Advanced Placement Computer Science

Unit 11 – Inheritance and GridWorld Part 2

Each unit, you will have an assignment that includes some reading, some questions from the reading, called Review Exercises, and between one and three programming exercises.

Calendar of Meeting Places for January
	4
	5 Class
Review Final Exam
	6 Class
Lesson 11.1

Inheritance
	7
	8 Class/Lab
Lesson 11.2

Polymorphism

Unit 11 Programs
	9 Lab
Unit 11 Programs
	10

	11

	12 Class
Lesson 11.3
Interfaces & Abstract Classes
	13 Class
Lesson 11.4 Overview of Dance Studio
	14
	15 Lab
Unit 11 Programs
	16 Lab
Unit 11 Programs
	17

	18

	19 Holiday
Martin Luther King Jr. Day
	20 Lab
Unit 11 Programs
	21
	22 Lab
Unit 11 Programs
	23 Lab
Unit 11 Programs
	24

	25

	26 Class
Begin Unit 12
	27
	28
	29
	30

	31

	Assignment Type
	Description

	Reading
	Java Methods – Chapter 11

	Homework Exercises

	Programming

JavaBat Programming Assignments
Please see JavaBat schedule for due dates

Program #1

Extending the Bug class in GridWorld
This is introducing you to inheritance and Part 2 of the GridWorld Case Study. You should use your GridWorld Case Study Student Manual to answer the questions on the handout. The last part of the handout asks you to extend the Bug class by creating two new classes, the SpriralBug and the ZBug. Please use BoxBug and our example in class, CircleBug, to help you with these two classes.
To set up JCreator, create a new Workspace for Unit 11 and a new Project for GridPart2. Copy all of the files from My Documents\GridWorld\GridWorldCode\projects\boxBug into the new folder that was created when you make your project. After the files have been copied, then you can add them to your project. (you do not want to risk changing the originals!!)
Program #2 – Dance Studio concluded
This program is a lab assignment from our textbook (page 302 & page 310).

Please read the question and complete the ReversedDance class.
These files can be found in your studentdisk folder under chapter 11.
	Challenge (if you are shooting for an A in this class)
1. Define a class SmartBug that extends Bug and acts as follows: If a smart bug can move straight ahead, it does, otherwise it turns until it is facing an open cell (all in one step). If there is no open cell adjacent to the smart bug, then it remains in its original position (location and direction).

2. Define a class DruggedBug that extends Bug and acts as follows: a drugged bug turns a random number of times between 0 and 7, then moves forward if it can. Hint: use Math.random() to compute a random number.
3. Define a class FigureEightBug that extends CircleBug. If there are no obstacles, a figure-eight bug will move in a figure-eight pattern as shown below. If it is blocked from moving, it turns right or left 45 degrees and starts a new side.

[image: image1.jpg]

Helpful Hints for Dance Studio
Your job here is to implement the ReversedDance class. The interesting thing about this class is that (as the book states) this class “is-a” Dance and also “has-a” Dance. What ReversedDance does is it takes a Dance as a parameter when it is constructed, then “mirrors” that Dance. So, for example, if the Dance has a forward step of 8, then the ReversedDance will have a forward step of -8.

Let’s get started:

1. Since ReversedDance is implementing the Dance interface, your class needs to show this in the class header.

public class ReversedDance ________ Dance

2. Since ReversedDance has-a Dance, there must be some private field that is of type Dance.

private Dance myDance;

3. Your book states that the ReversedDance needs one constructor and that constructor takes a Dance as a parameter. This parameter will be saved as the private field defined in #2 above.

4. Since ReversedDance is implementing the Dance interface, your class needs to implement the three methods in the Dance interface. The three are as follows:

public interface Dance

{

 DanceStep getStep(int i);

 int getTempo();

 int getBeat(int i);

}
Let’s take a look at each of these methods, one at a time, starting with the most simple.
 int getTempo();
Since the role of ReversedDance is to mirror myDance, this method should return the tempo of myDance. Since myDance is a Dance, then you should be able to use the method getTempo on the object myDance and return the result.

 int getBeat(int i); Since the role of ReversedDance is to mirror myDance, this method should return myDance’s ith beat. Since myDance is a Dance, then you should be able to use the method getBeat with i as your parameter on the object myDance and return the result.
 DanceStep getStep(int i); Since the role of ReversedDance is to mirror myDance, this method should return a DanceStep object that is the reverse of the current step of myDance. Since myDance is a Dance, then you should be able to use the method getStep(i) on the object myDance , which will return the current step of myDance. With this DanceStep, your job is to construct and return a new DanceStep with all 8 characteristics of the DanceStep negated (reversing the step!!)
