

 Data Encryption
 Fast & Secure

 The algorithm for the Data Encryption
 Standard runs too slow on most micros, but
 simpler methods have not provided secure
 encryption. This program solves this
 problem by being both fast and secure.

 by Harry J. Smith

The Data Encryption Standard, DES (1), though normally considered
a very secure form of encryption, has a very complicated algorithm
(2) and runs very slow when implemented on a micro computer. The
program CRYPT (3) as implemented on most systems that use the UNIX
operating system is quite fast, but is not a very secure form of
data encryption. The data encryption program CRYP presented here
attempts to be even more secure than DES by using a larger and
more random key, and at the same time is reasonably fast.

The program TNT (4) is a good example of a data encryption method
that has attempted to be both fast and secure but it too is about
10 to 20 times more complicated, as measured by program execution
time, than the method presented here. This forces TNT to be
written in assembly language to be practical. CRYP was written in
a high order language and is about 4.5 times faster, exclusive of
I/O time, than TNT written in assembly language.

Another article (5) contained encryption programs that were fast
and were written in a high order language, but they used the same
encryption key over and over again for the same input key. If one
enciphered message were ever compromised then any other message
which used the same input key would no longer be secure with this
method.

Basic Method Used
An alphanumeric key, input by the operator of the program, is
converted into nine 16-bit seeds for nine different random number
generators. The output of the nine generators are combined to
generate a random sequence of bits of about 3.55 * 10**44 bits
long (approximately 2**148 bits). This sequence of bits is then
used as a pseudo infinite key and is exclusive-ORed with the bits
of the data file to produce the data for the enciphered file.

Processing the Key
The characters of the key input by the operator are converted to
a standard form containing only 63 different characters. Lower
case letters are converted to upper case and control characters
are converted to the special characters and the numbers. The space
character is changed to a '/' so the standard form will never
contain a space. This is done because it may be difficult on some
systems to input a space character in an argument on the command
line.

A key of 24 characters is needed. If the input key is longer than
24 characters, it is hashed into a 24 character key. For the first
24 characters, each character is increased by the sum of all
characters that precede it. For the 25 character on, each charac-
ter is increased by the sum of all characters that follow it. Then
characters in the same position modulo 24 are then added together
to make the key 24 characters long. The summing of characters is
done arithmetically modulo 256.

If the key is shorter than 24 characters, trailing '/' are
appended to make it 24 characters. The 24-character key is also
converted to the standard form. Only the 6 least significant bits
of each of the 24 key characters are used to generate the seeds
for the random number generators.

Continuation File
In order to make this method an infinite key encryption system (4)
a continuation file, CRY.CON, is maintained by the program. This
file contains one record of 18 bytes from the random number
generators. Each time a file is enciphered, the continuation file
is read, its 18 bytes are exclusive-ORed with the 18 bytes of the
bits from the encryption key to produce the starting seeds for the
9 random number generators. The continuation file is also output
as the first 18 bytes of the enciphered file. After the input file
is enciphered the continuation file is updated by reseeding the
random number generators with the 18 bytes of the continuation
file and the next 4096 bytes from the generators are stored in a
pool of random numbers in reverse order. Each 16 bits stored is
the sum of 9 random integers, one from each generator, truncated
to the lower 16 bits. The first 18 bytes of this pool is then
written to the continuation file.

There is an option in CRYP to initialize the continuation file.
When this option is selected the encryption key is used directly
to seed the random number generators and 18 bytes output from the
generators, as described above, are stored in the continuation
file. The key used to initialize the continuation file should not
be the same key used to encrypt data files.

The use of the continuation file does not cause each file enci-
phering to start up with the pseudo infinite key exactly where it
left off, but causes it to start up at a random point in its
extremely long periodic cycle. It is impractical to try to start
up where the previous file left off because the pool of 2048
random integers, described shortly, would have to be save and
protected between runs. Starting up at a random point and reiniti-
alizing the pool for each file is a better method.

The Random Number Generators
The nine random number generators were chosen very carefully and
have been tested to ensure they each produce the proper number of
random integers before they cycle and start reproducing the same
sequence all over again. Four of the generators are Congruential
generators (6) and five of them are Shift-register generators (7).
This was done to prevent the problems that can arise when only one
type of generator is used (7). The generators were chosen so their

periods would be relatively prime to each other (65536, 65535,
65537, 65521, 65519, 65497, 65479, 65449 and 65447 respectively).
This was done to produce a very long resulting period in the
pseudo infinite key. The pseudo infinite key is generated in
16-bit increments by a combination of exclusive-ORing and arithme-
tic addition of the output of the nine random number generators.

The Pseudo Infinite Key
After the seeds of the 9 generators are established, each genera-
tor is called once and the sum of the 9 integers generated,
truncated to 16 bits, is used to initialize rr, the running random
integer. This rr is normally updated by adding, and truncating to
16 bits, the next output of the next generator, cycling the
generators 0 through 8 and repeating. Thus, only one call to one
generator is needed to get 16 more bits for the basic random bit
sequence.

Next the pool of 2048 random integers is initialized. This is done
by storing consecutive values of rr generated as just described.
After this rr is recomputed by calling each generator once and
summing the 9 integers generated as before. This makes rr indepen-
dent from any integer in the pool.

Now we are ready to start generating bits of the pseudo infinite
key. The next 16 bits of this key is always generated by:

1) Use the lower 11 bits of rr as a relative index into the pool.

2) Use the integer at this position in the pool as the next 16
bits of the pseudo infinite key.

3) Update rr by adding the output of the next generator to rr and
keep the lower 16 bits.

4) Replace the integer just used in the pool with the exclusive-OR
of itself and rr (do not change rr).

This process causes the pseudo infinite key to be a very compli-
cated function of the output of the 9 random number generators,
but is a simple process to program and execute.

One criticism of this method might be that it is a substitution
cipher only and that a combination of a transposition and substi-
tution produces the strongest cipher schemes. The normal transpo-
sition process is what makes the TNT program run so slow. In a
sense CRYP does have a transposition process but it is a transpo-
sition in the pseudo infinite key instead of in the text.

Process Overview
In order to understand the method better, outlines of the three
options of the program are given:

Encipher Process-

1) Process key from operator.
2) Read continuation file.
3) Copy continuation file to output file.

4) Initialize random number seeds.
5) Fill random number pool.
6) Read, encrypt, write input file to output file.
7) Restore random number seeds from continuation file.
8) Build and write random record to continuation file.

Decipher Process-

1) Process key from operator.
2) Read first 18 bytes of input file.
3) Initialize random number seeds.
4) Fill random number pool.
5) Read, encrypt, write input file to output file.

Initialize Continuation file-

1) Process key from operator.
2) Initialize random number seeds.
3) Build and write random record to continuation file.

Timing Data
A file of 128K bytes of all zeros was generated using DEBUG, and
COPY in the following way:

 A:\>DEBUG
 -FCS:100,L,8000,0
 -RCX
 CX xxxx
 :8000
 -RBX
 BX xxxx
 :0
 -NA:Z
 -W
 Writing 08000 bytes
 -Q

 A:\>COPY /B Z+Z+Z+Z Z128K
 Z
 Z
 Z
 Z
 1 File(s) copied

This file was then enciphered on a hard disk drive in 6.2 seconds
and then deciphered in 9.4 seconds. The system used was a 386 AT
clone running MS DOS 3.3 at a clock rate of 8 MHz.

Randomness Testing
The 128k file of all zero described above was enciphered four
different times and a Chi-square test applied to each enciphered
file. The Chi-squared statistic generated was 232.8, 294.8, 304.5
and 225.9. For a Chi-square test with 255 degrees of freedom as
this test is, the Chi-square statistic has a median value of 254.3
and should be between 200.6 and 316.9, 99% of the time and between
219.0 and 293.2, 90% of the time.

Twenty-four Chi-square tests were run on other encipherings of the
all zero file, taking 5120 byte blocks of data per test. The
maximum Chi-square was 291.3, the minimum Chi-square was 198.8 and
the average was 254.7. On these 24 runs the mean, second, third,
and fourth moments of the distribution of the value of the bytes
were also calculated with no significant deviation from their
theoretical values.

Operating the program
This program is written in C and all operator input comes from the
DOS command line. The format of the command to execute CRYP can be
found by executing CRYP with no parameters. The output to the
screen in this case is:

 CRYP - A data encryption system written in C, with pipes
 Version 6.00, 1992-11-15, 1400 hours
 Copyright (c) 1987-1992 by author: Harry J. Smith

 usage: CRYP key [D/I] [<infile] [>outfile]
 D = Decipher
 I = Init CRY.CON file using key and exit
 default = Encipher and update CRY.CON file

The key parameter is a string of any length the system supports,
but probably not more than 72 characters. If the key is the only
parameter given, then the standard input is encrypted and output
to the standard output. The [D/I] parameter is an optional field.
When it is present and is the single character D or d the input is
deciphered instead of enciphered. When the [D/I] parameter is the
single character I or i the continuation file is initialized. The
same key that is used to encipher a file must be used to decipher
it, but should not be used to initialize the continuation file.

A file can be enciphered twice with the same or different keys and
then deciphered by deciphering twice using the keys in the reverse
order. This double encryption is not recommended since CRYP is
very secure with only one encryption.

Choosing a key
If you are serious about protecting the information contained in
your file, the encryption key should be chosen carefully, and of
course it also needs to be protected. A key of FEBRUARY is a poor
choice because if a few characters can be determined the rest can
be guessed. A short key such as ASDF is bad because if the key
space is searched in lexicographic order the key will be found in
less than 2**24 tries.

A good scheme for choosing a key is to make up a phrase that makes
no special sense but is at least 48 characters long. When this key
is converted to the 24-character key the characters will look
random. For example, the eight input keys:

 1) YOU/SHOULD/MAKE/YOUR/KEYS/AT/LEAST/48/CHARACTERS
 2) TRY/TO/MAKE/YOUR/KEYS/EASY/TO/REMEMBER/BUT/HARD/TO/BREAK
 3) THE/WIND/BLOWS/THE/SNOW/FALLS/IT/WILL/NOT/BE/HOT
 4) A/NEST/IS/A/HOME/IF/YOU/ARE/A/BIRD/BUT/I/LIKE/MINE
 5) ROSE/HAS/HAD/TOO/MUCH/SAID/I/HAVE/NOTHING/TO/ADD

 6) ROPE/IT/CAN/BE/LONG/IT/CAN/BE/SHORT/BUT/NOT/FOR/ME
 7) EAGLE/WHAT/A/BIRD/IF/I/COULD/FLY/WOULD/BE/ONE/TOO
 8) BOOK/READ/ONE/TO/ME/READ/ONE/MYSELF/BUT/NOT/TO/YOU

produce the following eight 24-character keys:

 1) B>DRQJM](YTR_2(4%36G3**1
 2) U/1"@N)C422T+58;(>/9D2%"
 3) IKOR]SRMH[PVAHHNGXXIR2!!
 4) *J!!%88?I&##)#<282,2/*P2
 5) :@OEKD]OHK]S33:@!'M<55GD
 6) Y:W-Z^#_ZLHCVY3+KKC>8F&7
 7) $'99::+'/4,^XNSVXB\STXXG
 8) ._*'14,4%ORZ0]\WWVLGJ[MB

respectively. The long form of the key is easier to remember and
easier to type, the short form is more random and harder to crack.

How Secure is the Method?
The search space is about 2**144 keys. An extremely powerful
computer would be needed to search and find the key in a timely
manner. If 10**14 processors could each test 10**14 different keys
per second it would take about 10**7 years to find a randomly
selected key.

If there is a flaw in this method it would be that a chunk of the
pseudo key, if it were exposed, could be used to determine the
value of the seeds used to produce it. This seams totally impossi-
ble because the process of generating the pseudo infinite key
appears to be quite irreversible, but this is not proven. Thus, it
is still necessary to change the input key periodically.

Pascal version
An interactive user interface version of this program, CRYU, was
developed using TURBO Pascal. Tests were performed to insure that
a file can be enciphered with one of the programs and then
deciphered with the other program. The running time of the two
programs are essentially the same.

C Named files version
A C version CRYN that uses files names on the command line instead
of pipes was also developed. The format of the command to execute
CRYN can be found by executing CRYN with no parameters. The output
to the screen in this case is:

 CRYN - A data encryption system written in C, named files
 Version 6.00, 1992-11-15, 1400 hours
 Copyright (c) 1987-1992 by author: Harry J. Smith

 usage: CRYN key [infile outfile [D]]
 key only => Init CRY.CON file using key and exit
 no D => Encipher and update CRY.CON file
 D => Decipher

In all versions of the of the program, if a key is given which is
a file name, then the first line of the file is used as the key.

Notes
1. Data Encryption Standard, U. S. Department of Commerce,
National Bureau of standards, FIPS Publication 46, 1977 January
15.
2. Katzan, H. The Standard Data Encryption Algorithm. New York:
Petrocelli Books, 1977.
3. Kernighan, B., and Plauger, P. Software Tools. Reading, Mass.:
Addison-Wesley, 1976.
4. Thomas, J., and Thersites, J. "Designing a File Encryption
System", Dr.Dobb's Journal (August 1984): 44-53.
5.Scacchitti, F. E., "The Cryptographer's Toolbox", Dr. Dobb's
Journal (May 1986): 58-64.
6. Knuth, D. E. The Art of Computer Programming, vol. 2, Seminu-
merical Algorithms. Reading, Mass.: Addison-Wesley, 1968.
7. Ralston, A. Encyclopedia of Computer Science, First Edition,
"Random Number Generation", New York: Van Nostrand Reinhold, 1976.
8. Stout, R. B., "S-CODER for Data Encryption" Dr. Dobb's Journal
(Jan 1990): 52-58.

 Harry J. Smith
 19628 Via Monte Dr.
 Saratoga, CA 95070
 (408) 741-0406

