複角公式

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

sinA/cosA=tanA

sin2A+cos2A=1

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cosAsinB

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

(9)

(10)

(11)

(12)

(13)

sin(2A)=2sinAcosA

cos(2A)=cos2A-sin2A

cos(2A)=2cos2A-1

cos(2A)=1-2sin2A

tan(2A)=(2tanA)/(1-tan2A)

(14)

(15)

sin(3A)=3sinA-4sin3A

cos(3A)=4cos3A-3cosA

--------------------(1)--------------------

sinA/cosA=(a/c)/(b/c)=a/b=tanA

--------------------(2)--------------------

a2+b2=c2

a2/c2+b2/c2=1

∴sin2A+cos2A=1

--------------------(3)--------------------

(1/2)[sin(A+B)](cd)=(1/2)[sin(A)](bc)+(1/2)[sin(B)](bd)

sin(A+B)=[sin(A)](b/d)+[sin(B)](b/c)

∴sin(A+B)=sinAcosB+cosAsinB

--------------------(4)--------------------

代B=-B入(3)

sin[A+(-B)]=sinAcos(-B)+cosAsin(-B)

∴sin(A-B)=sinAcosB-cosAsinB

--------------------(5)--------------------

代A=π/2-A入(4)

sin[(π/2-A)-B]=sin(π/2-A)cosB-cos(π/2-A)sinB

cos[π/2-(A+B)]=cosAcosB-sinAsinB

∴cos(A+B)=cosAcosB-sinAsinB

--------------------(6)--------------------

代B=-B入(5)

cos[A+(-B)]=cosAcos(-B)-sinAsin(-B)

∴cos(A-B)=cosAcosB+sinAsinB

--------------------(7)--------------------

根據(1),tan(A+B)=sin(A+B)/cos(A+B)

=(sinAcosB+cosAsinB)/(cosAcosB-sinAsinB)

=[(sinAcosB)/(cosAcosB)+(cosAsinB)/(cosAcosB)]/[(cosAcosB)/(cosAcosB)-(sinAsinB)/(cosAcosB)]

=[tanA+tanB]/[1-tanAtanB]

∴tan(A+B)=(tanA+tanB)/(1-tanAtanB)

--------------------(8)--------------------

代B=-B入(7)

tan[A+(-B)]=[tanA+tan(-B)]/[1-tanAtan(-B)]

∴tan(A-B)=(tanA-tanB)/(1+tanAtanB)

--------------------(9)--------------------

根據(3),代入B=A

sin(A+A)=sinAcosA+cosAsinA

∴sin(2A)=2sinAcosA

--------------------(10)--------------------

根據(5),代入B=A

cos(A+A)=cosAcosA-sinAsinA

∴cos(2A)=cos2A-sin2A

--------------------(11)--------------------

根據(10),代入sin2=1-cos2A

cos(2A)=cos2A-(1-cos2A)

∴cos(2A)=2cos2A-1

--------------------(12)--------------------

根據(10),代入cos2=1-sin2A

cos(2A)=(1-sin2A)-sin2A

∴cos(2A)=1-2sin2A

--------------------(13)--------------------

根據(7),代入B=A

tan(A+A)=(tanA+tanA)/(1-tanAtanA)

∴tan(2A)=(2tanA)/(1-tan2A)

--------------------(14)--------------------

sin(3A)=sin(A+2A)

=sinAcos(2A)+cosAsin(2A)

=sinA[1-2sin2A]+cosA[2sinAcosA]

=sinA-2sin3A+2sinAcos2A

=sinA-2sin3A+2sinA[1-sin2A]

=sinA-2sin3A+2sinA-2sin3A

=3sinA-4sin3A

∴sin(3A)=3sinA-4sin3A

--------------------(15)--------------------

cos(3A)=cos(A+2A)

=cosAcos(2A)-sinAsin(2A)

=cosA[2cos2A-1]-sinA[2sinAcosA]

=2cos3-cosA-2sin2AcosA

=2cos3-cosA-2[1-cos2A]cosA

=2cos3-cosA-2cosA+2cos3A

=4cos3A-3cosA

∴cos(3A)=4cos3A-3cosA