Hyperbolic Functions


Hyperbolic Sine: Sinh(x),
If x == 0, Sinh(x) = 0,
Else if x >= 0.1, Sinh(x) = (y − 1/y) / 2, where y = Exp(x),
Else if 0 < x < 0.1, Sinh(x) = z / (2 * SqRt(z+1)), where z = ExpL(2*x),
Else if x < 0, Sinh(x) = −Sinh(−x).
See: Hyperbolic Sine -- From MathWorld
and Wolfram Function Evaluation

Hyperbolic Cosine: Cosh(x) = (y + 1/y) / 2, where y = Exp(|x|).
See: Hyperbolic Cosine -- From MathWorld
and Wolfram Function Evaluation

Hyperbolic Tangent: Tanh(x),
If x == 0, Tanh(0) = 0,
Else if x > 0, Tanh(pos) = y / (y + 2), where y = ExpL(2 * x),
Else if x < 0, Tanh(x) = −Tanh(−x).
See: Hyperbolic Tangent -- From MathWorld
and Wolfram Function Evaluation

Hyperbolic Cotangent: Coth(x) = 1/Tanh(x),
but Coth(0) is undefined.
See: Hyperbolic Cotangent -- From MathWorld
and Wolfram Function Evaluation

Hyperbolic Secant: Sech(x) = 1/Cosh(X)
See: Hyperbolic Secant -- From MathWorld
and Wolfram Function Evaluation

Hyperbolic Cosecant: Csch(x) = 1/Sinh(X),
but Sech(0) is undefined.
See: Hyperbolic Cosecant -- From MathWorld
and Wolfram Function Evaluation

See: Transcendental Function Evaluation

Return to Number Theory, Algorithms, and Real Functions
Return to Harry's Home Page


This page accessed times since Feb 16, 2006.
Page created by: hjsmithh@sbcglobal.net
Changes last made on Monday, 06-Aug-07 20:47:21 PDT