. In particular, for GaN and
AIN our results lie in between those of f, and g. Thus we believe that the surprising
large differenceis due to underestimation of the ionicity by Phillips and overestimation by
the self-consistent measures. The ionicity of the Si-C bond is aso underestimated by the
former approach, and our result is close to that of the latter. Finaly, we note that the
ionicity of the GaAs and AlAs as obtained by Phillips are reversed in our present results
and those of Garcia and Cohen [50]. Similar behavior occursin the case of GaN and AIN.
This shows that the electronegativity of the Gaatom islarger than that of Al.
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Table 6.7: Phillips ionicity (f;), charge asymmetry coefficient (g) and our new ionicity scalew; , for the
studied compounds.

Compound fi g W,
S 0.000 0.000 0.000
Ge 0.000 0.000 0.000
GaAs 0.310 0.316 0.339
AlAs 0.274 0.375 0.415
SiC 0.177 0.475 0.413
GaN 0.500 0.780 0.557
AIN 0.449 0.794 0.612
06
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Charge asymmetry coetficient

Fig. 6.12: Comparison of the Phillips ionicity (f;) to the charge asymmetry coefficient (g) for the
studied compounds.
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Fig. 6.14: Comparison of the w; to the charge asymmetry coefficient for the studied compounds.

67



6.4 Conclusions

We have successfully developed FORTRAN77 and C++ codes to construct
Maximally-Localized Wannier Functions (MLWF’s) according to the scheme of Marzari
and Vanderbilt. The latter code is used to ca culate the MLWF's of eight semiconductors,
namey, C, Si, Ge, SIC, GaAs, AlAs, GaN and AIN. Based on the obtained Wannier

centers, a new bond ionicity scae has been introduced. In the following we draw our

main results and conclusions.

()

(if)

(iii)

(iv)

The MLWF’s are mainly confined to the primitive unit cell, for al the
studied systems. This is a very important feature for their application as a
very accurate minmal basisin avariety of theoretical approaches, such asthe
EXX method.

The spread functional is found to converge slowly with respect to the density
of k-space mesh used, and thisis mainly due to the gauge invariant part.

The deviation of the Wannier center from the center of the bond is found to
be proportional to the bond ionicity.

Based on (iii), a new ionicity scae has been introduced. The obtained
ionicities of the studied systems are in much better agreement with those
obtained self-consistently (from the calculated charge density) than with the
empirical Phillipsionicity scale.
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APPENDIX A

SPECIAL POINTS

Many solid state calculations in the solids require averaging of a periodic function of
the wave vector, k, over the BZ. Such caculations are often complicated, time
consuming, and, in principle, require the knowledge of the functional values at each k-
point in the BZ. In practice, these averages are determined by sampling the function at a
discrete set of points and summing with an appropriate weight for each point. The
problem is how to select the most efficient set, of the least number of k-points, from
which the average values of various quantities can be calculated to a sufficient accuracy.

Methods for finding such sets of “specia” k-points have been introduced by
Baldereschi in 1973 [51], and developed further by Chadi and Cohen [52]. An aternative
method was introduced by Monkhorst and Pack (MP) [45]. In our calculations, the specia

k-points were generated using the MP scheme.

Monkhorst and Pack have defined a mesh of g® k-points, which are uniformly
spaced in the BZ, given by
K,rs=Uyb, +ub, +ub,, (A.1)
Where b,, b,and b, are the primitive reciprocal |attice trand ation vectors, and
U = 2]-9-1

F5 g JTprssi23..a. (A2)

Thisset of g° k-pointsis then divided in symmetry related shells, and we choose per each

shell one point in the irreducible part of the BZ (IBZ). The weight of this special k-point
Isthe ratio between the number of pointsin the shell and the total number of points.
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For an illustration, we show in Fig. A.1 the2x2X2 MP cubic mesh of asimple cubic
lattice. In this case, the cubic BZ is divided into 8 smaller cubes of equa sizes, and the

M P mesh points are nothing but the centers of these 8 cubes.

,/H/I |
-I -4
. .
|
e

A 2

] .
. L

|
" P I g
P 2 v

Fig. A.1: 2x2x2 MP mesh of the smple cubic lattice.

The 4x4x4 MP mesh of the FCC lattice is shown in Fig. A.2. In this case, the
reciprocal space unit cell (defined by b,, b, and b,) is divided uniformly into 64

identical cells, and the MP mesh points are the centers of these small cells. These 64 k-
points are reduced by symmetry to the ten specia k-points of Chadi and Cohen [52] (used

in the self-consistent calculations).

Fig. A.2: 4x4x4 MP mesh of the FCC lattice.
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