複角公式
sinA/cosA=tanA sin2A+cos2A=1 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) |
---|
sin(2A)=2sinAcosA cos(2A)=cos2A-sin2A cos(2A)=2cos2A-1 cos(2A)=1-2sin2A tan(2A)=(2tanA)/(1-tan2A) |
---|
sin(3A)=3sinA-4sin3A cos(3A)=4cos3A-3cosA |
---|
--------------------(1)--------------------
sinA/cosA=(a/c)/(b/c)=a/b=tanA
--------------------(2)--------------------
a2+b2=c2
a2/c2+b2/c2=1
∴sin2A+cos2A=1
--------------------(3)--------------------
(1/2)[sin(A+B)](cd)=(1/2)[sin(A)](bc)+(1/2)[sin(B)](bd)
sin(A+B)=[sin(A)](b/d)+[sin(B)](b/c)
∴sin(A+B)=sinAcosB+cosAsinB
--------------------(4)--------------------
代B=-B入(3)
sin[A+(-B)]=sinAcos(-B)+cosAsin(-B)
∴sin(A-B)=sinAcosB-cosAsinB
--------------------(5)--------------------
代A=π/2-A入(4)
sin[(π/2-A)-B]=sin(π/2-A)cosB-cos(π/2-A)sinB
cos[π/2-(A+B)]=cosAcosB-sinAsinB
∴cos(A+B)=cosAcosB-sinAsinB
--------------------(6)--------------------
代B=-B入(5)
cos[A+(-B)]=cosAcos(-B)-sinAsin(-B)
∴cos(A-B)=cosAcosB+sinAsinB
--------------------(7)--------------------
根據(1),tan(A+B)=sin(A+B)/cos(A+B)
=(sinAcosB+cosAsinB)/(cosAcosB-sinAsinB)
=[(sinAcosB)/(cosAcosB)+(cosAsinB)/(cosAcosB)]/[(cosAcosB)/(cosAcosB)-(sinAsinB)/(cosAcosB)]
=[tanA+tanB]/[1-tanAtanB]
∴tan(A+B)=(tanA+tanB)/(1-tanAtanB)
--------------------(8)--------------------
代B=-B入(7)
tan[A+(-B)]=[tanA+tan(-B)]/[1-tanAtan(-B)]
∴tan(A-B)=(tanA-tanB)/(1+tanAtanB)
--------------------(9)--------------------
根據(3),代入B=A
sin(A+A)=sinAcosA+cosAsinA
∴sin(2A)=2sinAcosA
--------------------(10)--------------------
根據(5),代入B=A
cos(A+A)=cosAcosA-sinAsinA
∴cos(2A)=cos2A-sin2A
--------------------(11)--------------------
根據(10),代入sin2=1-cos2A
cos(2A)=cos2A-(1-cos2A)
∴cos(2A)=2cos2A-1
--------------------(12)--------------------
根據(10),代入cos2=1-sin2A
cos(2A)=(1-sin2A)-sin2A
∴cos(2A)=1-2sin2A
--------------------(13)--------------------
根據(7),代入B=A
tan(A+A)=(tanA+tanA)/(1-tanAtanA)
∴tan(2A)=(2tanA)/(1-tan2A)
--------------------(14)--------------------
sin(3A)=sin(A+2A)
=sinAcos(2A)+cosAsin(2A)
=sinA[1-2sin2A]+cosA[2sinAcosA]
=sinA-2sin3A+2sinAcos2A
=sinA-2sin3A+2sinA[1-sin2A]
=sinA-2sin3A+2sinA-2sin3A
=3sinA-4sin3A
∴sin(3A)=3sinA-4sin3A
--------------------(15)--------------------
cos(3A)=cos(A+2A)
=cosAcos(2A)-sinAsin(2A)
=cosA[2cos2A-1]-sinA[2sinAcosA]
=2cos3-cosA-2sin2AcosA
=2cos3-cosA-2[1-cos2A]cosA
=2cos3-cosA-2cosA+2cos3A
=4cos3A-3cosA
∴cos(3A)=4cos3A-3cosA