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ص  تلخ
 

ا  کبب ر کززا مً ر ر ثً ر زيکث ا لابفيي   خبش زموًولصIII-Vةزد
استير  ةم  يجمنل 

ةن  ةفدةد 
رأس ر عكولا  شبتح مً

 
ا  تبإرش

 مب’ زد اللهطيش. ة. ع
  
 
 
 
 
 

ب  ةرکكم ةن  يًتلأد  کًثر سثرکزشز  بب لامفيير ش وصل لوه�  III-V سم مسمح قش  ل GaAsإكد شنث،

AlAs ل GaN ل AlN ك تمجههتخدشي طرتفههل ط ي لتنهه ك.ةههرمشيق للامفههديتص ق تنهه نهه،تر ط  نتطفيهه غثقههم تت

َ� کثكي،سر تصجت�   ة کًثر . ++C ل 77لا،يسرشهترفم بب لامفيير ش ضمض مسمح قش ل شنثفميفل سم لت ا لةن ل

وههب شنتمنيهل     إهكمە شنث، ل شنثه،شق لةههە    .  SiC ل  Ge  ل SiلC : سثرکهزشضً  بب  ط لاه� که اهدفم له قش ل

ئ،يص لا� شنص      ةط کًثر سثرکزشض  ةثهم تظظهر لوثيتظهم نهجهتخدشي لاه� شنهثيهر            ط كقل شنترکيكيهل شنكدشكيهل    لامفيير ش

ل   ب شنقظرت نكيفم ةرکهز قشنهل            .  ةن شنت نهل شنهيثيمكيهل ل تلأهد  ك ةهغهل تهين لت،فيهل شنرشت اهدفم له وقمنه کثهم ل

ةرکزوم   عس       . لامفيير ةن  ةفيم أذ  ادتتقم�شض ةصی وىە شنلأهغل لافد سم ل نلدس   اهدفم له وهىش   ط  ًت،فيل شنرشت لل

ب شنثت،شلافهل         شنثف ةن شنطسهمتم جنهترلفيل شنقمسَل  ةن شجتخدشي شنهثملال ش ف  ت،فيل شنقمس ع شً ةفيم ةذ  ق  ع تتس يم

س ع لايصك ةفيم ةذ  ةن شسسمغد   .تشسيمض لکثر 
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ABSTRACT 

Maximally-localized Wannier Functions in III-V semiconductors 
Master of Science Thesis 

By 
Hazem Omar Abu-Farsakh 

Department of Physics, Yarmouk University, Irbid, Jordan 
Dec. 2003 

 
Supervisor  

Prof. Dr. Abdallah Qteish 
 

 

 

 

The maximally-localized Wannier functions (MLWFرs) of four III-V semiconductors 

(GaAs, AlAs, GaN and AlN) have been constructed, using the scheme of Marzari and 

Vanderbilt. To do that, we have developed FORTRAN77 and C++ codes. For 

comparison, we have constructed also the MLWFرs of C, Si, Ge and SiC. In the eight 

studied systems, the MLWFرs are confined in the primitive unit cell, which demonstrates 

their high potential application as accurate and minimal basis for various theoretical 

approaches. The deviation of the Wannier center from the center of the bond is found to 

be proportional to the bond ionicity. Based on this deviation, a new bond ionicity scale 

has been introduced. The obtained ionicities of the studied systems are in much better 

agreement with those obtained self-consistently (from the calculated charge density) than 

with the empirical Phillips ionicity scale.  

 

Key words: maximally-localized Wannier functions, III-V semiconductors, bond ionicity, 

density functional theory, pseudopotential plane-wave. 
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CHAPTER 1 

INTRODUCTION 

 

 

Modern computational methods applied to condensed matter systems are mainly 

based on Density Functional Theory (DFT) of Hohenberg and Kohn [1]. The Kohn-Sham 

(KS) formalism [2] of DFT provides a way to exactly transform the many-body problem 

into a single-body one. However, the Exchange and Correlation (XC) potential have to be 

approximated. The most widely used approximation for the XC potential is the Local 

Density Approximation (LDA) [2,3]. The LDA is found to give surprisingly good results 

for many physical and chemical properties of a wide range of materials. The most serious 

shortcoming of LDA is the so-called band-gap problem: the band gaps of insulators and 

semiconductors are underestimated. Another approximation is the so-called Generalized 

Gradient Approximation (GGA) [4-6]. The GGA is found to improve the cohesive 

energies of solids and molecules. Recently, the Exact Exchange (EXX) [7,8] scheme has 

been introduced. In this scheme, the exchange effects are treated exactly, and only the 

correlation potential is approximated using LDA or GGA. The EXX formalism is found 

to give band-gaps, effective masses, and cohesive properties in good agreement with 

experiment. In its present implementation (using Plane-Wave (PW) basis set), the EXX 

calculations are very expensive in terms of both memory and CPU time. 

 

Within the single-particle approximation, the electronic states of a periodic 

crystalline solid are usually described in terms of extended Bloch orbitals [9,10]. An 

alternative representation can be derived in terms of Wannier functions (WFرs) [11]. 

WFرs are formally defined via a unitary transformation of the Bloch orbitals. The most 

serious drawback of WFرs, which so far has limited their applications compared to Bloch 

representation, is their non-uniqueness. This is a consequence of the phase indeterminacy 

that Bloch orbitals have at any wave vector k. The non-uniqueness of WFرs can be 
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utilized to construct the maximally-localized set of WFرs (MLWFرs). Recently, Marzari 

and Vanderbilt [12] developed a very practical method for generating MLWFرs starting 

from the knowledge of the occupied Bloch states. The new technique has been 

successfully applied to crystal systems and small molecules [12]. Furthermore, a 

disentanglement procedure was introduced [13] to extend the original algorithm to the 

case of systems without gaps and to remove the limitation to the isolated group of bands 

that are separated by gaps from higher and lower bands. 

 

Since their introduction in 1937, WFرs have played an important rule in the 

theoretical study of the properties of periodic solids. Moreover, the representation of 

electronic ground state of periodic systems in terms of localized Wannier orbitals has 

recently attracted considerable attention due to, mainly, two recent developments. First, 

the development of ”order-N„ or ”linear scaling„ electronic structure methods [14]. In 

these methods the computational time scales only as the first power of the system size 

[15], instead of the third power typical of conventional methods based on solving for 

Bloch states. Moreover, MLWFرs are being used as very accurate minimal basis in a 

variety of other applications, such as the construction of the Hamiltonian in the form of a 

multi-band Hamiltonian in second quantization (a kind of extended, multi-band Hubbard 

model) such that all the standard many-body methods can be applied [16]. Second, the 

formulation of the modern theory of bulk polarization of crystalline solids [17,18], which 

directly relates the vector sum of the centers of the MLWFرs to the macroscopic 

electronic polarization of a crystalline insulator. Furthermore, the piezoelectric tensor 

defined as polarization derivative with respect to strain can be easily calculated [18] 

within this approach.  

 

The main driving force behind the present work is the formulation of the EXX 

potential, within the KS formalism, in terms of MLWFرs. This is expected to reduce 

dramatically the computational efforts of the EXX calculations. The first step in this 

ambitious project is the construction of the MLWFرs, which is done in this present work.. 

Thus, the main aim of this work is of two folds: 

I- The implementation of the Marzari-Vanderbilt scheme of constructing 

MLWFرs. We have developed two codes: one written in FORTRAN77 and 

takes its input (mainly Bloch wavefunctions) from data obtained using the 

CASTEP code [19], and the other in C++ and takes its input from data 
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obtained using the SFHIngX code [20]. The two codes are found to give 

identical results, and, thus, the reported results are obtained by using the C++ 

code. 

II- As a preliminary application, the developed code is used to construct the 

MLWFرs of some III-V compounds. This is done for GaAs, AlAs, AlN, and 

GaN. For comparison, we have constructed also the MLWFرs of SiC, Si, Ge 

and C. Moreover, the use of Wannier centers as a measure of the ionicity is 

investigated.   

 

This thesis is organized as follows. In the following chapter, we review the DFT and 

the LDA for the XC potential. In chapter 3, we present the plane-wave pseudopotential 

method, together with a review of some modern ab-initio pseudopotential generation 

methods. Chapter 4 is devoted to introduce both the WFرs and the Marzari-Vanderbilt 

scheme for constructing the MLWFرs. In chapter 5, we show the used computational 

details. Finally, in chapter 6, we report, discuss our results and provide our conclusions.  
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CHAPTER 2 

DENSITY FUNCTIONAL THEORY 

 
 
 
 
 
 
 
2.1 Introduction 

Density Functional Theory (DFT) of Hohenberg and Kohn [1] is one of the most 

popular and successful quantum mechanical approaches. It is an exact theory for the 

ground state of an interacting many-particle system. It is nowadays routinely applied for 

calculating, e.g., the binding energy of molecules in chemistry and the band structure of 

solids in physics. Some applications relevant for fields traditionally considered more 

distant from quantum mechanics, such as biology and mineralogy are beginning to 

appear. DFT owes this versatility to the generality of its fundamental concepts and the 

flexibility one has in implementing them. 
 

To get a first idea of what density functional theory is about, it is useful to recall 

some elementary quantum mechanics. In quantum mechanics it is known that all 

information we can possibly have about a given system is contained in its many-body 

wavefunction Ψ . A system of  N interacting electrons in an external potential is 

described by the many-electron Schro dinger equation which, in the time independent and 

adiabatic approximations1 [21], is 

 ),......,,(),......,,(ü
2121 NN EH rrrrrr Ψ=Ψ . (2.1) 

Hü  is the Hamiltonian operator: 

 
∑∑∑

≠== −
++∇−=

ji ji

N

i
iext

N

i
i VH

rr 
r 1

2
1)(

2
1ü

11

2 , (2.2) 

                                                 
1 In the adiabatic approximation the nuclei are treated as objects at fixed positions. It is based on the fact that typical 

electronic velocities are much grater than typical ionic velocities. 
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where ir  is the position of the i-th electron and )( iextV r  is the external potential. If the 

HamiltonianHü  is spin independent, the spin part of the wavefunction cancels out, and, 

therefore, the spin variables are suppressed for simplicity. Hereafter, we will use the 

Hartree atomic units ( 1=== emeh ). 

 

The usual quantum-mechanical approach to Schro dingerرs equation (SE) can be 

summarized by the following sequence 

 sobservable),......,,()( .....
21  →Ψ→ ΨΨ

N
SE

extV rrrr , (2.3) 

i.e., one specifies the system by choosing )(rextV , plugs it into Schro dingerرs equation, 

solves that equation for the wavefunction Ψ , and then calculates expectation values of 

observables with this wave function. For example, the electronic charge density is given 

by 

 ),....,,(),....,,(......2)( 22
*

32 NNNdddNn rrrrrrrrrr ΨΨ= ∫ ∫ ∫ . (2.4) 

Powerful methods for solving Schro dingerرs equation have been developed during 

decades of struggling with the many-body problem. The problem with these methods is 

the great demand they place on oneرs computational resources: it is simply impossible to 

apply them efficiently to large and complex systems. 
 

It is here where DFT provides a practical alternative. The Hohenberg-Kohn theorems 

[1] have promoted the charge density, )(rn , from just one among many observables to 

the status of a basic variable, as Ψ . The DFT approach can be summarized by the 

sequence 

 )(),......,,()( 21 rrrrr extN Vn →Ψ→ . (2.5) 

That is, the knowledge of )(rn implies knowledge of the wavefunction and the external 

potential, and hence of all other observables. The above equation describes only the 

conceptual structure of DFT. 

 

The Kohn-Sham (KS) formalism of DFT [2] provided a way to exactly transform the 

many-body problem into a single-body one. Kohn and Sham proved that solving 

Schro dinger equation of an auxiliary system of non-interacting electrons moving in an 

effective potential, 
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)()()]([

2
1 2 rrr iiieff nV ψεψ =



 +∇− ,  

would give the same result of the real interacting system moving in an external potential 

)(rextV .  Here }{ iψ  are the single body wavefunctions. The effective potential ][nVeff  is 

given by 

 ][][)(][ nVnVVnV XCHexteff ++= r ,  

where ][nVH  is due to classical electron-electron interactions, and ][nVXC  is due to the 

quantum mechanical exchange and correlation (XC). 

   

However, The XC energy functional is unknown. In fact, it depends in a 

complicated way on the charge density distribution of the system, and thus, no simple 

exact expression for it is available. Therefore, in practice, an approximation for it is 

required. The most widely used one is the Local Density Approximation (LDA) [2,3] 

where the XC energy functional is considered to be locally equal to that of a uniform 

electron gas of the same local density. Another approach is the so-called Generalized 

Gradient Approximation (GGA) [4-6] where the XC energy functional depends locally 

on the density and on its gradient. Recently, an Exact Exchange (EXX) has been 

introduced [7,8], where the exchange part of the XC energy functional is treated exactly 

and only the correlation part needs to be approximated. In this thesis, we limit ourselves 

to the LDA. 

 

This DFT approach forms the basis of the large majority of electronic structure 

calculations in physics and chemistry. Much of what we know about the electrical, 

magnetic, and structural properties of materials has been calculated using DFT, and the 

extent to which DFT has contributed to the science of molecules is reflected by the 1998 

Nobel Prize in Chemistry, which was awarded to Walter Kohn [22], the founding father 

of DFT, and John Pople [23], who was instrumental in implementing DFT in 

computational chemistry. 

 

The following sections are devoted to explain the DFT. First, in section 2, the 

Hohenberg-Kohn theorems will be introduced. Then, in section 3, the KS formalism of 

the DFT will be discussed. Finally, section 4 is devoted to the LDA. 
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2.2 The Hohenberg-Kohn Theorems 
At the heart of DFT is the Hohenberg-Kohn (HK) theorems. HK theorems was 

introduced in 1964 by Hohenberg and Kohn [1]. The first theorem can be stated as 

follows. The complete many-body wavefunction, Ψ , of an electronic system is a unique 

functional )]([ rnΨ  of the electronic charge density )(rn . As a consequence, the 

expectation value of any observable is also a functional of )(rn  

 ][ü][][ nOnnOO ΨΨ== . (2.6) 

Hohenberg and Kohn [1] gave a straightforward proof of this theorem, which was 

generalized to include systems with degenerate states by Levy in 1979 [24]. 

  

Hohenberg and Kohn defined a universal functional ][nF : 

 Ψ+Ψ= eeVTnF üü][ , (2.7) 

where Tü  and eeVü  are the kinetic and the electron-electron interaction energy operators 

of the many-body system respectively.  The functional ][nF  is universal in the sense 

that it does not depend on the external potential )(rextV  which represents a particular 

system of interest. With the help of ][nF  Hohenberg and Kohn further defined, for a 

given external potential )(rextV , the total energy functional 

 ∫ += ][)()(][ nFnVdnE ext rrr . (2.8) 

 

The second theorem of Hohenberg and Kohn can be stated as follows. The total 

energy functional of a system assumes its minimum value (the ground-state energy) at 

the true ground state density of that system ( 0n ), i.e. it obeys a variational property  

 ][][ 00 nEnEE ≤= , (2.9) 

where n  is some other density. This is very similar to the usual variational principle for 

wavefunctions. If we calculate the expectation value of a Hamiltonian with a trial 

wavefunction Ψ′ that is not its Ground State (GS) wavefunction  0Ψ  we can never 

obtain an energy below the true GS energy,  

 ][üü][ 0000 Ψ′=Ψ′Ψ′≤ΨΨ=Ψ= EHHEE . (2.10) 
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Similarly, in DFT, if we calculate the GS energy of a Hamiltonian using a density that is 

not its GS density we can never find a result below the true GS energy. From Eq. (2.8) 

and Eq. (2.9)  it is clear that 

 ][)()( 000 nFnVdE ext += ∫ rrr . (2.11) 

 

After these abstract considerations let us now consider one way in which one can 

make practical use of DFT. Assume we have specified our system (i.e., )(rextV is known). 

Assume further that we have a reliable approximation for ][nF . All one has to do then is 

to minimize ][nE  (Eq. (2.8)) with respect to )(rn  under the constraint that the total 

number of electrons in the system, N, is constant, that is 

 ∫= )(rr ndN . (2.12) 

The best function )(0 rn  is the systemرs GS charge density and the value ][ 00 nEE =  is 

the GS energy. Assume now that )(rextV depends on a parameter a. This can be, for 

example, the lattice constant in a solid or the angle between two atoms in a molecule. 

Calculation of 0E  for many values of a  allows one to plot the )(0 aE  curve and to find 

the equilibrium value of a . In this way one can calculate quantities like molecular 

geometries and sizes, lattice constants, unit cell volumes, charge distributions, total 

energies, etc. By looking at the change of )(0 aE  with a one can, moreover, calculate 

compressibilities and bulk moduli (in solids) and vibrational frequencies (in molecules). 

By comparing the total energy of a composite system (e.g., a molecule) with that of its 

constituent systems (e.g., individual atoms) one obtains dissociation energies. By 

calculating the total energy for systems with one more (or less) electron one obtains the 

electron affinity (or ionization energy). All this follows from DFT without having to 

solve the many-body Schro dinger equation. 

 

In principle it should be possible to calculate all observables, since the HK theorem 

guarantees that they are all functionals of )(0 rn . However, in practice, one does not 

know how to do this explicitly. Another problem is that the minimization of ][nE  is, in 

general, a tough numerical problem of its own. Moreover, one needs a reliable 

approximation for ][nF  to begin with. In the next section, on the KS formalism, we will 

see one widely used method for solving these problems. 
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2.3 The Kohn-Sham Formalism    
In 1965, Kohn and Sham [2] have introduced the following separation of the 

functional  ][nF , 

 ][][][][ nEnEnTnF XCHs ++= , (2.13) 

where ][nTs  is the kinetic energy of non-interacting electrons with density )(rn  

 
∑∫

=

∇−=
N

i
iis dT

1

2* )()(
2
1 rrr ψψ  (2.14) 

(here iψ is the single particle wave functions of the non-interacting system), ][nEH  is the 

classical electron-electron interaction energy (or Hartree energy) 

 
rr
rrrr
′−
′′= ∫ ∫
)()(

2
1][ nnddnEH  . (2.15) 

The term ][nE XC  contains the remaining electron-electron interaction energies, and the 

difference between the kinetic energies of the interacting and non-interacting systems, 

sTT − . This functional is, by definition, the quantum mechanical exchange and 

correlation energy of the interacting system, which is unknown and needs to be 

approximated. Nonetheless, note that Eq. (2.13) is formally exact. 

 

Using equations (2.8) and (2.13), the total energy functional can be written as 

 ][][][][][ nEnEnEnTnE XCextHs +++=  (2.16) 

where 

 )()(][ rrr nVdnE extext ∫= . (2.17) 

The variational principle applied to Eq. (2.16) yields 

 

,

][][)(
)(

)()()()()(
][

µ
δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

=

+++=

+++=

nVnVV
n
T

n
E

n
E

n
E

n
T

n
nE

XCHext
s

XCHexts

r
r

rrrrr

 

(2.18) 

where µ  is the Lagrange multiplier associated with the requirement of constant number 

of particles, ][nVH  and ][nVXC  are the Hartree and the XC potentials, respectively.  
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Consider now a non-interacting system of particles moving in external potential 

)(reffV  having the same )(rn  as the above interacting system. For this system the 

minimization condition is  

 
µ

δ
δ

=+ )]([
)(

r
r

nV
n

T
eff

s

s , (2.19) 

since there are no Hartree and XC terms in the absence of interactions. Comparing this 

equation with the previous one (Eq. (2.18)) we conclude that they are mathematically 

identical if ][nVeff  is chosen to be 

 ][][)(][ nVnVVnV XCHexteff ++= r . (2.20) 

Consequently, one can calculate the density of the interacting (many-body) system, in 

the potential )(rextV , by solving the equations of a non-interacting (single-body) system, 

in the potential ][nVeff . In particular, the Schro dinger equation of this auxiliary system 

is 

 
)()(][

2
1 2 rr iiieff nV ψεψ =



 +∇− , (2.21) 

yields wave functions that reproduce the density )(rn  of the original system (these are 

the same wave functions employed in Eq. (2.14)), 

 
∑

=

=
N

i
in

1

2)(2)( rr ψ . (2.22) 

Equations (2.20), (2.21), and (2.22) are known as KS equations, and ][nVeff  is called the 

KS potential. The problem of minimizing ][nE  was replaced by that of solving a set of 

single-particle Schro dinger equations. These equations have to be solved self-

consistently. In this case, one starts with an initial guess for )(rn , calculates the 

corresponding )]([ rnVeff , and then solves the differential equation (2.21) for the si ’ψ . 

From these si ’ψ  one calculates a new density, using (2.22), and starts again. The 

process is repeated until a reasonable convergence is reached. 

 

Note, from the derivation of Eq. (2.21), that the si ’ε  are the eigenvalues of the 

auxiliary single-body Schro dinger equation whose eigenfunctions yield the correct 

density. They are usually called the KS eigenvalues. DFT assigns no formal interpretation 

to KS orbitals and KS eigenvalues, except that of the highest occupied state which is 
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equal to the ionization energy. It is only the ground state charge density that has strict 

physical meaning in the KS equations. Nevertheless, most band-structure calculations in 

solid-state physics are actually calculated from the KS eigenvalues, and it comes as a 

great (and welcome) surprise that in many situations the KS eigenvalues, iε , do provide a 

quite good approximation to the actual energy levels of extended systems [25]. Moreover, 

it was found recently [26] that the energy gap between the highest occupied KS 

eigenvalue and the lowest unoccupied one agrees quite well with experimental values for 

the true energy gap, even for difficult cases, when an extremely accurate effV is used 

(within the EXX approach). 

 

2.4 The Local Density Approximation 
The LDA [2,3] is the most common approach to approximate the unknown XC 

functional ][nE XC . The idea behind LDA is to replace the XC energy ][nE XC  of the 

non-uniform )(rn  with ][nE XC  computed as if locally the interacting electron gas has 

the same XC energy of a uniform interacting electron gas with the same local density. 

Now, let )(hom nXCε  be the XC energy per electron for a homogeneous (uniform) electron 

gas with a density n . Then, the total XC energy of this system, ][nE XC , can be written 

as  

 )(][ hom nndnE XCXC ε∫= r . (2.23) 

In LDA one imagines the real inhomogeneous system (with density )(rn  in a potential 

)(rextV ) is decomposed in small cells in each of which )(rn  and )(rextV  are 

approximately constant. In each cell (i.e., locally) one can then use the expression of a 

homogeneous system to approximate the contribution of the cell to the real 

inhomogeneous one. Making the cells infinitesimally small and summing over all of 

them yields 

 ))(()(][ hom rrr nndnE XC
LDA
XC ε∫= , (2.24) 

and the corresponding exchange-correlation potential is given by 

 
)(

))](()([
)(

)]([
)(

hom

r
rr

r
r

r
dn

nnd
n

nE
V XC

LDA
XCLDA

XC
ε

δ
δ

==  . (2.25) 
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Usually, XCε is splitted into an exchange, Xε , and a correlation, Cε , part 

 )]([)]([)]([ homhom rrr nnn CX
LDA
XC εεε += . (2.26) 

The exchange energy per electron for a homogeneous system is given by 

 
3
1

hom 3
4
3)( 






−= nnX π

ε . (2.27) 

Usually hom
Xε and hom

Cε are expressed in terms of the parameter sr , which is related to n  

through the relation  

 1
3

3
4 −







= srn π . (2.28) 

The correlation energy per electron has been calculated by Quantum Monte Carlo 

(QMC) calculations performed by Cerperly and Alder [27] and got parameterized by 

Perdew and Zunger [28]: 

 









<−++−

≥
++

−

=

1for  0116.0)ln()002.00311.0(048.0

1for
3334.00529.11

1423.0

ssss

s
ssC

rrrr

r
rrε  . (2.29) 

 

LDA is exact for a homogeneous system and is expected to be valid for systems 

with slowly varying charge density. Nevertheless, LDA is found to be a very good 

approximation even in the case when the charge density is rapidly varying with respect 

to r  [3,29,30,31]. LDA also has some drawbacks. For example, lattice constants and 

band gaps are underestimated (band gap problem). Several approaches appeared to 

improve the LDA. Examples are the GGA [4-6] and the EXX [7,8] methods. 
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CHAPTER 3 

THE PLANE-WAVE PSEUDOPOTENTIAL 
METHOD 

 

 

 

 

3.1 Introduction 
In practice, numerical solution of the KS differential equation (2.23) proceeds by 

expanding the KS orbitals in a suitable set of basis functions. One among various existing 

options is the Plane-Wave (PW) basis set. Unfortunately, the PW basis set is usually very 

poorly suited to expanding the electronic wavefunctions because an enormous basis size 

is required to accurately describe the rapidly oscillating wavefunctions of the valence 

electrons in the core region. On the other hand, the energies associated with core 

wavefunctions are orders of magnitude higher than the energies associated with the 

valence ones. Moreover, it is well known that most physical properties of solids depend 

on the valence electrons to a much greater degree than that of the tightly bound core 

electrons. It is for these reasons that the pseudopotential (PP) approximation is 

introduced. This approximation uses these facts to remove the core electrons and the 

strong nuclear potential and replace them with a weaker pseudopotential which acts on a 

set of pseudo-wavefunctions rather than the true valence wavefunctions. In some cases 

there are some states which can be considered as semicore: they are highly localized, but 

they contribute to the chemical bonds. These states should be treated as valence.   
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The main advantage of such a formulation is that one can in principle replace the all-

electron problem with an effective Hamiltonian acting on smooth wavefunctions 

representing the valence electrons. This is shown schematically in Fig. 3.1. Thus, the 

computational load is reduced in two respects: firstly, by reducing the number of the self-

consistent wavefunctions to be determined; secondly, by avoiding to represent the rapid 

oscillations of the all-electron valence orbitals close to the nucleus, while keeping the long 

tails that are mainly responsible for the formation of the chemical bonds. A justification of 

the pseudopotential approach has been provided by the orthogonalized PW (OPW) 

method. 
 

                                                                                   

 

 

 

 

 
Fig. 3.1: Schematic illustration of all-electron (solid 

lines) and pseudo (dashed line) potentials, and their 

corresponding wavefunctions.  

 

Several types of pseudopotentials have been applied to the study of electronic 

structure and ground state properties of solids. Examples are: (i) empirical 

pseudopotentials [32], and (ii) ab initio (first principles) pseudopotentials [33,34,35]. 

Empirical pseudopotentials were widely used in the 60s and 70s. The main disadvantage 

of the empirical pseudopotentials is that they are non-transferable, that is, they are not 

able to accurately describe the valence electrons in different atomic, molecular, and solid 

state environments. Moreover, they are not able to lead to accurate valence charge 

density, which is the basic quantity in DFT. Empirical pseudopotentials were fashionable 

before the introduction of the ab initio pseudopotentials. 

 

In 1979, the norm-conserving pseudopotentials have been introduced by Hamann, 

Schlu ter, and Chiang [33]. These pseudopotentials need to be constructed only once using 

the all-electron valence wavefunctions and eigenvalues obtained from self-consistent 

atomic calculations. The pseudo wavefunctions match, by construction, the all-electron 



 16 
 

ones beyond a certain core radius ( cr ) (see Fig. (3.1)). This ensures good charge density 

distribution outside the core region. Moreover, the norm-conserving leads to good 

transferability of these pseudopotentials. These potentials are known as semilocal, since 

they depend on both r  and angular momentum quantum number l . Kleinman and 

Bylander [36] have shown that the computational cost of the matrix elements of these 

potentials between PWرs, can be greatly reduced by transferring the semilocal form to a 

truly nonlocal one. Finally, the expansion of the valence wavefunctions of highly 

localized states, such as the p-state of the first row elements, in terms of PWرs requires a 

very large number of these basis. Several methods have been devised [37,38,39] to 

optimize the pseudopotential, in terms of the required number of PWرs. Here, we will 

describe the one used in this work, namely, that of Troullier and Martins [40].  

 

This chapter is organized as follows. In the next section, we provide a justification of 

the pseudopotential approach. Then, in section 3, we introduce the construction of norm-

conserving pseudopotentials, and we describe the Kerker and Troullier-Martins schemes. 

Next, in section 4, we present Kleinman-Bylander form of pseudopotentials. Finally, in 

section 4 we focus on the momentum space formalism.  

 

3.2 Justification of The Pseudopotential Approach 

To see this, consider a solid as a collection of ion cores and valence electrons. The 

core wavefunctions are well localized while the valence ones are extended and 

hopefully can be expanded by a reasonable number of PWرs. The one electron 

Schro dinger equation reads  

 ψεψ =H  (3.1) 

where the Hamiltonian is the sum of the kinetic energy, T , and an effective potential 

operators, AV . Let us expand the true valence electronic wavefunction, ψ , as  

 ∑+=
c

ccb φφψ  (3.2) 

where φ  is a smooth wavefunction, cφ  are the core wavefunctions corresponding to the 

bound states in the ion core, and  cb  is determined from the condition that ψ  and cφ  are 

orthogonal to each other; 

 0=cφψ  (3.3) 
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which leads to 

 φφccb −= . (3.4) 

Using the above three equations, and the fact that ψ  and cφ  are solutions of the 

Schro dinger equation with eigenvalues ε  and cε  respectively, Eq. (3.1) can be 

manipulated to take the form  

 
φεφφφεε =



 −+ ∑

c
cccH )( , (3.5) 

that is, the smooth  valence wavefunction φ  is the solution of a modified  Schro dinger 

equation with the same eigenvalue as the all-electron valence wavefunction. Eq. (3.5) 

can be expressed as 

 φεφ =+ )( RVH  (3.6) 

where  RV  is a repulsive potential operator. The pseudopotential is defined to be the 

sum of the actual potential, AV , and  RV  

 RAps VVV +=  (3.7) 

which represents a weakly attractive potential as a consequence of the cancellation 

between AV  and  RV .  Thus, Eq. (3.6) can be written as 

 φεφ =+ )( psVT  (3.8) 

where φ  is regarded as a pseudo-wavefunction.  

 

3.3 Norm-Conserving Pseudopotentials 
The norm conservation means that the total amount of charge inside the core region 

( clrr < ) is correctly given by the pseudo-wavefunction. This condition is related to the 

transferability of the pseudopotential, see below. Such a condition is very important, 

because it ensures that the electrostatic energy associated with valence electrons is well 

approximated and that the long-range tail of the electrostatic potential from the nucleus 

plus the core electrons is correct. In the following, we give the basic requirements of the 

construction of norm-conserving pseudopotentials [33,41], which have been very 

widely employed in computational materials science during the last two decades.  

 

A common starting point for generating modern ab initio pseudopotentials is self-

consistent all-electron (AE) calculation for the atom in a reference configuration. This is 
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done by solving the radial Schro dinger equation for the valence wavefunctions and their 

corresponding eigenvalues; 

 
)()(][

2
)1(

2
1

22

2

rrRrrRnV
r

ll
dr
d

nlnlnl ε=







+

+
+−  (3.9) 

where  

 
][][][ nVnV

r
ZnV xcH ++−=  . (3.10) 

This yields the eigenvalues AE
lε  and radial wavefunctions )(rR AE

l  (hereafter, the 

quantum number n  will be suppressed). A semilocal screened pseudopotential is then 

constructed such that: 

(i) The self-consistent calculation for the pseudo atom in the same valence 

configuration yield the same valence eigenvalues as the real atom, 

 AE
l

ps
l εε =  . (3.11) 

(ii) The normalized radial pseudo wavefunctions are nodeless and equal to the 

normalized radial all-electron wavefunction at and beyond a chosen core 

radius clr , that is 

                       cl
AE
l

ps
l rrrRrR ≥= for)()(  . (3.12) 

This condition implies that the charge enclosed in a sphere of radius clr  in the 

pseudo atom must be identical to that of the real atom. This is called norm 

conservation 

 
   ∫∫ =

clcl r
AE

l

r
ps

l drrrRdrrrR
0

2

0

2
)()(  . (3.13) 

(iii) The first and second derivatives of the pseudo wavefunction are equal to the 

corresponding derivatives of the real wavefunction at clrr = .  

The total charge in the sphere of radius clr  is related to the first energy derivative of the 

logarithmic derivative of R at the sphere boundary [42] 

 
drrRrR

dr
d

d
drRr

clrr
∫=



−

=

)(ln)( 2222

ε
. (3.14) 

Condition (ii), which was first introduced by Hamann et al [33], thus implies that the first 

energy derivative of the pseudo logarithmic derivative is identical to the exact result. As a 

consequence, the scattering properties of the real ion core are transferred to the pseudo 

core, which ensures the transferability of the norm-conserving pseudopotentials. 
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The screened pseudopotential, )(, rV ps
lscr , is then obtained by inverting the radial 

Schro dinger equation 

 
)]([

)(2
1

2
)1()( 2

2

2, rrR
dr
d

rrRr
llrV ps

lps
l

l
ps

lscr +
+

−= ε  . (3.15) 

Finally, the ionic pseudopotential )(, rV ps
lion  is obtained by unscreening: subtracting the 

Hartree plus exchange and correlation potential calculated form the pseudo charge 

density, 

  )]([)]([)()( ,, rnVrnVrVrV v
xc

v
H

ps
lscr

ps
lion −−=  . (3.16) 

 

3.3.1 Kerker Scheme  
The simplest scheme for generating norm-conserving pseudopotentials, which satisfy 

the above conditions, have been introduced by Kerker [34]. He has defined a radial 

pseudo wavefunction inside the core region of the form 

 )()( rplps
l errR = , (3.17) 

where )(rp  is a 4th degree polynomial; 

 δγβα +++= 234)( rrrrp . (3.18) 

Note that the linear term in r  is absent to avoid a singularity in the pseudopotential at 

0=r . The four coefficients are determined easily by applying the above conditions. For 

more details see Ref. [34].  

 

3.3.2 Troullier and Martins Scheme 
The Troullier and Martins [40] have modified the Kerker scheme, to highly improve 

the convergence of the valence pseudo wavefunction in terms of PWرs. This is done by 

imposing further conditions, namely: 

1. The third and fourth derivatives of the pseudo wavefunctions at the core radius, 

lcr , are equal to the corresponding ones of the all-electron wavefunctions. 

2. The pseudopotential is analytic at the origin, 0)0(, =′′scrlV . 

These extra conditions lead to pseudopotentials that decay rapidly (~ 4−q ) in Fourier 

space. Whereas, the Kerker scheme yields a decay as 2−q . Note that the above additional 
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conditions will increase the number of adjustable parameters that are used in Kerker 

scheme. 

 

3.4 Kleinman-Bylander Form of Ionic Pseudopotential  
The ionic pseudopotential is usually decomposed into a purely local (loc) and a 

semilocal (sl) parts; 

 ∑+=
l

l
ps

lsl
ps

locion
ps

ion PrVrVrV ü)()()( ,, . (3.19) 

Here, lPü  an angular momentum projection operator for the component of the 

wavefunction and is given in terms of spherical harmonics, lmY , as  

 
∑

−=

=
l

lm
lmlml YYPü . (3.20) 

 )(, rV ps
locion  is a local potential (usually chosen to be one of the components of ps

ionV ), and 

)(, rV ps
lsl  is the semilocal potential for the angular momentum component l ; 

 
cl

ps
locion

ps
lion

ps
lsl rrrVrVrV >−= )()()( ,,, , (3.21) 

where clr  is a core radius. Kleinman and Bylander (KB) [36] have shown that the 

semilocal part of the potential can be transformed into a truly nonlocal or (separable in 

reciprocal space), which highly reduce the computational efforts to calculate the matrix 

elements of the pseudopotentials between PWرs. Their separable form is  

 

)()()(

)()()()(
),(

,

,,
, rr

rr
ps

llsl
ps

l

lsl
ps

l
ps

llslKB
llocnon rV

rVrV
rrV

ψψ

ψψ ′′
=′−  . (3.22) 

Here )(rps
lψ is the atomic pseudo wavefunction of angular momentum l . 

 

Note that KB potential and the semilocal potential give identical results when applied 

to the pseudo atom. However, they donرt produce identical results (but equally valid) 

when applied in another environment.  

 

3.5 Momentum Space Formalism   
In the momentum space formalism the solution of the second order differential single 

particle Schro dinger equation is transformed to that of an eigenvalue matrix problem. This 

is done by expanding both the periodic KS potential, )(reffV , and the Bloch 
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wavefunctions, )(rknψ , in terms of PWرs. The PW basis set is the simplest and natural 

choice to expand the pseudo-wavefunction of the solid. Moreover, it provides a high 

numerical efficiency and accuracy. 

 

The KS potential is periodic with the same periodicity as the Bravias lattice [9,10] of 

the solid: 

 )()( rRr effeff VV =+ , (3.23) 

where R is a lattice translation vector. For this reason, we can apply the Blochرs theorem 

[9,10], which says that the solutions of Eq. (2.21) have the form 

 rk
kk rr ⋅= i

nn eu )()(ψ , (3.24) 

where k is a vector inside the first Brillouin Zone (BZ) of the reciprocal lattice [9], n 

denotes the band index, and  )(rknu  is a periodic function with the same periodicity as 

)(reffV : 

 )()( rRr kk nn uu =+ . (3.25) 

Thus, )(rknu  can be written as 
 

∑ ⋅=
G

rG
kk Gr i

nn eCu )()( , (3.26) 

where G is a reciprocal lattice vector, and )(GknC  are the Fourier expansion coefficients.  

 

The single particle Schro dinger equation can be transformed, after some 

mathematical manipulations, to the eigenvalue matrix problem:  

 
)()()(),(

2
1 2 GkGkGkGkG kk

G
GG nnneff CCV εδ =′



 +′+++′∑

′
′ . (3.27) 

Here, 

 
∫ ⋅+′⋅+−=+′+ rkGrkG rrkGkG )()( )(1),( i

eff
i

eff eVed
V

V  (3.28) 

where V  is the volume of the solid. ),( kGkG +′+effV can be separated into 

 )()(),(),( GGGGkGkGkGkG ′−+′−++′+=+′+ HXC
ps

ioneff VVVV , (3.29) 

where 

 
∫ ⋅+′⋅+−=+′+ rkGrkG rrkGkG )()( )(1),( ips

ion
ips

ion eVed
V

V , (3.30) 
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∫ ⋅′−=′− rGGrrGG )()(1)( i

XCXC eVd
V

V , (3.31) 

and 

 
∫ ⋅′−=′− rGGrrGG )()(1)( i

HH eVd
V

V . (3.32) 

Note that both )(rHV  and the LDA form of  )(rXCV are local potentials, and hence, their 

Fourier transforms depends only on )( GG ′− . However, ),( kGkG +′+ps
ionV  can be 

written as   

 ∑ +′++′−=+′+
l

ps
lKB

ps
loc

ps
ion VVV ),()(),( , kGkGGGkGkG , (3.33) 

where the local part is written as 

 
∫ ⋅′−=′− rGGrrGG )()(1)( ips

loc
ps

loc eVd
V

V , (3.34) 

and the KB separable form of the pseudopotential leads to 
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(3.35) 

Here, lj are the order l spherical Bessel functions, lP are the Legendre polynomials, and 

 
kGkG
kGkG

+′⋅+
+′⋅+

=
)()(cosγ .  

Note that the introduction of the KB form results in a factorization of the original integral 

into a product of integrals each involve only G or G ′ . 

 

Eq. (3.27) is the momentum space representation of the Schro dinger equation. Non-

trivial solutions are obtained by solving the determinantal equation  

 
0),(

2
1 2 =+′++






 −+ ′ kGkGkG GG effn Vδε . (3.36) 

 

 

 

 



 23 
 

The practical solution of Eq. (3.27) is achieved by using a finite basis set. To provide 

such a set, the expansion in Eq. (3.26) is truncated: one can select the G-basis such that 

 
cutE≤+

2

2
1 kG , (3.37) 

_ 

cutE  is a certain energy cutoff, which depends on the ionic potentials considered. 

Finally, Eq. (3.27) is iteratively solved, for the required eigenstates, using the conjugate 

gradient method [43]. Then, the self-consistent charge density, potential, and the total 

energy are calculated. The band structure calculations are performed by solving Eq. 

(3.27), with fixed effV (the self-consistent one), for the considered k-points, using also a 

conjugate gradient method.   
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CHAPTER 4 

WANNIER FUNCTIONS 

 
 
 
 
 

4.1 Introduction 

This chapter is devoted first to introduce the Wannier functions (WFرs), their 

definition, and properties. Then, to introduce the Marzari-Vanderbilt method for 

determining the maximally-localized set of Wannier functions.  

 

4.2 Definitions 
It is possible to define a function, denoted by )( Rr −nw or nR , such that the Bloch 

functions )(rknψ  in the n-th band are given by 

 
∑ −= ⋅

R

Rk
k Rrr )()( n

i
n weψ . (4.1) 

)( Rr −nw is the WF in cell defined by R associated with the band n [11]. This can be 

justified by noting that any Bloch function, )(rknψ , considered as a function of k for a 

fixed r, is periodic in the reciprocal space, therefore, it has a Fourier series expansion in 

the real space. The WFرs play the role of the localized atomic orbitals in the tight-binding 

approximation [9]. However, their construction does not depend on the localization of the 

corresponding atomic wavefunctions, but, in the case of delocalized crystal 

wavefunctions, they donرt resemble these atomic wavefunctions. Eq. (4.1) can be inverted 

easily by multiplying it by Rk ′⋅−ie and integrating over all values of k in the first Brillouin 

Zone (BZ) [9]; 



 25 
 

 

∑

∑ ∫∫

−=

−=

′

′−⋅′⋅−

R
RR,

R

RRkRk
k

Rr

Rr kr  k

)()2(

)()(

3

)(

n
c

n
i

BZ

i
n

BZ

w
v

weded

δ
π

ψ

  

that is 
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. (4.2) 

Here vc is the real space primitive cell volume. Note that we have used the relation 

 
RR,

RRk  k ′
′−⋅ =∫ δ

π
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i
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ed
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)( )2( . (4.3) 

The transformation in Eq. (4.2) is unitary, which implies that WFرs form a complete 

orthonormal set. To see this 
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(4.4) 

Note also that )( Rr −nw  and )( Rr ′−nw transform into each other with a translation of a 

lattice vector RR ′− . 

 

4.3 Arbitrariness in Definition of WF ś 
The WFرs are not unique. This is a consequence of the phase indeterminancy, )(knie φ , 

of the Bloch orbitals, )(rknψ , at every wave vector k; 

 rk
k

k
k rr ⋅= i

n
i

n eue n )()( )(φψ , (4.5) 

where )(knφ is a real periodic function in reciprocal space. However, the phase (or 

”gauge„) transformation does not result into a simple change of the overall phases of the 

WFرs. Their shape and spatial extent will in general be affected. For a single isolated 

band, the gauge transformation 

 
k

k
 k n

i
n ueu n )(φ→  (4.6) 
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is the only allowed type of gauge transformation for changing the set of WFرs associated 

with that band. For a composite group of J bands (i.e. bands that are connected among 

themselves by degeneracies, but are isolated from all lower or higher bands), the allowed 

gauge transformation has a more general form: 

 
k

k
 k m

J

m
mnn uUu ∑

=

→
1

)( , (4.7) 

where )(kU  is a unitary matrix that mixes the bands at wave vector k. Note that Eq. (4.6) 

can be regarded as a special case of Eq. (4.7). Thus, the most general operation that 

transforms the Bloch orbitals into WFرs is given by 

 
∫ ∑ ⋅−=−

BZ

i
m

m
mn

c
n eUd

v
w Rk

k
k r   kRr )(

)2(
)( )(

3 ψ
π

. (4.8) 

This arbitrariness of WFرs can be utilized to construct the maximally-localized set of 

WFرs. In the next section we introduce the Marzari and Vanderbilt [12] scheme to do just 

that. 

 

4.4 Marzari-Vanderbilt Method 

Marzari and Vanderbilt [12] have introduced a spread functional (Ω ) as a measure of 

the total delocalization or spread of the WFرs. Given a set of Bloch orbitals, )(rknψ , the 

choice of the unitary matrix, )(kU , in Eq. (4.7), that minimizes the spread functional can 

be found. Then, the determination of the maximally-localized WFرs (MLWFرs) can be 

established. 

 

4.4.1   Spread Functional in Real Space   
The spread functional,Ω , is defined as 

 
∑ 



 −=Ω

n
nn

r 22 r . (4.9) 

Here, 
n

r 2  and nr are the expectation values nrn 00 2  and nn 0r  0  respectively. 

The choice of this form of spread functional is justified in Ref. [12]. This functional is to 

be minimized with respect to the unitary transformation )(kU . It is convenient to 

decompose Ω  into two terms, 
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where 
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It is clear that Ω~  is positive definite. It can be shown [12] that IΩ is also positive 

definite, and, moreover, gauge-invariant: invariant under any arbitrary unitary 

transformation (4.8) of the Bloch orbitals. To see this, from (4.11) we can write 
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that is 
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Here, P is the projection operator onto the group of bands under consideration and Q is 

the projection operator onto all other bands, namely  
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n
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k
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n
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and 

                      PQ −= 1 . (4.15) 

Then, from (4.13) we get 
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Here ]tr[ º2 AAA = . It is clear from the last expression that IΩ  is positive definite. It is 

also gauge invariant as mentioned previously. Accordingly, the minimization of Ω  

corresponds to the minimization of only Ω~ . 

Note that Ω~  can, in tern, be decomposed into two parts 

                      
DOD

~ Ω+Ω=Ω , (4.17) 

where 

                      
∑∑

≠

=Ω
nm

nm
R

0r  R
2

OD  (4.18) 

and 
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D . (4.19) 

ODΩ  is the band-off-diagonal part and DΩ  is the band-diagonal part. 

 

4.4.2   Spread Functional in Momentum Space 
It is shown in Ref. [44] that the matrix elements of  the position operator between 

WFرs take the form 
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The above two equations can be inverted by multiplying by  Rk ⋅′−ie then summing over R, 

and using 
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we get, 
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Thus, nr  and 
n

r 2 can be written as 
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Now, integrating the last equation by parts gives  
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We shall now derive expressions for Ω  and its different parts in terms of a discretized 

k-space mesh. Accordingly, we make the substitution 
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k
k

N
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, (4.27) 

where N is the number of k-points in the first BZ, or equivalently, the number of real-

space cells in the system. If the Brillouin Zone has been discretized into a uniform 

Monkhorst-Pack mesh [45] (see Appendix A) containing Z k-points, then the simplest 

finite difference expressions for, the gradient, k∇ (i.e. involving the smallest possible 

shell) of a smooth function of k, )(kf , is given by [12] 
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b
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and 
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Here, b is a vector connecting each k-point to one of its nearest neighbors and wb is the 

weight associated with each shell | b | = b. For any given k-point in a cubic mesh 
23 bZwb = , with Z = 6, 8, or 12 for simple cubic, body centered cubic and face centered 

cubic k-space meshes respectively [12]. 

 

Therefore, starting from (4.25) and (4.28) we now have 

                      

[ ]∑

∑ ∑

−=

−=

+

+

bk
kkbkk

k
kbk

b
k

 b

 br

,
,

, )(

nnnnb

nnbnn

uuuuw
N
i

uuwu
N
i

 

 



 30 
 

 
                      [ ]∑ −= +

bk
bkk  b

,
, 1nnb uuw

N
i  , (4.30) 

and from (4.26) and (4.28) we get 
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To find the final expressions for Ω  and its different parts, a desirable property should 

be taken into account. Namely, if the WFرs are shifted by a lattice vector, R, that is when 
Rk

kk
⋅−→ i

nn euu , one should find 
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so that Ω  remains unchanged. Expressions (4.30) and (4.31) can be modified to obey the 

above requirements. Thus, the expressions for the expectation values of r  and 2r  are 

given by [12] 
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where 
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Hence, one can find that equations (4.11), (4.18), and (4.19) become  
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and 
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Note that it is now clear from the expression (4.36) that IΩ  is gauge invariant.  

 

4.4.3 Gradient of Spread Functional 
Consider the first-order change of the spread functional Ω  arising from an 

infinitesimal gauge transformation (4.7), given by 

 )()( kk
mnmnmn dWU += δ  (4.39) 

where  dW  is an infinitesimal anti-hermitian matrix, dWdW −=º . Inserting (4.39) in 

(4.7) yields    

 
k k k m

m
mnnn udWuu ∑+→ º . (4.40) 

 

Marzari and Vanderbilt [12] have utilized this change in )(kU to derive a very elegant 

expression for the gradient of Ω , given as 
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Here, A and B are the operators  
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The condition required for having found a minimum is that the gradient, )(kG , given 

by Eq. (4.41), should vanish. The most important thing to note here is that the gradient 

depends only on the overlap matrices, ),( bk
mnM .   
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4.4.4 Steepest-Descent Minimization 
The simplest (but not necessarily the most efficient) method to minimize Ω  is the 

steepest-descent. Using small updates to the unitary matrices, as in Eq. (4.39), with the 

choice 

 )()( kk GdW ε=  (4.42) 

where ε  is a positive infinitesimal, leads to 
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Here ∑=
mn mnAA 22 and GG −=º . Thus, the choice (4.42) guarantees 0<Ωd , which 

always leads to a reduction in Ω . We take w4αε = , where ∑=
b bww , so that 
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W b
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and, then, the wavefunctions are updated according to the matrix ]exp[ )(kW∆  which is 

unitary because W∆ is anti-hermitian. Following the choice of Marzari and Vanderbilt 

[12], The pre-factor α  was set to 0.4.  

 

The algorithm is as follows. First, we start with a reference set of Bloch orbitals and 

evaluate the overlap matrices 

 )0(
,

)0(),)(0(
bkk

bk
+= nmmn uuM , (4.44) 

and we choose our starting ))(0( k
mnU  to be mnδ . Then we evaluate ))(0( kW∆ given by Eq. 

(4.43) and update the unitary matrices, according to 

 ]exp[ ))(1())(1())(( kkk −− ∆= NNN WUU  , (4.45) 

where N is used to denote the cycle number. After that, we evaluate a new set of the 
),( bkM matrices according to 

 ))((),)(0(º))((),)(( bkbkkbk += NNN UMUM . (4.46) 

This cycle is repeated until convergence is obtained. It is clear that this evolution towards 

the minimum requires only relatively inexpensive updating of the unitary matrices. The 

overlap matrices, ),( bkM , have to be calculated only once. 
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To highly improve the efficiency of the minimization procedure, the reference Bloch 

orbitals are prepared in order to make the starting Wannier functions somewhat localized. 

The other advantage of this step is to help to avoid getting trapped in a local minima [12]. 

We use the same preparation method used by Marzari and Vanderbilt [12]. In this 

method, the set of reference Bloch orbitals are prepared by projecting them onto Gaussian 

functions, )(rng , centered at mid-bond positions. This is done as follows, first 

 ∑=
m

nmmn gkkk ψψφ , (4.47) 

then, the resulting orbitals knφ are orthonormalized via Lo wdin orthogonalization scheme 

 ∑ −=
m

mmnn S kk φφ )(~ 2/1 , (4.48) 

where  kk nmmnS φφ= , and finally reconverted to cell-periodic functions with 
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n eu φ⋅−= . (4.49) 

 

Another preparation method is used in Ref. [46]. This method involves a gauge 

transformation for each band given by 

 [ ])(lnImexp)()( nnnn i rrr kkk ψψψ −→ .  

To make this method work well, nr should be chosen where the Wannier functions are 

expected to be reasonably large [46].  

 

Note that the exponential ]exp[ )(kW∆  is a matrix operation, which is performed as 

follows. First, we use the representation iHW −=∆ )(k , where H is a Hermitian matrix 

( WiH ∆= ). Next, we diagonalize H, i.e. 1−= CDCH where D is diagonal. Then we have 
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)exp( iD− is calculated by just taking the exponential of each element of iD− .     
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CHAPTER 5 

COMPUTATIONAL DETAILS 

 

 

 

 

 

5.1 Introduction 
Our calculations are performed within the local density approximation (LDA) for the 

exchange-correlation potential, using a pseudopotential plane-wave (PP-PW) approach. In 

this chapter we introduce the used computational details. First we will describe the lattice, 

structure, and reciprocal lattice for the studied systems. Next, we will state some details 

used in the self-consistent calculations. Finally, we give some details related to the 

construction of the MLWFرs. 

 

5.2 Lattice  
The underlying Bravais lattice of all the studied crystals is the face-centered cubic 

(FCC). In the FCC lattice, the lattice points are located at the corners and at the centers of 

the faces of a periodically repeated cub, as shown in Fig. 5.1. Thus each lattice point has 

12 nearest neighbors. The conventional cell contains four lattice points. Any two lattice 

points are connected by a lattice translation vector 

 332211 aaaR nnn ++= , (5.1) 

where 321 ,, aaa  are the primitive translation vectors, and 321 ,, nnn are integers. In the 

case of FCC Bravais lattice, we have 

 
)üü(

2
1);üü(

2
1);üü(

2
1

321 zxazyayxa +=+=+= aaa . (5.2) 

Here, a  is the edge length of the conventional cubic cell (or the lattice constant), and 

xü , yü , zü  are the Cartesian unit vectors. Hence, the primitive cell volume is 4/3a . The 
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angel between any two primitive translation vectors is 60¼. In Table 5.1, we list the used 

experimental lattice constants for the studied systems. 
 
Table 5.1: Lattice constants )(a  in Bohr units. 

System GaAs AlAs GaN AlN SiC Si Ge C 

a  10.680 10.680 8.532 8.249 8.230 10.260 10.680 6.739 

 

 
Fig. 5.1: FCC lattice. The bigger cell is the conventional 
unit cell and the other one is the primitive unit cell. Here a–, 
b–, c– are the primitive translation vectors. 

 
 
 
5.3 Structures  

Si, Ge and C crystallize in the diamond structure, while GaAs, AlAs, GaN, AlN and 

SiC all crystallize in the zincblende structure. In the diamond structure, the primitive unit 

cell has two identical atoms at (0,0,0) and (π ,π ,π )a associated with each lattice point (of 

the FCC lattice), as shown in Fig. 5.2. Hence, the conventional cell contains eight atoms. 

The tetrahedral bonds in diamond structure are also clear in Fig. 5.2. Each atom has four 

nearest neighbors. The zincblende structure has equal number of two types of atoms 

distributed on the atomic sites of the diamond structure so that each atom has four nearest 

neighbors of the other kind, as shown in Fig. 5.3. Note that the diamond structure allows a 

center of inversion symmetry operation (which maps an atom at  r  into an atom at r− ) 

at each midpoint between nearest neighboring atoms, while zincblende structure does not 

have inversion symmetry. 



 36 
 

 
Fig. 5.2: Diamond crystal structure. The tetrahedral bonds are clear in both figures. 

 
Fig. 5.3: Zincblende crystal structure. 

 

5.4 Reciprocal Lattice 
 The reciprocal lattice vectors are defined via 

 332211 bbbG vvv ++= , (5.3) 

where 321 ,, vvv  are integers, and  321 ,, bbb  are the primitive vectors in the reciprocal 

space. The primitive reciprocal lattice vectors to the FCC lattice are: 

 
)üüü(2);üüü(2);üüü(2

321 zyxbzyxbzyxb −+=+−=++−=
aaa
πππ . (5.4) 

This means that the reciprocal to the FCC lattice is a Body-Centered Cubic (BCC) lattice. 

The shortest G vectors are the eight vectors: 

 
)üüü(2 zyx ±±±

a
π . (5.5) 

The first Brillouin Zone (BZ) is the Wigner-Seitz primitive unit cell of the reciprocal 

lattice. The Wigner-Seitz cell about a lattice point is the region of space that is closer to 

that point than to any other lattice point. The first Brillouin zone for the FCC lattice is 
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shown in Fig. 5.4. The k-points shown are called high symmetry k-points, which lie along 

high symmetry directions of the first BZ.   

 
Fig. 5.4: Brillouin zone of the FCC lattice. The three axes 
intersect the BZ at (2× /a)(100), (2× /a)(010), and (2× /a)(001). 

 

5.5 Self-Consistent Calculations 
Our calculations are performed using a standard PP-PW approach (see chapter 3). 

We have used norm-conserving pseudopotentials in the Kleinman-Bylander [36] 

representation, generated by using the Troullier and Martins scheme [40]. The used 

electronic configuration, core radii and local potentials (see chapter 3) are listed in Table 

5.2. These pseudopotentials were carefully checked, and they are found to have very good 

transferability and free from ghost states [47]. For each of the atoms considered, except 

for N, a d-component is included which corresponds to the lowest unoccupied d-state. In 

order to be able to use reasonable core radii for this component for Ge and Ga we used 

reference energies of 15 and 20 eV, respectively.   

 

The self-consistent calculations for the different systems were performed using a 

regular 4–4–4 Monkhorst-Pack (MP) mesh [45] of k-points (see Appendix A). For the 

FCC lattice, this mesh of k-points is reduced by symmetry to only ten special ones. 

 

The PW energy cutoffs used for the systems considered are shown in Table 5.3. 

These cutoffs are found to give excellent convergence. One should note that the occupied 

p-states of the first row elements (C and N) are highly localized. Hence, systems 
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involving such atoms require quite large cutoff energy. For example, we show in Fig. 5.5 

the used LDA-PPرs for C and Si. It is worth noting that the p-component of the ionic 

pseudopotential of C is much deeper than that of Si.   

 
Table 5.2: Data used for the pseudopotential generation for the atoms involved. Here, Z is the atomic 

number, Nv is the number of valence electrons, and locall  is the angular momentum for the local components 

of the ionic pseudopotentials. clr  are in Bohr units. 

core radii clr  
atom Z 

valence electronic 

configuration 
Nv 

l=0 l=1 l=2 
locall  

C 6 4 1.5 1.5 1.5 2 

N 7 5 1.5 1.5  1 

Al 13 3 1.9 1.9 1.9 2 

Si 14 4 2.1 2.1 2.1 2 

Ga 31 3 2.1 2.1 2.2 0 

Ge 32 4 2.2 2.2 2.2 2 

As 33 

2s22p2 

2s22p3 

3s23p1 

3s23p2 

4s24p1 

4s24p2 

4s24p3 5 2.1 2.1 2.1 2 

 
Table 5.3: Plane wave energy cutoffs ( cutE ) in Rydberg units (1 Hartree = 2 Rydberg). 

System GaAs AlAs GaN AlN SiC Si Ge C 

cutE  25 25 60 60 60 25 25 60 

 
 

 

 
Fig. 5.5: Ionic pseudopotentials of C and Si. 
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5.6 Construction of the MLWF ś 
5.6.1 Reciprocal Space Grids 

In the calculation of the overlap matrix elements, given by Eq. (4.35), the full sets 

(not the reduced ones) of MP meshes were used. The Bloch eigenfunctions and 

eigenvalues are obtained via band structure calculation, at fixed (self-consistent) KS 

potential. Moreover, as suggested by Marzari and Vanderbilt [12], the MP meshes were 

shifted in order to include the Γ  point (k=0). Since the lattice is FCC in real space, the 

grid is BCC in reciprocal space, and we have used the simplest possible representation of 

k∇  using only the first nearest neighbors (Z=8) of each k-point [12]. However, for GaAs, 

we have used two other kinds of meshes. The first one is a uniform MP mesh that was 

shifted such that for each k there is a ×k, without the inclusion of the Γ  point. The second 

one is an equi-spaced cubic mesh [46], in this case we have 6 nearest neighbors for each 

k-point. Note that all the reciprocal space grids, which are used in the calculation of the 

overlap matrix elements, satisfy the following condition: 

 
0,R

k

Rk δNe i =∑ ⋅ , (5.6) 

which is clearly the same as equation (4.3) but with a discretized k-space. 

 

In the calculation of the overlap matrix elements, one shall specify the set of nearest 

neighbors (or their equivalents) for each k-point among the whole set. In the case of FCC 

lattice, we have eight nearest neighbors for each k-point (since we have BCC lattice in 

reciprocal space). Fig. 5.6 demonstrates finding the set of nearest neighbors (or their 

equivalents) for three different k-points in a 4–4–4 MP mesh for the FCC lattice. In Fig. 

5.6a, the specified k-point (the larger dark point) has eight nearest neighbors (the small 

dark points) that all lie inside the same cell. This is not always the case. In Fig. 5.6b, the 

specified k-point (located on the upper face) has six nearest neighbors inside the same 

cell, and two nearest neighbors outside it (not shown). However, when folded back into 

the considered cell, the two neighbors outside it map onto two existing k-points in the 

shown mesh, which lie on the opposite face. These two points are marked by dark points. 

The mapping is done by adding a certain G-vector, such that Gkk +′= , where k ′  is 

outside the specified cell and k  is inside it. The situation becomes a bit more complicated 

if the considered point lies at the corner of the mesh, as shown in Fig. 5.6c. Each of such 
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points has four nearest neighbors inside and four outside the cell. Similar arguments are 

applied for the other k-points. 
 

 
                     (a)                                            (b)                                              (c) 

Fig. 5.6: Demonstration of finding the set of nearest neighbors (or their equivalents) for 3 different k-
points in a 4–4–4 MP mesh for the FCC lattice. The specified point is the bigger dark one, and its nearest 
neighbors (or their equivalents) are the marked by smaller dark ones.   
 

In order to obtain the periodic part of the Blochرs orbitals of the neighboring k-points 

that lie outside the considered mesh, we note that  

 )()( rr kk nn ψψ =′ . (5.7) 

Here, k and k ′  are as defined above. This is because they are identical points, ensured by 

the periodicity of the unit cell in reciprocal space. This implies that  

 rG
kk rr ⋅

′ = i
nn euu )()( . (5.8) 

Therefore,  knu  are only explicitly calculated for the considered MP mesh, and that of the  

points-k ′ are obtained from them by using the above relation. The calculations are 

performed in reciprocal space, and thus, the PWرs coefficients of the Blochرs orbitals at 

the points-k ′ are obtained according to the relation 

 )()( GGG kk −′=′′ nn CC . (5.9) 

 

In order to investigate the effect of choosing a certain kind of the different k-space 

meshes, we show in Figs. 5.7 one of the MLWFرs in GaAs obtained by using three 

different kinds of k-space meshes. Fig. 5.7a shows MLWF obtained using a uniform 

8–8–8 MP mesh (i.e. contains 512 k-points) that was shifted in order to include the 

point−Γ . In this case, the minimized spread functional equals to 8.871 A¼2. Fig. 5.7b 

shows the corresponding one obtained by using the same MP mesh but was shifted in 

order to have, for each k, a äk. The minimized spread functional is now 8.981 A¼2. Fig. 

5.7c shows the corresponding MLWF obtained by using a uniform cubic mesh of k-

points. This mesh contains 500 k-points that lie inside the first BZ of the FCC lattice. 

Using this mesh, the minimized spread functional was 9.208 A¼2. Thus, although all of the 
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above meshes contain comparable number of k-points, the spread functional depends on 

the kind of the set k-points used. Nevertheless, we note that all of the MLWFرs obtained 

above have the same location of the Wannier centers, and all of them have similar shape 

and confinement in the primitive unit cell. Thus, the results reported in the next chapter 

are constructed by using k-meshes of the first kind.   

a) 

 
b) 

 
c) 

 
Fig. 5.7: a) One of the MLWFرs in GaAa, obtained by using 8�8�8 MP mesh that was shifted in order 

to include the point−Γ . b) The same MLWF obtained after using the same MP mesh but was shifted in 
order to have, for each k, a äk. c) The same MLWF obtained by using a uniform cubic mesh containing 500 
k-points. 
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5.6.2 Wavefunctions Initialization  
As we have mentioned in chapter 4, the reference Bloch orbitals are prepared in 

order to make the starting Wannier functions somewhat localized. We do this by 

projecting Gaussian functions, centered in the middles of the tetrahedral bonds, on the 

Bloch orbitals. We have studied the effect of the choice of the standard deviation 

(spread) of these Gaussians on the required number of iterations to reach the 

convergence of the spread functional )(Ω , and on Ω  itself. This is done for GaAs, 

which has the largest lattice constant among the studied compounds, and for C, which 

has the smallest lattice constant among the studied compounds. This test is done using a 

regular 4� 4� 4 MP mesh of k-points. 

 

The upper parts of figures 5.8 and 5.9 show the relation between the Gaussians 

standard deviation and the required number of iterations to reach convergence for C and 

GaAs, respectively. The lower parts show the relation between Gaussians spread and Ω . 

From Fig. 5.8 we see that the number of iterations increases slowly when we increase the 

Gaussians spread until it suddenly increases when we use Gaussians of spread more than, 

roughly speaking, about 0.9 times the C-C bond length. However, Ω  remains unchanged. 

GaAs (Fig. 5.9) show a similar behavior. The number of iterations increases slowly when 

we increase the Gaussians spread until it increases rapidly when we use Gaussians of 

spread more than about 0.9 times the Ga-As bond length. Thus, we conclude that it is 

better to choose the Gaussians spread to be less than the bond length. For example 

choosing Gaussians spread to be half the bond length is expected to be a good choice. In 

our calculations, for all compounds considered, we have used Gaussians spread of 1 A¼.  



 43 
 

 
Fig. 5.8: Top: Gaussians spread (in A¼) versus the required number of iterations for the spread 

functional to reach convergence, for C. Bottom:  Gaussians spread (in A¼) versus the spread functional (in 

A¼2), also for C. Note that we have marked half the C-C bond length, which equals to 8/3a . 

 
Fig. 5.9: Top: Gaussians spread (in A¼) versus the required number of iterations for the spread 

functional to reach convergence, for GaAs. Bottom:  Gaussians spread (in A¼) versus the spread functional 

(in A¼2), also for GaAs. Note that we have marked half the Ga-As bond length, which equals to 8/3a . 
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To show the importance of the wavefunctions initialization procedure, we show in 

Fig. 5.10a one of the calculated WFرs of Si, using the 8�8�8 MP k-mesh, without any 

initialization and without using the minimization scheme of Ω  introduced by Marzari and 

Vanderbilt. In this case, the unitary matrices )(kU are equal to the identity matrix. It is 

clear from the figure that the WFرs are of widespread (Ω =751 A¼2) and are not confined 

in one unit cell. On the other hand, Fig 5.10b displays the same WF obtained after using 

the initialization procedure and again without using the minimization scheme of the 

spread functional. In this case, the WF is much more localized, with Ω =68 A¼2, and its 

shape is very similar to the maximally localized one which is shown in Fig. 5.10c. The Ω  

of this MLWF is equal to 8.232 A¼2. Thus, we can conclude that this initialization 

procedure provides a very good starting point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 45 
 

                a) 

 
                 b) 

 
                  c) 

 
Fig. 5.10: a) One of the WFرs of Si, obtained by using 8�8�8 MP mesh, without any initialization or 

minimization of the spread functional. b) The same WF obtained after using the initialization procedure, 

without minimization of the spread functional. c) The same corresponding maximally localized one. 
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5.6.3 Plotting the MLWF ś 
The above displayed WFرs and that shown in the next chapter are obtained as 

follows: 

1- After finding the proper unitary matrix, a new set of the periodic part of the 

Blochرs wavefunction ( knu ′ ) are constructed, using the relation 

 )()( )( rr k
k

k m
m

mnn uUu ∑=′ . (5.10) 

                 Note that  )(rknu ′  obtained by using the inverse Fast Fourier Transform           

(FFT) are given at real space FFT grid, inside only one unit cell. 

2- In order to have  knu ′  in a large unit cell, we have carried out a 3�3�3 repetition. 

This means that the size of the new (big) unit cell is 27 times larger than the 

original one. 

3- The MLWFرs are calculated in this big unit cell by multiplying by the proper 

phase factor and integrating over the first BZ 

 kRr
k

k
rRr ⋅−′=− ∑ )()(1)( i

nn eu
N

w . (5.11) 

The R vector is chosen such that the WFرs are centered at about the center of 

the big unit cell.  

4- Both the surface and contour plots of the MLWFرs are done, by using the 

pxviewer code [48]. As input to the program we supply the data as they are in 

the FFT grid points. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

 

 

 

 

6.1 Introduction 
In this chapter we will present and discuss the Maximally-Localized Wannier 

Functions (MLWFرs), for four III-V semiconductors. These semiconductors are GaAs, 

AlAs, GaN and AlN. For comparison with other systems, we will also present and discuss 

the MLWFرs of C, Si, Ge and SiC. In particular, we will focus on the spread of these 

functions and their centers (known as Wannier centers). 

 

Although the accurate self-consistent calculations are nowadays a common practice, 

there are, however, cases where such calculations are extremely difficult (because of the 

complexity of the system) or the high accuracy they provide is not necessary (when 

studying broad trends is required). In such cases, concepts such as ionicity, 

electronegativity, covalent radii and others are of particular importance. It has been noted 

by Marzari and Vanderbilt that the Wannier centers can be used as a measure of the bond 

ionicity. However, this connection has not been exploited. In this chapter we will 

introduce a bond ionicity measure based on the Wannier center, and compare it with the 

empirical Phillips ionicity [49], and the self-consistent ionicity scale of Garcia and Cohen 

[50]. A more complete account of the new ionicity scale, applied to a large number of 

semiconductors, is currently under investigation. 
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The rest of this chapter is organized as follows. In section 6.2 we report and discuss 

the MLWFرs of the eight semiconductors considered. Section 6.3 is devoted to the new 

ionicity scale. Finally, section 6.4 contains our main results and conclusions. 

   

6.2 Maximally Localized Wannier Functions 
6.2.1 For C, Si and Ge 

 As an example, we show in Fig. 6.1 the band structure of Si. In these systems, the 

upper three valence bands are not separated from the lowest energy one by a gap, as it is 

the case in the polar semiconductors. Therefore, the four valence bands of the above 

semiconductors have to be considered as a composite group of bands in the construction 

of MLWFرs.  

 
Fig. 6.1: The Band structure of Si. Solid curves: valence 
bands. Dotted curves: conduction bands.  

 

 

The MLWFرs are obtained as described in chapters 4 and 5, with 4=J . Because of 

the inversion symmetry, we expect the four MLWFرs per primitive unit cell are centered 

exactly at the centers of the tetrahedral bonds. As noted by Marzari and Vanderbilt, the 

inversion symmetry allows for real coefficients of the PWرs expansion (by taking the 

origin to be at the bond center) and so also the unitary matrices )(kU . This yields zero 

DΩ . Since  IΩ  is gauge invariant, only ODΩ  needs to be minimized. 
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In Tables 6.1, 6.2 and 6.3 we show the variation of the spread functional, Ω , and its 

various parts ( IΩ , DΩ  and ODΩ ) for C, Si and Ge, respectively, with respect to the k-

space grids. These grids vary from 2–2–2 to 12–12–12 MP meshes. Also listed, in the 

same tables, is the parameter β  which gives the relative distance (with respect to the 

bond length) of the Wannier center along the bond from one of its end atoms.  

 
Table 6.1: Minimized spread functional and its various parts (invariant, off-diagonal, and diagonal) in 

C for different k-meshes (in units of A¼ 2 ), together with the relative position of the centers along the C-C 
bonds.  

k set Ω  IΩ  ODΩ  DΩ  β  
2� 2� 2 1.844 1.620 0.224 0 0.5 
4� 4� 4 2.642 2.306 0.336 0 0.5 
8� 8� 8 3.045 2.700 0.345 0 0.5 

12� 12� 12 3.133 2.794 0.340 0 0.5 
 

Table 6.2: Minimized spread functional and its various parts (invariant, off-diagonal, and diagonal) in 
Si, for different k-meshes (in units of A¼ 2 ), together with the relative position of the centers along the Si-Si 
bonds. 

k set Ω  IΩ  ODΩ  DΩ  β  
2� 2� 2 4.039 3.660 0.380 0 0.5 
4� 4� 4 6.433 5.866 0.566 0 0.5 
8� 8� 8 8.232 7.716 0.516 0 0.5 

12� 12� 12 8.730 8.280 0.450 0 0.5 
 

Table 6.3: Minimized spread functional and its various parts (invariant, off-diagonal, and diagonal) in 
Ge, for different k-meshes (in units of A¼ 2 ), together with the relative position of the centers along the Ge-
Ge bonds. 

k set Ω  IΩ  ODΩ  DΩ  β  
2� 2� 2 5.320 4.507 0.813 0 0.5 
4� 4� 4 7.713 7.001 0.712 0 0.5 
8� 8� 8     10.116 9.485 0.631 0 0.5 

12� 12� 12     11.041     10.462 0.578 0 0.5 
 

In Figs. 6.2, 6.3 and 6.4 we show one of the MLWFرs of C, Si and Ge, respectively, 

obtained by using an 8–8–8 MP mesh. The other three MLWFرs, for each system, lie on 

the other three tetrahedral bonds. All of the obtained MLWFرs are real, and their shape 

resembles that of the 3sp hybrids combined to form σ -bond orbitals: the MLWFرs are 

located mainly in the bond region. The remarkable features to note from the above results 

are as follows:  
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(i) As expected, DΩ  is identically zero for the above three systems, which 

crystallize in the diamond structure, and the Wannier centers lie exactly at the 

centers of the bonds. This reflects the accuracy and reliability of our calculations.  

(ii) The MLWFرs are mainly confined in the primitive unit cell. This feature is the 

particular importance for the practical applications of the MLWFرs, since it 

reduces to a large extent the number of matrix elements required. In fact, it has 

already been noted by Schnell, Czycholl and Albers [16] that matrix elements for 

only few neighbor shells are sufficient, when they used the MLWFرs as basis to 

construct the Coulomb matrix elements. The behavior is also expected when the 

Fock operator matrix elements, required in the EXX calculations [7,8], are 

calculated by using the MLWFرs basis set.  

(iii) The spread functional is a slowly converging function with respect to the density 

of the k-mesh used. However, its slow convergence is mainly due to IΩ . The 

ODΩ  is found to show, relatively, a very small variation. Similar behavior has 

been also observed by Marzari and Vanderbilt [12], see Table 6.4. 

(iv) Our results for Ω  of Si, its various contributions, and their variation with respect 

to the density of the k-space mesh agree nicely with the results of Marzari and 

Vanderbilt. The very small differences can be attributed to the differences in the 

used computational ingredients in the two calculations. 

(v) In spite the fact that the Wannier centers of the MLWFرs for the above three 

systems considered are located exactly at the bond centers and the very nice 

agreement between our results and that of Marzari and Vanderbilt, for Si, the 

displayed MLWFرs (Figs. 6.2 to 6.4) donرt show the expected inversion 

symmetry. In these plots, which have been done using the pxviewer [48], it 

appears that the center of such MLWFرs is deviated slightly from the bond center 

toward one of the atoms. This is mainly because we have chosen the origin to be 

on the atom, not on the inversion center in the middle of the bond.  
 
Table 6.4: Marzari and Vanderbilt results [12] for the minimized spread functional and its various parts 

in Si for different k-meshes (in units of A¼2 ), together with the relative position of the centers along the Si-Si 
bonds.   

k set Ω  IΩ  ODΩ  DΩ  β  
2� 2� 2 4.108 3.707 0.401 0 0.5 
4� 4� 4 6.447 5.870 0.577 0 0.5 
8� 8� 8 8.192 7.671 0.520 0 0.5 
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                           (a) 

 
 

        (b) 

 
 

Fig. 6.2: One of the maximally-localized Wannier functions in C, for the 8�8�8 k-point sampling. 
The other Wannier functions lie on the other three tetrahedral bonds. (a) Isosurface plot (in gray), 
showing the tetrahedral bonds. (b) Contour plot in the (110) plane of the bond chains.  
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                                 (a) 

 
       (b) 

 
 

Fig. 6.3:  As in Fig. 6.2, but for Si. 
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                             (a) 

 

        

      (b) 

 
 

Fig. 6.4: As in Fig. 6.2, but for Ge.  
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6.2.2 For SiC 
It is well known that the C pseudopotential is much stronger than that of the Si, 

which makes the Si-C bond partially ionic. In the case of the ZB structure of SiC, this 

leads to a splitting of the four valence bands (which were composite in Si and C) into 

three (upper) and one (lower) bands separated by a gap, as shown in Fig. 6.5.  

 
Fig. 6.5: The Band structure of SiC. Solid curves: valence 
bands. Dotted curves: conduction bands.  

 
 

Thus, there are two options to construct the MLWFرs: (i) Treating the lowest 

(isolated) valence band as a single band and construct its MLWF, and the upper three 

bands as a composite and construct their three MLWFرs. (ii) To continue treating the four 

valence bands as a composite and construct their four MLWFرs as done previously for 

group-IV semiconductors. In this work we have considered only the second option. 

 

In Table 6.5 we show the variation of Ω  for SiC, and its various components ( IΩ , 

DΩ  and ODΩ ) with respect to the used density of k-space mesh. This table also shows the 

similar variation of β . In Fig. 6.6 we show one of the MLWFرs of SiC. The important 

features to note from these results are as follows: 

(i) DΩ  is not zero any more and β  is larger than 0.5, because of the lack of 

inversion symmetry. The Wannier centers are shifted toward the C atoms, as 

expected. The large deviation from the center of the bond reflects a quite large 
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ionicity value for Si-C bond, despite the fact that both atoms have the same 

number of valence electrons. 

(ii) The convergence of Ω  and its components with respect to density of k-space 

mesh is very similar to that of group-IV semiconductors, and the slow 

convergence is mainly due to IΩ . 

(iii) β  shows a rapid convergence with respect to the density of the used k-space 

mesh. 

(iv) As it was the case for group-IV semiconductors, the MLWFرs are confined 

mainly inside the primitive unit cell. 

(v) The calculated value of Ω , obtained by using a certain MP mesh, is closer to that 

of bulk C more than that of Si. This can be understood as a consequence of the 

stronger C pseudopotential, see Sec. 5.5. 

 

 
Table 6.5: Minimized spread functional and its various parts (invariant, off-diagonal, and diagonal) in 

SiC, for different k-meshes (in units of A¼ 2 ), together with the relative position of the centers from the Si 
atom along the Si-C bonds. 

k set Ω  IΩ  ODΩ  DΩ  β  
2� 2� 2 2.712 2.285 0.422 0.005 0.644 
4� 4� 4 3.964 3.370 0.591 0.004 0.651 
8� 8� 8 4.651 4.044 0.603 0.004 0.654 

12� 12� 12 4.802 4.207 0.591 0.005 0.654 
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                             (a) 

 
       (b)  

 
 

Fig. 6.6: One of the maximally-localized Wannier functions in SiC, for the 8�8�8 k-point sampling. 
Si atoms are in black and C atoms are in white. The other Wannier functions lie on the other three 
tetrahedral bonds. (a) Isosurface plot (in gray), showing the tetrahedral bonds. (b) Contour plot in the 
(110) plane of the bond chains.  
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6.2.3 For GaAs, AlAs, GaN and AlN 

As an example, we show in Fig. 6.7 the calculated band structure of GaAs. As in the 

case of SiC, the valence bands are separated into three composite bands (the upper three 

ones) and one isolated single band (the lowest one). Therefore, there are two options to 

construct the MLWFرs, see Sec. 6.2.2. Here, we also opted for taking the four bands as a 

composite, 4=J . However, the other option has been considered, and we found that the 

MLWF of the lowest valence band is centered, in the case of GaAs, at the As atom. This 

is consistent with the well-known fact that this band has mainly an anion s-character. No 

attempt for constructing the MLWFرs of the upper three bands has been made, in this 

work. 

 
Fig. 6.7: The Band structure of GaAs. Solid curves: valence 
bands. Dotted curves: conduction bands.  

 

 

In Tables 6.6 we show the variation of the spread functional Ω  and its components 

( IΩ , DΩ  and ODΩ ) of GaAs, AlAs, GaN and AlN, respectively, with respect to the used 

MP mesh. In the same tables, we show the similar variation of β  of the corresponding 

system. In Figures 6.8, 6.9, 6.10 and 6.11 we show one of the MLWFرs of the above four 

semiconductors, respectively. The remarkable features to note are as follows. 

(i) Because of the lack of inversion symmetry, and as in the case of SiC, the 

obtained values of DΩ  are not zero, but they are very small. The quite strange 
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behavior is that the value of DΩ  decreases by going to systems with larger bond 

ionicity [49,50], and reaches a zero value for AlN.  

(ii) Because of the polar nature of the bonds of the above systems, the Wannier 

centers are shifted more towards the anion. As expected, the deviation from the 

bond center is found to be proportional to the bond ionicity, see the next section. 

(iii) Ω  has a slow convergence with respect to the used density of the k-space mesh, 

which originates mainly from the slow convergence of IΩ . These results and 

those obtained previously for C, Si, Ge and SiC show that this is a common 

behavior. 

(iv) β  shows a rapid convergence with respect to the used density of the k-space 

mesh, which also seems to be a common behavior. 

(v) The MLWFرs are also confined in the primitive unit cell. The obtained value of 

Ω  is found to depend strongly on the volume per atom: Ω  of GaN and AlN are 

much smaller than that of GaAs and AlAs. Moreover, Ω  is found to depend on 

the atomic volume: Ω  is smaller in AlAs than in GaAs, and similarly in AlN and 

GaN. This is also reflected in the calculated values of β , which indicates that Ga 

is more electronegative than Al. This conclusion is consistent with the self-

consistent ionicity scale of Garcia and Cohen [50], but not with the Phillips 

ionicity measure ä for more details see the next section. 
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Table 6.6: Minimized spread functional and its various parts (invariant, off-diagonal, and diagonal) in 

for different k-meshes (in units of A¼ 2 ), together with the relative position of the centers along the bonds, 
for a) GaAs, b) AlAs, c) GaN and d) AlN. 
a)   

k set Ω  IΩ  ODΩ  DΩ  β  
2� 2� 2 4.424 3.908 0.507 0.009 0.611 
4� 4� 4 6.898 6.282 0.610 0.006 0.616 
8� 8� 8 8.871 8.287 0.578 0.007 0.618 

12� 12� 12 9.499 8.953 0.539 0.007 0.618 
b)  

k set Ω  IΩ  ODΩ  DΩ  β  
2� 2� 2 4.409 3.850 0.554 0.004 0.635 
4� 4� 4 6.634 5.931 0.701 0.002 0.649 
8� 8� 8 8.090 7.436 0.652 0.003 0.654 

12� 12� 12 8.456 7.847 0.606 0.003 0.655 
c)  

k set Ω  IΩ  ODΩ  DΩ  β  
2� 2� 2 2.547 2.142 0.400 0.004 0.723 
4� 4� 4 3.611 3.112 0.497 0.002 0.726 
8� 8� 8 4.109 3.612 0.494 0.003 0.728 

12� 12� 12 4.216 3.726 0.487 0.003 0.729 
d)  

k set Ω  IΩ  ODΩ  DΩ  β  
2� 2� 2 2.414 1.972 0.440 0.001 0.740 
4� 4� 4 3.343 2.755 0.587 0 0.752 
8� 8� 8 3.711 3.103 0.608 0 0.757 

12� 12� 12 3.789 3.178 0.611 0 0.760 
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                              (a) 

 
       (b) 

 
 

Fig. 6.8: One of the maximally-localized Wannier functions in GaAs, for the 8�8�8 k-point 
sampling. Ga atoms are in black and As atoms are in white. The other Wannier functions lie on the other 
three tetrahedral bonds. (a) Isosurface plot (in gray), showing the tetrahedral bonds. (b) Contour plot in 
the (110) plane of the bond chains.  
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                       (a) 

 
        (b) 

 
 

Fig. 6.9: One of the maximally-localized Wannier functions in AlAs, for the 8�8�8 k-point 
sampling. Al atoms are in black and As atoms are in white. The other Wannier functions lie on the other 
three tetrahedral bonds. (a) Isosurface plot (in gray), showing the tetrahedral bonds. (b) Contour plot in 
the (110) plane of the bond chains.  
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                                 (a) 

 
       (b) 

 
 

Fig. 6.10: One of the maximally-localized Wannier functions in GaN, for the 8�8�8 k-point 
sampling. Ga atoms are in black and N atoms are in white. The other Wannier functions lie on the other 
three tetrahedral bonds. (a) Isosurface plot (in gray), showing the tetrahedral bonds. (b) Contour plot in 
the (110) plane of the bond chains.  
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                             (a) 

 

      (b) 

 
 

Fig. 6.11: One of the maximally-localized Wannier functions in AlN, for the 8�8�8 k-point 
sampling. Al atoms are in black and N atoms are in white. The other Wannier functions lie on the other 
three tetrahedral bonds. (a) Isosurface plot (in gray), showing the tetrahedral bonds. (b) Contour plot in 
the (110) plane of the bond chains.  
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6.3 Bond Ionicity 
The bond ionicity is a very important concept, which helps in getting a better and 

better understanding of the behavior of matter. Several empirical ionicity scales has been 

suggested, and the most widely accepted one is that of Phillips [49]. A self-consistent 

ionicity scale has been introduced by Garcia and Cohen [50]. Important differences 

between these two scales have been found, especially for the systems involving first row 

elements. The bond ionicity in these systems is significantly underestimated by the 

Phillips scale. Another difference is in the bond ionicity of the common anion 

semiconductors. For example, according to the Phillips ionicity scale Ga-As bond has 

slightly larger ionicity than the AlAs one, while according to the self-consistent scale this 

behavior is reversed. Thus, a new and accurate ionicity scale is of special importance. In 

the following we provide such a scale, based on the deviation of the Wannier center from 

the bond center. 

 

The Phillips ionicity scale [49] of the ANB8-N crystals is based on two band 

parameters, C and hE . The hE  is homopolar band gap results from the symmetric part of 

the potential, 2)( BA VV + , whereas C is the ionic or charge transfer gap results from the 

asymmetric part of the potential, 2)( BA VV − . From these two parameters the average 

valence-conduction gap, gE , is defined according to the relation 

 222 CEE hg += . (6.1) 

The Phillips ionicity scale is defined as 
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Now, hE  of a compound crystal of lattice parameter, a , is obtained from that of Si 

according to 

 5.2)Si()Si( 





=

a
aEE hh . (6.3) 

Thus, the estimation of hE  and the knowledge of gE  determine C  and, hence, if . 
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The Garcai and Cohen [50] first-principles ionicity scale is defined as follows. The 

self-consistent charge density is separated into symmetric and asymmetric parts according 

to 

 
))()((

2
1)( rrr −+= nnnS ; ))()((

2
1)( rrr −−= nnnA . (6.4) 

Then, the parameters SS  and AS  is defined as the cell average of the above parts, 

respectively, or 
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Finally, the asymmetry coefficient, g , which is introduced as a measure of the ionicity is 

defined as 

 

S

A

S
S

g = . (6.6) 

In this case g  is obtained completely from the self-consistent )(rn .  

 

To introduce a new ionicity scale based on the deviation of the Wannier center from 

the bond center, two guidelines have to be observed: (i) The ionicity should be between 0 

and 1. (ii) The obtained ionicities should be somehow consistent with those of the above 

described scales. We found that a very reasonable choice is 

    75.0)12( −= βiw , 15.0 ≤≤ β  (6.7) 

  

The obtained values of iw  for the studied systems, compared with those of if  and 

g , are listed in Table 6.7. Furthermore, plots between these different ionicity scales are 

provided in Figs. 6.12, 6.13 and 6.14. It is clear, from both the table and the figures, that 

the new ionicity scale fits nicely with the above two scales. In particular, for GaN and 

AlN our results lie in between those of if  and g . Thus we believe that the surprising 

large difference is due to underestimation of the ionicity by Phillips and overestimation by 

the self-consistent measures. The ionicity of the Si-C bond is also underestimated by the 

former approach, and our result is close to that of the latter. Finally, we note that the 

ionicity of the GaAs and AlAs as obtained by Phillips are reversed in our present results 

and those of Garcia and Cohen [50]. Similar behavior occurs in the case of GaN and AlN. 

This shows that the electronegativity of the Ga atom is larger than that of Al. 
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Table 6.7: Phillips ionicity (fi), charge asymmetry coefficient (g) and our new ionicity scale iw , for the 
studied compounds.  
Compound fi g  iw  

Si 0.000 0.000 0.000 

Ge 0.000 0.000 0.000 

GaAs 0.310 0.316 0.339 

AlAs 0.274 0.375 0.415 

SiC 0.177 0.475 0.413 

GaN 0.500 0.780 0.557 

AlN 0.449 0.794 0.612 

 

 

 

 
Fig. 6.12: Comparison of the Phillips ionicity (fi) to the charge asymmetry coefficient (g) for the 

studied compounds.  
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Fig. 6.13: Comparison of the iw  to the Phillips ionicity for the studied compounds.  

 

 
Fig. 6.14: Comparison of the iw to the charge asymmetry coefficient for the studied compounds.  
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6.4 Conclusions 
We have successfully developed FORTRAN77 and C++ codes to construct 

Maximally-Localized Wannier Functions (MLWFرs) according to the scheme of Marzari 

and Vanderbilt. The latter code is used to calculate the MLWFرs of eight semiconductors, 

namely, C, Si, Ge, SiC, GaAs, AlAs, GaN and AlN. Based on the obtained Wannier 

centers, a new bond ionicity scale has been introduced. In the following we draw our 

main results and conclusions. 

(i) The MLWFرs are mainly confined to the primitive unit cell, for all the 

studied systems. This is a very important feature for their application as a 

very accurate minmal basis in a variety of theoretical approaches, such as the 

EXX method. 

(ii) The spread functional is found to converge slowly with respect to the density 

of k-space mesh used, and this is mainly due to the gauge invariant part. 

(iii) The deviation of the Wannier center from the center of the bond is found to 

be proportional to the bond ionicity. 

(iv) Based on (iii), a new ionicity scale has been introduced. The obtained 

ionicities of the studied systems are in much better agreement with those 

obtained self-consistently (from the calculated charge density) than with the 

empirical Phillips ionicity scale.  
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APPENDIX A 

SPECIAL POINTS 

 
 

 

Many solid state calculations in the solids require averaging of a periodic function of 

the wave vector, k, over the BZ. Such calculations are often complicated, time 

consuming, and, in principle, require the knowledge of the functional values at each k-

point in the BZ. In practice, these averages are determined by sampling the function at a 

discrete set of points and summing with an appropriate weight for each point. The 

problem is how to select the most efficient set, of the least number of k-points, from 

which the average values of various quantities can be calculated to a sufficient accuracy. 

 

Methods for finding such sets of ”special„ k-points have been introduced by 

Baldereschi in 1973 [51], and developed further by Chadi and Cohen [52]. An alternative 

method was introduced by Monkhorst and Pack (MP) [45]. In our calculations, the special 

k-points were generated using the MP scheme. 

 

Monkhorst and Pack have defined a mesh of 3q  k-points, which are uniformly 

spaced in the BZ, given by 

 321,, bbbk srpsrp uuu ++= , (A.1) 

Where 1b , 2b and 3b are the primitive reciprocal lattice translation vectors, and 

 
q
qju j 2

12 −−
= ,    qsrpj ,....,3,2,1,, == . (A.2) 

This set of 3q  k-points is then divided in symmetry related shells, and we choose per each 

shell one point in the irreducible part of the BZ (IBZ). The weight of this special k-point 

is the ratio between the number of points in the shell and the total number of points. 
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For an illustration, we show in Fig. A.1 the 2�2�2 MP cubic mesh of a simple cubic 

lattice. In this case, the cubic BZ is divided into 8 smaller cubes of equal sizes, and the 

MP mesh points are nothing but the centers of these 8 cubes.  

 

 
Fig. A.1:  2�2�2 MP mesh of the simple cubic lattice. 

 

The 4�4�4 MP mesh of the FCC lattice is shown in Fig. A.2. In this case, the 

reciprocal space unit cell (defined by 1b , 2b  and 3b ) is divided uniformly into 64 

identical cells, and the MP mesh points are the centers of these small cells. These 64 k-

points are reduced by symmetry to the ten special k-points of Chadi and Cohen [52] (used 

in the self-consistent calculations). 

 

 
Fig. A.2:  4�4�4 MP mesh of the FCC lattice. 
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