輔助角
asinθ+bcosθ=(a2+b2)(1/2)sin[θ+tan-1(b/a)] asinθ+bcosθ=(a2+b2)(1/2)cos[θ-tan-1(a/b)] |
---|
--------------------(16)--------------------
rsin(θ+α)=r[sinθcosα+cosθsinα]
=rcosαsinθ+rsinαcosθ
代入rcosα=a & rsinα=b
=asinθ+bcosθ
考慮sin2α+cos2α=1
r2sin2α+r2cos2α=r2
(rsinα)2+(rcosα)2=r2
(b2+a2)(1/2)=r
∴r=(a2+b2)(1/2)
考慮sinα/cosα=tanα
(rsinα)/(rcosα)=tanα
tanα=b/a
∴α=tan-1b/a
∴asinθ+bcosθ=(a2+b2)(1/2)sin[θ+tan-1(b/a)]
--------------------(17)--------------------
rcos(θ-α)=r[cosθcosα+sinθsinα]
=rsinαsinθ+rcosαcosθ
代入rsinα=a & rcosα=b
=asinθ+bcosθ
考慮sin2α+cos2α=1
r2sin2α+r2cos2α=r2
(rsinα)2+(rcosα)2=r2
∴r=(a2+b2)(1/2)
考慮sinα/cosα=tanα
(rsinα)/(rcosα)=tanα
tanα=a/b
∴α=tan-1a/b
∴asinθ+bcosθ=(a2+b2)(1/2)cos[θ-tan-1(a/b)]