Advanced Placement Computer Science

Unit 3 – Objects and Classes

Each unit, you will have an assignment that includes some reading, some questions from the reading, called Review Exercises, and between one and three programming exercises.

Calendar of Meeting Places for September

	
	1
	2 Lesson

Lesson 3.1
	3
	4 Lab
Using Turtle and Vic
	5 Lab
Using Turtle and Vic
	6

	7

	8 Class
Lesson 3.2
	9 Class
Example
	10
	11 Lab – GridWorld/First Steps
(Quiz today)
	12 Lab – GridWorld/First Steps

	13

	14

	15 Class
Lesson 3.3
	16 Class
Lesson 6.1
	17
	18 Class
Test –
Units 1 - 3
	19 Class
Lesson 6.2/ Example
	20

	21

	22 Lab

Triangle Calculator
	23 Lab

Triangle Calculator
	24
	25 Lab

Pie Chart

	26 Lab

Pie Chart / Challenge
End of 1st grading period
	27

	Assignment Type
	Description

	Reading
	Java au Naturel, Chapter 1

P. 1–7, 19-20, 26-29
Java Methods – Chapter 3

	Homework Exercises

(Due Thursday, September 11)
	Questions: Java Methods, P. 69-70 / #1, 2, 4, 5

Program #1

Write a program that constructs one Turtle object, then draws a regular octagon (8-sided polygon) with sides having length of 100 pixels. Make the lines of the regular octagon red in color, then output the word STOP inside. Make a delay between each line that you draw so that you can see the action happening (as in an animation) (hint: Look at exercise 1.5 in our “Java au Naturel” textbook!!)
Program #2

Write a program that constructs one Vic object. The Vic object will work with a collection of 5 CD slots (see note below how to ensure that there is always 5 slots). The job of this Vic is to reverse the order of the CD’s in the collection. FOR THIS PROGRAM YOU CAN ASSUME THERE ARE ALWAYS 5 SLOTS.

One way to do this is as follows:

· One at a time, place each CD onto the CD stack (takeCD()) .

· Back up to the beginning (hint: you know that there are 5 slots).

· One at a time, remove a CD from the stack (putCD()) until all of the CD’s in the stack are gone.

Program #3 – Case Study and Lab: First Steps

The complete description of this program is on pages 59 – 62 of Java Methods. We will set up your folder in class with the files that you need. You are to implement the missing program code in Walker.java, specifically the methods stop and draw.
Observing and Experimenting with GridWorld

Follow the instructions to set up the GridWorld Case Study on your computer. Compile the project and run the program. Read the Part 1 of the Case Study Narrative given out in class and answer the “Do You Know” questions as well as the “Exercises” on the handout provided.
Challenge (if you are shooting for an A in this class)
Continue with Program #1, with the following modification. You remove the word STOP from your drawing, then write the code that makes 4 additional octagons (all with different colors), each inner octagon starting at the midpoint of the outer, connecting the midpoints of all the sides. (Hint: there are ways to compute this geometrically…draw a picture to see the problem…or you can just try different lengths for sides until it looks right)
I will check the functionality of your programming exercises as you complete them in the lab.
Methods of the Vic class

Summary of what a Vic can do:

new Vic() creates a Vic object.
You can send four action messages to a Vic:
 1. aVic.putCD() - causes the mechanical arm to remove a CD from the top of

the stack and put it in the slot at the current position. This does not change the arm's

position in the sequence. If a CD is already in the slot, or if no CD is in the stack, the

putCD operation will cause the program to fail.
 2. aVic.takeCD() - causes the mechanical arm to take a CD out of the slot at

the current position and place it on top of the stack. This does not change the arm's

position in the sequence. If there is no CD in the slot, the takeCD operation will cause

the program to fail.
 3. aVic.moveOn() - moves the mechanical arm down from its current position in

the sequence of slots to the next position.
 4. aVic.backUp() - moves the mechanical arm up from its current position in the

sequence of slots to the position just before it.
You can ask two questions of a Vic:
1. aVic.seesCD() - is true if aVic's current slot has a CD in it and is false otherwise. Evaluation of this condition causes the program to fail if a Vic.seesSlot() is false.

 2. aVic.seesSlot() - is true if aVic is not past its last slot and is false otherwise. So it means aVic actually has a current slot.
You have four Vic class methods:
1. Vic.stackHasCD() – is true if there is at least on CD on the stack.

2. Vic.emptyStack() – empties (or clears out) any CD’s that happen to be on the stack.

3. Vic.reset(args) – this method initializes where CD’s are when the program starts. If this method is not called, the CD’s are in random locations. (See “Testing Your Vic” for more info)

4. Vic.say("whatever") – Prints out the expression to the drawing window (upper left)

If aVic.seesSlot() is false, then aVic.putCD(), aVic.takeCD(),

aVic.moveOn(), and aVic.seesCD() all cause the program to fail (i.e., gracefully

terminate execution). Also, the backUp message causes the program to fail if the

Vic object is positioned at its first slot. You should avoid letting this happen. If you let

it happen, your program is not robust, since it does not handle unexpected input

well.
Testing your Vic!!
(keep this for reference)
A good practice to get into in programming is to test your programs thoroughly. You would hate to be the person who was designing the software that goes into a Heart Pacemaker and find after three people die that your software had an error (called a software bug).

Currently, the Vic controller randomly generates CD collections to control. This is good once you have a program that you think works well, but while you are in the process of testing, it is nice to have consistent test data.

In Java programs, you have a way to do this. The parameter in the main method named args is the way.

For a Vic, it is fairly straightforward. You need to set the args parameter to a binary number, 1 meaning a CD exists, 0 means there is no CD in the slot.

So, for example, 011001 would mean that there are CD’s in slots 2, 3, and 6 for only one collection.

Another example: 11100 010 1111 would mean that there are 3 collections. The first collection has CD’s in slots 1, 2, 3 (out of 5 slots); the second has a CD in slot 2 (out of 3 slots); the third has CD’s in all four slots.

So….how do you set the parameter args to what you desire?? Follow the steps below:

1. Click on Build->RunTime Configuration.

2. Select (click on) default, then Edit.

3. Select default and Edit again.

4. Click on the tab Parameters
5. Click the checkbox that says Prompt for main method arguments
Now, when you run a program, it should prompt you for an input. If you decide that you do not want this anymore, just “uncheck” the checkbox.

One more thing!! In order for the slots to get changed, you must call the class method reset. To do this, add the following line to the beginning of your program (the first line in main):

Vic.reset(args);
That’s all!! Enjoy!!
