Given A = (4, 3) and O is the origin, L is a line through A cutting the positive axes at P and Q. (i) Find the equation of L if ΔPOQ has an area of 24.5. Find the equation of the lines L_1 and L_2 , passing through A and at a distance $\sqrt{5}$ units from the origin. (iii) If α is the acute angle between the lines L_1 and f_{12} . Find the value of α Distrubuted by 4D Class Website: The line L passes through the intersection of http://hk.geocities.com/firedplkcc 59x - 76y + 46 = 0 and 44x - 27y + 57 = 0(c) All Right Reserved 2003 If the y-intercept of L is I, find (a) the equation of L. (b) the distance from the origin to L. Find the area of the triangle with vertices A(-1, 2), B(a - 3, a + 1), C(a, a + 2). (b) If these points are collinear, find the values of a. Find the equation of BC. If the line through B and C cuts x- and y-axis at P and Q respectively, find the coordinates of P and Q. If O is the origin, what is the value of a, when area of $\triangle POQ$ is unity. The line L: $(1 + \lambda)x + (3 - \lambda)y = 2(1 + 3\lambda)$ passes through a fixed point Q for any value of λ . (a) Find the coordinate of Q. If $L//L_1$: 2x + 3y = 5, find the equation of L. If L has x-intercept = 3, find its y-intercept. Given two lines $L_1: x-2y-4=0$ $L_2: 2x + y - 4 = 0$ Find a straight line passing through the intersection of L_1 and L_2 and (a) with slope 2 (b) passing through (3, -2)(c) perpendicular to 5x + 3y = 0. A is the point (1,3) Find the equation of the straight line with slope m passing through A. (b) Find the slopes of the straight lines which pass through A and are at distances $\sqrt{2}$ units from Find the equation of the line through the point (2, 6) cutting the two lines in (b) at points B and C, such that AB = AC. (d) Calculate the area of the triangle ABC. Two lines L1 and L2 pass through A(1, 1) and intersect the line $L_3: 3x - y - 12 = 0$ at the points P and Q respectively. The acute angle between L_1 and L_2 and that between L_2 and L₃ are both θ , where $\tan \theta = \frac{1}{2}$, and L₁ is positively sloped. Find, without using tables, the slopes of $\,L_1\,$ and $\,L_2\,$. Find the equations of L_1 and L_2 . Find the coordinates of P and Q.

Circle.

- 15. Find the equation of the circle such that
 - (a) it passes through the points A(-2, 2), B(2, 2) and C(-2, -4).
 - (b) its centre is at (-3, 0) and it touches the line x y = 10 = 0
 - (c) it passes through the point (2, 3) and touches the line 2x 3y 13 = 0 at (2, -3).
 - (d) it passes through the points of intersection of the circles $x^2 + y^2 2x 3y 2 = 0$ and $x^2 + y^2 3x + y 10 = 0$ and the point P(-2, 1).
 - (e) it passes through the points of intersection of the line x y + 1 = 0 and the circle $x^2 + y^2 + 2x 2y + 1 = 0$, and its centre lies on the line x + 3y = 3.
 - (f) Find the equation of the smaller circle whose centre is at the point (-1, 1) and which touches the circle $x^2 + y^2 4x 2y 11 = 0$.
- 16. Given the equation $x^2 + y^2 + 2kx 4ky + 6k^2 2 = 0$.
 - (a) Find the range of values of k so that the equation represents a circle with radius greater than 1.
 - (b) Find the locus of the centre of the circle as k varies within the range in (a).
- 17. The circles C_1 : $x^2 + y^2 7x + 11 = 0$ and C_2 : $x^2 + y^2 4x + 6y + 8 = 0$

touches each other externally at P. Find the coordinates of P.

- 18. Given: L: y = xC: $(x-2)^2 + (y-10)^2 = 18$.
 - (a) Prove that L does not meet the circle C.
 - (b) Find the co-ordinates of the points N and F on the circle C which are respectively the nearest and the furthest from the line L.
- 19. The circles C_1 : $x^2 + y^2 + 4x 2y + 1 = 0$ and C_2 : $x^2 + y^2 + 10x + 4y + 19 = 0$

have a common chord AB.

- (a) (i) Find the equation of AB.
 - (ii) Find the equation of the circle with AB as a chord such that the area of the circle is a minimum.
- (b) The circle C_1 and another circle C_3 are concentric. If AB is a tangent to C_3 , find the equation of C_3 .
- 20. Given the circle C: $x^2 + y^2 + 4x + 2y + 4 = 0$
 - (a) Find the radius and the coordinates of the centre of C.
 - (b) Find the distance from the centre of C to the line ax + by + c = 0. Hence, or otherwise, find the equation of the two tangents to C which are parallel to L: 3x 4y = 0.
 - (c) Find the equation of the line passing through the centre of C and perpendicular to the line L. Hence, or otherwise, find the points of contact at which the two tangents obtained in (b) touch C.
- 21. A circle C: $x^2 + y^2 + 4x 2y 11 = 0$ and a straight line L: x + y = 3 intersect at A and B. Find the equation of
 - (a) the circle with AB as diameter.
 - (b) the circle which has its centre at (4, -4) and bisects the circumference of C.

Distrubuted by 4D Class Website: http://hk.geocities.com/firedplkcc (c) All Right Reserved 2003

- 22. The line L: y = mx 2 meets the circle C: $x^2 + y^2 = 1$ at the points $A(x_1, y_1)$ and $B(x_2, y_2)$.
 - (a) Show that the length of the chord AB is $2\sqrt{\frac{m^2-3}{m^2+1}}$
 - (b) Find the values of m such that
 - (i) L meets C at two distinct points,
 - (ii) L is a tangent to C,
 - (iii) L does not meet C.
 - (c) For the two tangents in (b) (ii), let the corresponding points of contact be P and Q. Find the equation of PQ.
- 23. (a) C is a circle with (0, 1) and (p, q) as ends of a diameter. If C cuts the x-axis at two points $(\alpha, 0)$ and $(\beta, 0)$, express $\alpha + \beta$ and $\alpha\beta$ in terms of p and q.
 - (b) By drawing a suitable circle, solve the quadratic equation $x^2 + 3x + 1 = 0$.
- 24. In the figure, A and B are the points (4, 0) and (8, 0) respectively. The equation of C_1 is $x^2 + y^2 8x 2y + 16 = 0$. OH and BH are tangents to C_1 .
 - (a) (i) Show that C₁ touches the x-axis at A.
 - (ii) Find the equation of OH.
 - (iii) Find the equation of BH.
 - (b) In the figure, the equation of OK is 4x + 3y = 0. The circle $C_2: x^2 + y^2 8x + 2fy + c = 0$ is the inscribed circle of $\triangle OBK$ and touches the x-axis at A.
 - (i) Find the values of the constants c and f.
 - (ii) Find area of ΔOBH: area of ΔOBK.

25. Given two circles (C_1) : $x^2 + y^2 - 24y = 0$, (C_2) : $x^2 + y^2 + 24x - 6y + 144 = 0$.

The two external common tangents to the two circles and the line joining their centres meet at the point P.

- (a) Find the coordinates of the centres and the radii of the two circles.
- (b) Show that (C₁) and (C₂) touch each other.
- (c) Show that the x-axis is a common tangent to the two circles.
- (d) (i) Find the coordinates of the point P.
 - (ii) Find the equation of the other external common tangent to the two circles.
- (e) Find the equation of the third common tangent to the two circles.

