輔助角

(16)

(17)

asinθ+bcosθ=(a2+b2)(1/2)sin[θ+tan-1(b/a)]

asinθ+bcosθ=(a2+b2)(1/2)cos[θ-tan-1(a/b)]

--------------------(16)--------------------

rsin(θ+α)=r[sinθcosα+cosθsinα]

=rcosαsinθ+rsinαcosθ

代入rcosα=a & rsinα=b

=asinθ+bcosθ

考慮sin2α+cos2α=1

r2sin2α+r2cos2α=r2

(rsinα)2+(rcosα)2=r2

(b2+a2)(1/2)=r

∴r=(a2+b2)(1/2)

考慮sinα/cosα=tanα

(rsinα)/(rcosα)=tanα

tanα=b/a

∴α=tan-1b/a

∴asinθ+bcosθ=(a2+b2)(1/2)sin[θ+tan-1(b/a)]

--------------------(17)--------------------

rcos(θ-α)=r[cosθcosα+sinθsinα]

=rsinαsinθ+rcosαcosθ

代入rsinα=a & rcosα=b

=asinθ+bcosθ

考慮sin2α+cos2α=1

r2sin2α+r2cos2α=r2

(rsinα)2+(rcosα)2=r2

∴r=(a2+b2)(1/2)

考慮sinα/cosα=tanα

(rsinα)/(rcosα)=tanα

tanα=a/b

∴α=tan-1a/b

∴asinθ+bcosθ=(a2+b2)(1/2)cos[θ-tan-1(a/b)]